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Abstract

Recently, decoder-only pre-trained large lan-
guage models (LLMs), with several tens of bil-
lion parameters, have significantly impacted
a wide range of natural language processing
(NLP) tasks. While encoder-only or encoder-
decoder pre-trained language models have
already proved to be effective in discourse
parsing, the extent to which LLMs can per-
form this task remains an open research ques-
tion. Therefore, this paper explores how ben-
eficial such LLMs are for Rhetorical Struc-
ture Theory (RST) discourse parsing. Here,
the parsing process for both fundamental top-
down and bottom-up strategies is converted
into prompts, which LLMs can work with.
We employ Llama 2 and fine-tune it with
QLoRA, which has fewer parameters that can
be tuned. Experimental results on three bench-
mark datasets, RST-DT, Instr-DT, and the
GUM corpus, demonstrate that Llama 2 with 70
billion parameters in the bottom-up strategy ob-
tained state-of-the-art (SOTA) results with sig-
nificant differences. Furthermore, our parsers
demonstrated generalizability when evaluated
on RST-DT, showing that, in spite of being
trained with the GUM corpus, it obtained sim-
ilar performances to those of existing parsers
trained with RST-DT.

1 Introduction

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987) is one of the influential discourse
theories used to explain the coherence of texts. It
plays an important role in various natural language
processing (NLP) tasks at the document level, in-
cluding sentiment analysis (Bhatia et al., 2015),
automatic summarization (Marcu, 1998; Xu et al.,
2020; Kwon et al., 2021), question answering (Gao
et al., 2020), machine translation (Chen et al., 2020;
Tan et al., 2022), and MT evaluation (Joty et al.,
2017). According to RST, a text is represented as a
binarized constituent tree (RST-tree), whose termi-
nal nodes correspond to elementary discourse units
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Figure 1: Example of RST tree from WSJ_1100 in RST-
DT (Lynn Carison, 2002), consisting of six EDUs (e):
e1: [Westinghouse Electric Corp. said], es: [it will buy
Shaw-Walker Co.], e3: [Terms weren’t disclosed.], e4:
[Shaw-Walker,], e5: [based in Muskegon, Mich.,], eg:
[makes metal files and desks, and seating and office
systems furniture.]. N and S represent the Nucleus and
Satellite, respectively.

(EDUs), clause-like units, and non-terminal nodes
indicate the nuclearity status, i.e., either Nucleus or
Satellite, of text spans consisting of single or con-
tiguous EDUs. The edges represent the rhetorical
relation between two adjacent text spans dominated
by non-terminal nodes. Figure 1 shows an example
of the RST tree obtained from RST Discourse Tree-
bank (RST-DT) (Lynn Carison, 2002). In the figure,
the nucleurity status of the text span consisting of
e1 and ey is the nucleus, and it is modified by the
satellite, e3. A mono-nuclear relation, Attribution,
is given to the two spans.

Since the late 2010s, neural RST discourse pars-
ing methods that use encoder-only pre-trained lan-
guage models (PLMs) to encode text spans into vec-
tors have been proposed due to advances in neural
models. While earlier models, e.g., Yu et al. (2018);
Lin et al. (2019); Kobayashi et al. (2020), obtained
vector representations for text spans from a static
PLM, such as GloVe (Pennington et al., 2014), re-
cent models, e.g., Guz and Carenini (2020); Shi
et al. (2020); Nguyen et al. (2021); Zhang et al.
(2021a), obtained them from a transformer-based
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PLM, such as XLNet (Yang et al., 2019). To form
RST trees, they obtained vectors via PLMs and
exploited them to determine the parsing actions in
a top-down or bottom-up strategy. More recently,
there is also a parser (Hu and Wan, 2023) that uti-
lizes an encoder-decoder PLM to transform input
text into a linearized RST tree.

There was a shift in focus from encoder-only to
massive-scale decoder-only PLMs. Some large
language models (LLMs), such as GPT-3 (Brown
et al., 2020) and Llama 2 (Touvron et al., 2023),
have several tens of billions of parameters and are
pre-trained with only a decoder. These have signif-
icantly impacted NLP, similar to encoder-only and
encoder-decoder PLMs. LLMs have demonstrated
remarkable success in various NLP tasks due to
their large numbers of parameters and ease of avail-
ability. Their impact extends beyond generation
tasks and includes classification tasks (Brown et al.,
2020; Wei et al., 2022; Wu et al., 2023). Therefore,
they could also be advantageous in RST discourse
parsing. Furthermore, we are strongly motivated
to adopt LLMs because previous discourse pars-
ing methods have been greatly improved by using
encoder-only or encoder-decoder pre-trained lan-
guage models.

In this paper, we explore the potential of using
LLMs for RST discourse parsing. As a first step in
exploiting LLMs, our approach is to translate the
parsing steps of both fundamental top-down and
bottom-up strategies into prompts. Then, we fine-
tune Llama 2 using QLoRA (Dettmers et al., 2023),
an extension of LoORA (Hu et al., 2022), which is an
adapter that injects trainable low-rank matrices into
each layer of the Transformer, while it freezes the
weights of the pre-trained model for efficient com-
puting. The experimental results from RST-DT, In-
structional Discourse Treebank (Instr-DT) (Subba
and Di Eugenio, 2009), and the GUM corpus
(Zeldes, 2017) demonstrate that our parser with the
bottom-up parsing strategy surpassed the current
state-of-the-art (SOTA) results. It outperformed
the current SOTA models by around 2-3 points
on RST-DT, by 0.4-3.7 points on Instr-DT, and by
1.5-6 points on the GUM corpus. Furthermore,
out-of-domain evaluations using RST-DT and the
GUM corpus demonstrate the potential generaliz-
ability of our parsers. Our parsers, trained with the
GUM corpus, achieved smaller degradation when
evaluated on RST-DT. The performances are close
to those of the existing parsers trained with RST-
DT itself. These findings provide valuable insights

into the future direction of RST discourse parsing.
We will release our code at https://github.com/
nttcslab-nlp/RSTParser_EACL24.

2 Related Work

2.1 RST Discourse Parsing with Encoder-only
PLMs

Most neural RST discourse parsers have two fun-
damental components: a feature extraction layer to
obtain vector representations for text spans and a
classification layer to form RST trees. The feature
extraction layer receives tokens in the text spans
as an input and obtains their vector representations
through a PLM. The classification layer, located on
top of the feature extractor, makes decisions that
guide the form of RST trees by the parsers.

Yu et al. (2018) proposed a bottom-up parsing
model with a feature extractor based on GloVe and
syntactic features. The parser merges text spans
using shift-reduce operations to build RST trees
based on Feed-Forward Networks (FFNs). To ex-
tend the parser, they incorporated a BERT-based
tailored PLM with objectives that include the pre-
diction of the next EDU and a discourse marker
(Yu et al., 2022). By enhancing the PLM, the per-
formance was greatly improved: They achieved
a fully-labeled span F1 score of 53.8. Guz and
Carenini (2020) extended Wang et al.’s classical
shift-reduce parser (Wang et al., 2017), replacing
SVMs with FFNs and a feature extractor with Span-
BERT (Joshi et al., 2020). The gain of F1 scores
against Wang et al.’s parser was around 3 points
due to having more sophisticated contextual word
embeddings.

Kobayashi et al. (2020) proposed a top-down
parsing model based on a minimal span-based ap-
proach, that recursively splits a span into smaller
ones by exploiting a classification layer with FFNs.
Their feature extractor was a combination of Glove
and ELMo (Peters et al., 2018). Another top-down
parsing model was proposed using a decoder in-
stead of FFNs for a classification layer. Lin et al.
(2019) proposed top-down depth-first parsing at
the sentence-level based on a pointer-generator net-
work. The parser employs GloVe in the feature
extractor, and then the decoder recursively gener-
ates a split for an input span. Shi et al. (2020)
introduced layer-wise beam search and used XL-
Net (Yang et al., 2019) in the feature extractor to
extend the top-down model to the document level,
achieving SOTA results at that time. Nguyen et al.
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(2021) and Zhang et al. (2021a) also reported that
XLNet is beneficial for enhancing performance in
a similar top-down approach.

Recently, Kobayashi et al. (2022) explored
simple and strong baselines based on Guz and
Carenini’s bottom-up parser (2020) and Kobayashi
et al’s top-down parser (2020) with varying
encoder-only PLMs. The results suggest that the
success of the parsing method heavily relies on the
PLMs rather than on the parsing strategies them-
selves. The current best score, a fully-labeled span
score of 55.4, was obtained by the bottom-up parser
combined with DeBERTa (He et al., 2021), a SOTA
encoder-only PLM.

As another approach, Braud et al. (2016) pro-
posed RST discourse parsing as a text-to-text gen-
eration task.! They used an LSTM-based encoder-
decoder to receive a text as an input and output
an S-expression that expresses a path from a root
node to leaf nodes of an RST tree. They adopted
an earlier PLM, PolyGlot (Al-Rfou’ et al., 2013).
Zhang et al. (2021b) proposed sentence-level pars-
ing by re-ranking linearized parse trees obtained
from an external parser, based on MPNet (Song
et al., 2020).

2.2 RST Discourse Parsing with
Encoder-decoder PLMs

As an extension of Braud et al.’s approach (2016),
Hu and Wan (2023) proposed a more straightfor-
ward model as a text-to-text generation task, that
exploits a SOTA encoder-decoder PLM, T5 (Raffel
et al., 2020). It directly learns the transformation
from an input text into the linearized S-expression
of the entire RST tree by benefiting from a power-
ful encoder-decoder PLM. The parser performed
better than Nguyen et al. (2021).

3 Proposed Approach

Three approaches can be possible when using
decoder-only LLMs for RST discourse parsing.
The first is to create linearized S-expressions for
RST trees using LLMs, which is similar to how
encoder-decoder PLMs have been used. The sec-
ond is to replace encoder-only PLMs with an
encoder of LLMs in conventional top-down or
bottom-up parsing. The third method involves us-
ing LLMs to imitate the parsing process, which

'While this approach may seem appropriate to the next
section, since the studies exclusively used only encoder-only
PLMs, we categorize them here.
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Figure 2: Bottom-up parsing by shift-reduce operations

involves combining feature extraction and classifi-
cation layers, similar to how encoder-only PLMs
have been used. The first approach can be challeng-
ing, especially when dealing with lengthy docu-
ments. This is because the number of output tokens
increases disproportionately with the number of
input tokens. Furthermore, additional techniques,
such as constrained beam search, are required to ob-
tain valid linearization forming a tree. The second
approach is not promising because it does not per-
form as well as encoder-only PLMs (Devlin et al.,
2019). Thus, we adopt the third approach in this
work.

Before describing our own approach, we first il-
lustrate fundamental top-down and bottom-up pars-
ing methodologies using encoder-only PLMs.

3.1 Bottom-up Parsing

Figure 2 gives an overview of bottom-up parsing
based on shift-reduce algorithms. The text’s tokens
are first converted into word embeddings using an
encoder-only PLM. Then, a vector representation
for a text span is obtained by averaging the word
embeddings for the leftmost token in the first EDU
and the rightmost token in the final EDU.

In the figure, FFNs in the classification layer
handles shit-reduce operations based on a stack
and a queue; a stack stores subtrees, i.e., text spans
that have already been parsed, and a queue contains
incoming EDUs. The parser builds an RST tree by
merging two adjacent text spans while selecting
one of the following actions:

Shift: Pop the first EDU off the queue and push it
onto the stack.

Reduce: Pop two text spans from the stack and
merge them into a new span, then push it onto
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Figure 3: Top-down parsing by span split

the stack.

Note that the nuclearity status and rhetorical re-
lation labels are independently predicted by dif-
ferent classifiers when the Reduce operation is se-
lected. FFN,¢, FFNyc, and FFN, in the classi-
fication layer are feed-forward networks for pre-
dicting the action, nuclearity, and relation labels,
respectively. FFN,.; solves a binary classifica-
tion problem (Shift or Reduce), FFN,,,,. solves a
three-class classification problem (either nucleus-
nucleus, nucleus-satellite, or satellite-nucleus), and
FFN,. solves a multi-class classification prob-
lem (the number of classes derives from the num-
ber of rhetorical relations used in the dataset):
s,=FFN, (Concat(uy,, us, , uq,)), where the func-
tion “Concat” concatenates the vectors received as
the arguments. uy, is the vector representation of
a text span stored in the first position of the stack,
ug, is that in the second position, and uy, is that in
the first position of the queue.

3.2 Top-down Parsing

An overview of top-down parsing is presented in
Figure 3. We obtain two vector representations
of text spans, u;.;, and ug.j, for each possible
split point k£ of the span between the ¢-th and
j-th EDUs, using the same approach as in the
bottom-up parsing. Then, the classification layer
consisting of FFNs and the biaffine layer identify
the best-split point based on a scoring function,
Ssplit (4., Dg11:5), which is defined as

Ssplit(hi:ka thrl:j) = hi:kthJrl:j + Vierthix

+ Vrighthk+1:ja (D

where W is a weight matrix and vier; and vijgnt
are weight vectors corresponding to the left and
right spans, respectively. Here, h;.;, and hy_1.; are
obtained via FFNs as follows:

h;.;; = FFNjeq (1.1, ()
hy 115 = FFNigh (g 1:5)- 3)

Then, the span is split at the position k that maxi-
mizes Eq. (1).

For a pair of text spans divided at point k, we
assign either nucleus-nucleus, nucleus-satellite, or
satellite-nucleus and a rhetorical relation from a
pre-defined set using the following scoring func-
tion:

£ L
Slabel(hi:fH hfc—f—l:j’g) = hzfcw hlf::—l—l:j—i_vlefthi:fc

l
+vrighth];+1;ja 4

where W* is a weight matrix for a specific nuclear-
ity or relation label £ and vfeft and vfight are weight
vectors corresponding to the left and right spans

for the label ¢, respectively.

3.3 Prompts for Bottom-up Parsing

To parse a document in a bottom-up manner with
LLMs, we translate the shift-reduce operations, de-
scribed in §3.1, into prompts. In this case, we em-
ulate the parsing process with a stack and a queue
while using the following prompt template X, to
predict an action y g

Stack2: Text span(s) in the second posi-
tion of the stack.

Stack1: Text span(s) in the first position
of the stack.

Queuel: An EDU in the first position of
the queue.

Action (shift or reduce): Either
Shift or Reduce.

An LLM determines whether to Shift or Reduce
based on the text spans in Stackl, Stack2, and
Queuel at each step with the above prompts. Then,
we assign nuclearity and rhetorical relation labels
between two text spans in Stackl and Stack2 when
the Reduce action is selected. We use the following
prompt template x,,,,. to predict a nuclearity label

yTl’LLC :

Span2: Text span(s) in the second posi-
tion of the stack.
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Prompts

Westinghouse Electric ...

it will buy Shaw-Walker Co.
Stackl: Terms weren't disclosed.
Queuel: Shaw-Walker,

Action (shift or reduce):

Stack:

Fine-tuned
LLM

Westinghouse Electric ...

it will buy Shaw-Walker Co.
Spanl: Terms weren't disclosed.
Nucleus label (nucleus-nucleus, Vad
nucleus-satellite, satellite-nucleus):

Spang:

Xnue \,
>

Westinghouse Electric ...
it will buy Shaw-Walker Co.

Spanl: Terms weren't disclosed.
Nucleus label: Nucleus-satellite
Relation label (Elaboration, ...):

Spanz: eu,(:t enuc erel
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v € €
Relation label (Elaboration, ...): N-S
Elaboration /\\
laboratio
Yrel= argmax P(y|YGct7 Ynue, Xrels er'cl) S-N €3
y
€y €

Figure 4: Example of the bottom-up parsing process using an LLM with prompts. In the example, Stack2 stores a
text span, an already constructed subtree, consisting of two EDUs: e;: [Westinghouse Electric Corp. said], es: [it
will buy Shaw-Walker Co.]. Stack1 stores a text span of single EDU, es: [Terms weren’t disclosed.]. QueueT stores
an EDU, e4: [Shaw-Walker,]. After this step, the parsing process goes on to the next steps while updating Stack*

and Queue.

Span1: Text span(s) in the first position
of the stack.

Nucleus 1label (nucleus-nucleus,
nucleus-satellite, satellite-nuc
leus): Either one of them.

Here, Spanl and Span2 are text spans in Stackl
and Stack?2, respectively. To predict a rhetorical
relation label y,.;, we use the prompt template
Xre; by replacing the third prompt of x,,,. with the
following two new prompts:

Nucleus label: predicted nuclearity la-
bel.

Relation label (Rel;,
Rel,): Either one of them.

Re12, ey

Here, Rel; indicates the i-th rhetorical relation, and
the set of rhetorical relations is different for each
dataset. We construct an RST tree based on LLM’s
decisions using the above prompts for each parsing
step. Figure 4 shows an example of our bottom-up
parsing with prompts.

LLMs infer outputs by choosing the sequence
with the maximum probability as follows:

Yact = arginaxy, P(Y|Xact; eact)y (5
Ynuc = argmaxy,, P(yb’acta Xnuc) enuc); (6)
Yret = arg maxy P(Yb’acta Ynuc, Xrel; 97‘€l)7 (7)

where 0,ct, Oy, and 0,.; are weight parameters of
LLMs for predicting action, nuclearity, and rhetori-
cal relation labels, respectively.

3.4 Prompts for Top-down Parsing

To perform top-down parsing with LLMs, we trans-
late the span split procedure, described in §3.2, into
the following prompt template Xy, for predicting
a split span y span:

Input: A fext span, a sequence of EDUS,
to be split.

Split point (0 — j—i—1): An index
of EDU (0 < k < j—i—1).

Note that we adjust the index of EDUs in the given
text span, consisting of the i-th EDU to the j-th
EDU, so that the index of the first EDU in the
prompt is always 0. We give the above prompts
recursively to an LLM in order to identify a split
point for a span obtained during parsing.

We use the same prompts as in bottom-up pars-
ing to assign nuclearity and rhetorical relation la-
bels. Figure 5 shows an example.

Similar to the bottom-up parsing, inference is
performed as follows:

Yspan = arginaxy P(Y|Xspan§ espan)y ®)
Ynuc = arg maxy P(Y|Yspana Xnucs 971/!1,0)7 )

Yrel =argmaxy P(y’yspanvynuwxrel;erel)7
(10)

where 0,4, denotes weight parameters for the
LLM to split spans.
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Prompts

Shaw-Walker [0], based in
Muskegon, Mich., [1] makes Xspan
metal metal files and ... \

Input:

Split point (0 - 1):

Fine-tuned
. Shaw-Walker, based in LLM
Span’: Muskegon, Mich.,
Spanl: makes metal metal files ... Xnuc

Nucleus label (nucleus-nucleus, v &
nucleus-satellite, satellite-nucleus):

Shaw-Walker, based in
Muskegon, Mich.,

Spanl: makes metal metal files ...
Nucleus label: nucleus-nucleus
Relation label (Elaboration, ...):

Spang&: gspafn, Onuc Orel

Xrel

LLM generations RST tree

Split point (0 - 1): A
1

Yspan= arginax P(y|xspan'-, espa,'n,)
y

Nucleus label (nucleus-nucleus,
nucleus-satellite, satellite-nucleus):
nucleus-nucleus

Ynue=arg max P(y|Yspan, Xnuc; Onuc) €45 €6
y
N-N
Relation label (Elaboration, ...):
Same-Unit Same-Uni

Yrer=argmax P(ylyspmu Ynues Xrel; erel)
y

Figure 5: Example of the top-down parsing process using an LLM with prompts. In the example, a text span
consisting of three EDUs, e4: [Shaw-Walker,], e5: [based in Muskegon, Mich.,], and eg: [makes metal files and
desks, and seating and office systems furniture.], are divided and labeled by an LLM’s decision. The process is
recursively applied until divided spans are identical to single EDUs.

3.5 Handling Erroneous Generation

Either of our parsing approaches might generate
labels not in a pre-defined set for the classifica-
tion. Such labels prevent the construction of valid
RST trees. Accordingly, we introduce default rules
to correct such invalid generation. When invalid
generation occurs, one of the following rules is
applied and the default label is used in place of
the generated one: Shift is the default action for
bottom-up parsing, O is the default split point for
top-down parsing. Nucleus-satellite and Elabora-
tion are the default nuclearity and rhetorical rela-
tion labels, respectively, for both parsing strategies.
These are selected because of the majority labels
in our datasets.

4 Experimental Settings

4.1 Large Language Models

We utilized Llama 2 (Touvron et al., 2023),2 one of
the largest publicly available open-source decoder-
only PLMs, for our LLM-based RST discourse
parsing models. Llama 2 can handle up to 70
billion parameters, which have been trained us-
ing a trillion tokens of text data. Although the
technical report did not provide information on
the specifics of the training dataset, it was made
clear that the dataset comprises publicly available
sources. Hence, we are confident that the datasets

2https ://huggingface.co/meta-1lama/Llama-2-{7,
13,70}b-hf

used for training and testing our parsers are not
included in Llama 2.

Since we have found that zero-shot and few-
shot approaches do not produce satisfactory re-
sults,®> we instead opted to fine-tune Llama 2 with
the prompts and the correct outputs. However,
the large GPU memory requirements and com-
putational costs made it impractical to fully fine-
tune Llama 2. As a result, we turned to QLoRA
(Dettmers et al., 2023)* to update Oty Ospans Onue
and 0,..;. QLoRA is a quantized version of LoRA
(Hu et al., 2022), which introduces trainable low-
rank matrices into each layer of the Transformer
architecture without altering the weights for the
parameters in LLMs.

4.2 Datasets

LLMs are pre-trained on large open-domain
datasets, allowing our parsers to easily adapt to spe-
cific domains through fine-tuning. To demonstrate
this capability and make a fair comparison with
Kobayashi et al.’s bottom-up and top-down parsers,
we used two benchmark datasets from different
domains, RST-DT, Instr-DT, and GUM Corpus.
RST-DT contains 385 documents selected from
the Wall Street Journal. It is officially divided into

? A zero-shot approach resulted in only a 9.27 Span F-score,
indicating no further consideration. This finding is expected
because LLM pre-training did not cover parsing actions like
shift or reduce. Since LLMs lack this inherent knowledge due
to their pre-training, fine-tuning them emerges as the most
viable approach.

*https://github.com/artidoro/qlora
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RST-DT Instr-DT GUM

Span Nuc. Rel. Full Span Nuc. Rel. Full Span Nuc. Rel. Full

Liu et al. 76.5 652 542 — — — - — 686 549 — —

§ Yu et al. 729 62.7 525 505 — - - - - - - -
S Kobayashietal. 785 679 56.6 544 773 579 50.0 434 744 622 509 487
& Llama 2 (7B) 76.3 654 552 534 757 56.2 49.8 43.6 72.8 60.9 52.1 509
& Llama2(13B) 78.6 679 57.7 55.6 757 573 502 43.6 749 625 538 52.5
Llama 2 (70B) 78.8 68.7 57.7 56.0 76.2 57.1 53.1 452 758 64.0 55.8 54.8
Guz et al. 76.5 659 548 — — — - - 699 570 - -

g Yuetal 76.4 66.1 545 535 — — - = — — - -
& Kobayashietal. 77.8 68.0 57.3 554 77.8 60.0 51.4 444 734 609 503 485
£ Llama 2 (7B) 782 67.5 57.6 558 767 58.2 485 435 744 63.0 534 52.1
2 Llama2(13B) 783 68.1 57.8 56.0 774 604 52.1 46.1 748 634 54.0 52.8
Llama2 (70B) 79.8 70.4 60.0 58.1 79.1 60.4 55.1 473 764 64.7 56.4 55.2

Table 1: Results on RST-DT, Instr-DT, and the GUM Corpus with Standard-Parseval. Liu et al.’s top-down parser
(Liu et al., 2021) employed XLM-RoBERTa-base with 125M parameters, Guz et al’s bottom-up parser (Guz and
Carenini, 2020) employed SpanBERT-base with 110M parameters, Yu et al.’s parsers (Yu et al., 2022) employed
XLNet-base with 110M parameters, and Kobayabhi et al.’s parsers employed DeBERTa-base with 140M parameters.
We omit the reported Relation scores for Liu et al.’s and Guz et al.’s parsers on the GUM corpus because they are

the results based on GUM’s own relation label set.

347 documents as the training set and 38 as the
test dataset. We used 18 coarse rhetorical relations
derived from 78 fine-grained ones. We used 40 doc-
uments in the training dataset as the development
dataset, following Kobayashi et al. (2022).

Instr-DT contains 176 documents obtained from
the home-repair instruction manuals. The number
of rhetorical relations in the dataset is 39. We fol-
lowed Kobayashi et al.’s setting (2022), i.e., 126,
25, and 25 documents were used for the training,
development, and test datasets, respectively.

The GUM corpus contains 213 documents in
total for 12 genres, e.g., News, Speech, Reddit,
and Vlog. We used officially divided 165, 24, and
24 documents for training, development, and test
datasets. In this experiment, we translated rhetor-
ical relation labels in the GUM corpus to match
them with those in RST-DT by using a label corre-
spondence described in (Liu and Zeldes, 2023).

We used gold EDU segmentation for both
datasets by following conventional studies.

4.3 Evaluation Metrics

We evaluated the results with micro-averaged F;
scores of unlabeled, nuclearity-, relation-, and fully-
labeled span, based on Standard-Parseval (Morey
et al., 2017), the standard evaluation metrics for
RST discourse parsing. Note that during both the
training and test phases, RST-trees were converted
into right-heavy binary trees (Sagae and Lavie,
2005).

4.4 Configurations

Our implementations are based on the official im-
plementation of QLoRA,? which is based on Hug-
gingface Transformers (Wolf et al., 2020). We
employed Adam (Kingma and Ba, 2015) to opti-
mize the parameters. We used QLoRA with 4-bit
quantization, setting lora_r to 64, lora_alpha to
16, and lora_dropout to 0.1. A learning rate of
2e-4 was used at a batch size of 16. We sched-
uled the learning rate by linear warm-up, which
increases it linearly during the first 3% of training
steps and then decreases it with cosine annealing
to O until the final epoch. We trained the model
with a different LoRA adapter for each subtask,
i.e., span, nuclearity, and relation labeling, for 5
epochs and chose the best checkpoint by evaluating
the performance on the development dataset. We
provide a summary of all hyperparameter settings
in Appendix A.

5 Results and Discussion

Overall Performance: Table 1 shows the results,
where the scores of Kobayashi et al.’s and Yu et al.’s
parsers are borrowed from their papers (Kobayashi
etal., 2022; Yu et al., 2022) and those of Guz et al’s
and Liu et al’s parsers are borrowed from (Liu and
Zeldes, 2023). We show the results of our parsers
with Llama 2 for 7B, 13B, and 70B parameters.
When focusing on the number of the parameters
in Llama 2, the largest number naturally yields the
best results. In particular, 70B parameters obtained
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Figure 6: F; scores of Llama 2 (70B) and Kobayashi et al. for each relation label in bottom-up parsing: ELABORA-
TION, ATTRIBUTION, JOINT, CONTRAST, SAME-UNIT, EXPLANATION, CAUSE, EVALUATION, TEMPORAL,
CONDITION, ENABLEMENT, SUMMARY, COMPARISON, MANNER-MEANS, TOPIC-COMMENT, TOPIC-
CHANGE, and TEXTUAL-ORGANIZATION. Numbers in parenthesis are the frequency of the label.

the current best scores for both datasets; however,
the performance of the parsers with 7B and 13B pa-
rameters are still comparable to Kobayashi et al.’s
parsers. The gains by bottom-up parsing with 70B
are impressive, surpassing Kobayashi et al.’s parser
by approximately 3 points in RST-DT and Instr-DT,
and by around 7 points in the GUM corpus.
Bottom-up parsing consistently outperforms top-
down parsing by 1 to 2 points when comparing
the parsing strategies in our parsers. Since both
strategies used the same prompts for nuclearity and
rhetorical relation labeling, the differences are con-
sidered to come from different prompts to build the
skeleton of the RST tree. The prompts for bottom-
up parsing mention three text spans in Stackl,
Stack2, and Queuel, while those for top-down
parsing mention only one text span in Input. In
other words, the former handles richer information
than the latter.
Performance of Relation Labeling: To investigate
the effectiveness of our parsers in more detail, we
show Relation F; scores for each relation label in
RST-DT with Llama 2 (70B) and Kobayashi et
al.’s bottom-up parsers in Figure 6. In most cases,
Llama 2 (70B) outperforms Kobayashi et al., even
for less frequent relation labels, indicating Llama 2
(70B) has greater potential for generalization.
These results indicate the effectiveness of LLMs
for RST discourse parsing. The findings are inter-
esting in that simple pre-trained language models
consisting of only a transformer decoder can be
easily tailored for determining parsing actions by
fine-tuning with prompts. Our parsers perform well
on all datasets, which are from different domains.
The results demonstrate the advantage of LLM-
based RST discourse parsing in domain portability,
particularly in achieving the best scores on Instr-
DT with less training data.

Cross-corpus Generalization: To examine the
generalizability of our parsers in detail, we eval-
uated them with out-of-domain evaluations using
RST-DT and the GUM corpus. Tables 2 and 3 show
the results of training parsers on one dataset and
evaluating them on the other.

Comparing the results with Table 1, the perfor-
mances are lower. In particular, the parsers trained
with RST-DT degraded more when tested on the
GUM corpus than the opposite, the parsers trained
with the GUM corpus and tested on RST-DT. The
findings suggest that using a single genre dataset
for generalization across multiple genres is chal-
lenging. This aligns with the observation made by
Liu and Zeldes (2023).

In Table 2, when comparing our parsers with Liu
et al.’s and Kobayashi et al.’s parsers, our parsers
obtained better scores than them in most cases. In
particular, Llama 2 (70B) with the bottom-up strat-
egy achieved the best scores. It obtained around
2-point gains against Kobayashi et al.’s parser in
all metrics. Notably, it further outperformed both
Liu et al.’s and Guz et al.’s parsers trained with the
GUM corpus in Table 1 on Span while it obtained
a slightly lower score in Nuc.

On the other hand, performance degradation in
Table 3 is much lower than that in Table 2. Our
parsers obtained remarkable gains against Liu et
al.’s and Kobayashi et al.’s parsers. The gains are
emphasized in Rel. and Full. Despite being trained
with an out-of-domain dataset, our parsers in Table
2 achieved Span F; scores that are comparable to
those in Table 1. Furthermore, the performance of
our parsers in Full degraded by 12%, while that of
Kobayashi et al.’s parser degraded by 15-20%.

The successful improvements were achieved by
using a large number of LLM parameters and train-
ing them with a massive amount of text, compared
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Span Nuc. Rel. Full
= Liuetal 66.2 508 — —
g Kobayashietal. 703 537 41.1 383
< Llama?2 (7B) 68.2 518 39.8 37.6
g Llama2 (13B) 69.0 515 392 373
E  Llama 2 (70B) 71.0 533 42.1 3938
o, Guzetal. 65.3 49.5 — —
7  Kobayashietal. 683 52.6 40.8 38.0
g Llama 2 (7B) 69.4 530 402 382
2 Llama2 (13B) 69.3 521 39.8 378
M  Llama 2 (70B) 72.6 556 43.0 405

Table 2: Cross-corpus generalization results on the
GUM corpus. Parsers were trained using RST-DT and
their performance was evaluated on the GUM corpus.

Span Nuc. Rel. Full
= Liuetal 72.7 57.4 — —
% Kobayashietal. 76.1 61.8 493 465
< Llama2 (7B) 75.3 61.7 499 48.0
g Llama2 (13B) 763 634 513 494
E  Llama 2 (70B) 782 644 515 497
a. Guzetal 71.1 559 — —
7  Kobayashietal. 72.0 585 463 443
£  Llama2 (7B) 774 636 513 490
£ Llama2 (13B) 774 645 522 503
M Llama 2 (70B) 79.7 66.5 532 51.1

Table 3: Cross-corpus generalization results on RST-DT.
Parsers were trained using the GUM corpus and their
performance was evaluated on RST-DT.

to the encoder-only models. Although we could
potentially improve the performance of the encoder-
only PLMs by increasing their parameters to the
level of the current LLMs, this task poses a sig-
nificant challenge. Furthermore, considering the
focus of the research has shifted from encoder-only
PLMs to LLMs, our findings are highly valuable
for future research in RST discourse parsing.

6 Conclusion

This paper explored the potential of using Llama 2,
the largest publicly available decoder-only lan-
guage model, pre-trained with a trillion tokens of
text data, for RST discourse parsing. To exploit
Llama 2, we translated fundamental bottom-up and
top-down parsing processes into prompts. Then,
we fine-tuned Llama 2 with them using QLoRA
for efficient computing. The experimental results
obtained from three datasets, RST-DT, Instr-DT,
and the GUM corpus, which come from differ-
ent domains, demonstrated the effectiveness of our
parsers with Llama 2, including their domain porta-
bility. Specifically, our approach with Llama 2
(70B) obtained better results than the current SOTA
parser on all datasets. Furthermore, findings from

the experimental results for cross-corpus general-
ization showed the significant promise of our ap-
proach, that is, that our parsers, in spite of being
trained with the GUM corpus, obtained comparable
performance to parsers trained with RST-DT itself
in Span F; scores, keeping small degradation in
Nuc., Rel., and Full F; scores.

Since this work is just a first step in exploiting
LLMs for RST discourse parsing, we can work in
this direction with various topics to further improve
the LLM-based model; e.g., incorporating richer in-
formation to improve the current top-down parsing
model.

Limitations

While our parsers achieved the best performance
with high generalizability, they have serious limi-
tations: Our parsers require a significant amount
of computational resources and time. Although
our parsers with Llama 2 (7B) work on a standard
GPU with 24 GB memory, such as RTX 3090, and
those with 13B require over 40 GB GPU memory,
those with 70B require a high-end GPU with 80 GB
memory, such as A100. To train the parsers, we
need 1-2 days for 7B and 13B; however, we need
nearly five days for 70B. Furthermore, it takes sev-
eral minutes to parse a document with our models,
whereas it takes only a few seconds with a standard
parser.
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Computing Interface
NVIDIA RTX 3090

NVIDIA RTX A6000
NVIDIA A100 (80 GB)

Experiments for Llama 2 (7B)

Experiments for Llama 2 (13B)

Experiments for Llama 2 (70B)

Hyperparameters
number of training epochs 5
batch size 16
optimizer Adam
learning rate 2e-4
learning rate scheduler Li;lg;;:/:::e—zgnzgld
warm-up ratio 0.03
gradient clipping 1.0
lora r 64
lora « 16
lora dropout ratio 0.1
lora target modules S;Lllflgﬁ el?- }];ClgSCll(I;
4-bit NormalFloat and

quantization for Llama 2 double quantization

Table 4: Hyperparameters in the experiments

A Hyperparameters

Table 4 shows the hyperparameters and computing
interfaces used in our experiments.
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