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Abstract

Knowledge graph embeddings (KGEs) were
originally developed to infer true but missing
facts in incomplete knowledge repositories. In
this paper, we link knowledge graph comple-
tion and counterfactual reasoning via our new
task CFKGR. We model the original world
state as a knowledge graph, hypothetical scenar-
ios as edges added to the graph, and plausible
changes to the graph as inferences from logi-
cal rules. We create corresponding benchmark
datasets, which contain diverse hypothetical
scenarios with plausible changes to the orig-
inal knowledge graph and facts that should
be retained. We develop COULDD, a general
method for adapting existing knowledge graph
embeddings given a hypothetical premise, and
evaluate it on our benchmark. Our results in-
dicate that KGEs learn patterns in the graph
without explicit training. We further observe
that KGEs adapted with COULDD solidly de-
tect plausible counterfactual changes to the
graph that follow these patterns. An evaluation
on human-annotated data reveals that KGEs
adapted with COULDD are mostly unable to
recognize changes to the graph that do not fol-
low learned inference rules. In contrast, Chat-
GPT mostly outperforms KGEs in detecting
plausible changes to the graph but has poor
knowledge retention. In summary, CFKGR
connects two previously distinct areas, namely
KG completion and counterfactual reasoning.

1 Introduction

Reasoning about hypothetical situations (counter-
factual reasoning) and anticipating the effects of a
change in the current state of the world is central
to human cognition (Rafetseder and Perner, 2014;
Van Hoeck et al., 2015), and has been identified
as a key concept in game theory (Aumann, 1995;
Halpern, 1999) and agent-based systems (Icard
et al., 2018; Parvaneh et al., 2020). It has even been
argued that the capacity to reason about alternative
configurations of the world could be a pre-requisite

If Paris was the capital of Japan ...

(Paris, capital, Japan)

Paris would likely be in Asia
(Paris, continent, Asia)

Hypothetical Scenario World Knowledge

+

Elvis Presley would likely STILL be a musician
(Elvis Presley, occupation, musician)

Figure 1: A hypothetical scenario and its implications,
expressed in the language of knowledge graph triples

to the existence of free will and a sense of agency
(McCarthy, 2000; Kulakova et al., 2017). Recently,
there has been an increased interest in evaluating
and improving counterfactual reasoning of AI sys-
tems, in particular, large language models (LLMs)
(Qin et al., 2019; Frohberg and Binder, 2022; Li
et al., 2023).

Knowledge graphs (KGs) express rich informa-
tion about the world as an explicit collection of
triples, such as (Paris, capital, France), and knowl-
edge graph embeddings (KGEs) effectively infer
true but missing facts from incomplete knowledge
repositories (Hogan et al., 2021; Ji et al., 2021).
Yet, to the best of our knowledge, KGEs have not
been explored for counterfactual reasoning.

In this work, we link counterfactual reasoning to
knowledge graph completion (KGC) via our new
task CFKGR1 (CounterFactual KG Reasoning)
which requires models to classify the validity of
facts given a hypothetical scenario. CFKGR de-
scribes the original world state as a KG and hy-
pothetical scenarios as edges that are added to the
graph. The hypothetical scenario leads to the emer-
gence of new facts in the KG while leaving (most)
already existing ones intact. Figure 1 illustrates a
hypothetical scenario in which Paris is the capital
of Japan. To perform well on CFKGR, models
must be capable of detecting plausible additions

1The data and code are available at https://github.
com/LenaZellinger/counterfactual_KGR.
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to the graph, e.g., (Paris, continent, Asia), while
maintaining knowledge of unaffected facts, e.g.,
(Elvis Presley, occupation, musician). We create
the first benchmark datasets for CFKGR, which
are based on the CoDEx KGC benchmark (Safavi
and Koutra, 2020) and provide diverse hypothet-
ical scenarios with corresponding plausible addi-
tions to the KG derived from inference rules (that
were mined from the KG (Lajus et al., 2020)). We
validate our data-generating process and underly-
ing assumptions via thorough human annotation.
Lastly, we introduce COULDD (COUnterfactual
Reasoning with KnowLedge Graph EmbeDDings),
a method which updates existing KGEs based on
counterfactual information. COULDD follows a
standard KGE training scheme using the hypotheti-
cal scenario and negative sampling. Training stops
once the hypothetical scenario is classified as valid.

In our experiments, COULDD is initialized with
five different KGE methods. We observe that it
can detect plausible counterfactual changes to the
graph that follow prominent inference patterns in
the KG while maintaining performance on unaf-
fected triples. We repeat the same experiments with
ChatGPT, i.e., gpt-3.5-turbo, provided with similar
prompts to the human annotators. ChatGPT per-
forms better at detecting plausible additions to the
graph than most KGE-based methods but exhibits
poor knowledge retention. Qualitative analysis of
answers provided by ChatGPT shows that it largely
failed to understand the task on retained facts as
it tried to infer them from the provided informa-
tion. Evaluating on human-annotated data leads to
a drop in overall performance for KGEs and Chat-
GPT alike. To summarize, our main contributions
are as follows:

• We propose CFKGR, a challenging task for
counterfactual reasoning on KGs and cre-
ate corresponding, partially human-verified,
datasets, which we make publicly available.

• We introduce COULDD, a general method for
adapting existing KGE methods to make infer-
ences given hypothetical scenarios and show
that it improves reasoning on counterfactual
graphs over pre-trained embeddings.

• We compare counterfactual reasoning with
KGEs to ChatGPT and show that ChatGPT
outperforms KGEs in detecting plausible
counterfactual inferences but struggles to re-
call unrelated knowledge, unlike COULDD.

2 CFKGR: Task Description

We introduce Counterfactual KG Reasoning
(CFKGR) a novel task to assess the ability of ma-
chine learning systems to reason in hypothetical
scenarios. CFKGR describes the originally ob-
served world state as a knowledge graph and in-
troduces hypothetical scenarios by adding previ-
ously unseen facts to the graph. To perform well
on CFKGR, models need to (1) identify plausible
changes to the original world state induced by the
hypothetical scenario and (2) understand which
facts are unaffected by the hypothetical scenario.

2.1 Definition of Counterfactual Graphs

Formally, CFKGR defines the original world state
via a knowledge graph G = {E ,R,F}, where E
andR denote the sets of entities and relations rep-
resented in the knowledge graph. The fact set F
represents our knowledge about the world as triples
(h, r, t) ∈ F ⊂ E × R × E . The fact set is usu-
ally split into disjoint subsets Ftrain, Fvalid and
Ftest. We denote a hypothetical scenario by a triple
τ c := (h, r, t) /∈ F . The counterfactual graph, in
which τ c holds, is then characterized by the fact
set Fc := F \ F− ∪ F+, where F+ denotes the
facts that emerge given the hypothetical scenario,
and F− denotes facts that contradict the scenario
and cannot hold any longer. We say τ c changes a
triple τ if either τ ∈ F+ or τ ∈ F−.

In the following, we formulate the assumptions
underlying our task.
Closed-world assumption. We adopt the standard
closed-world assumption (Reiter, 1978), which
states that facts that are not part of the KG, i.e.,
τ /∈ F , are false. Thus, each τ /∈ F is a possible
hypothetical scenario in our setup.
Logic-world assumption. We assume that plau-
sible changes to the graph largely follow some
regularity and can hence be modeled via (poten-
tially very complex) logical rules. While available
rule sets have limited coverage and precision, we
can leverage them to model a subset of plausible
changes to a KG. By employing the logic-world
assumption, we can represent an approximation of
Fc via a set of rules and the original fact set.

2.2 Evaluation

We formulate CFKGR as a binary classification
task in which the goal is to predict whether a given
triple is present in the counterfactual graph or not.
Triples τ ∈ Fc receive label 1, while all other
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Instance Notation Original KG CF KG
Counterfactual τ c τ c /∈ F τ c ∈ Fc

Inference τ i τ i /∈ F τ i ∈ Fc

Unchanged (near) τn τn ∈ F τn ∈ Fc

Unchanged (far) τ f τ f ∈ F τ f ∈ Fc

Corruptions τh′ , τt′ , τr′ τh′ , τt′ , τr′ /∈ F τh′ , τt′ , τr′ /∈ Fc

Figure 2: Overview over the different types of facts, given the hypothetical scenario that Elvis Presley is a citizen of
Denmark. The green edge (Elvis Presley, speaks, Danish) emerges from adding the blue edge (Elvis Presley, citizen
of, Denmark) to the knowledge graph. Purple and orange edges are present in the original KG and unaffected by the
scenario. Grey edges are neither present in the original nor the counterfactual knowledge graph.

triples are labeled 0. Since scoring all possible
triples is infeasible, we consider a smaller set of
carefully chosen test cases. Given a counterfactual
τ c /∈ F and a rule, we define:
(1) a counterfactual inference τ i that follows from
the rule and allows us to measure whether the
model can correctly predict changes to the graph
given τ c,
(2) retained facts which are unaffected by the hy-
pothetical scenario and should still be classified as
valid in the counterfactual graph,
(3) random head, tail, and relation corruptions
of inferences and retained facts, which ensure that
the model does not predict unsolicited triples as
valid additions. We denote the corruptions for a
triple τ by τh′ , τt′ and τr′ .
For (2), we distinguish between near facts τn,
which are in the one-hop neighborhood of τ c, and
far facts τ f , sampled from its complement. Note
that they are sampled from the entire fact set F
to measure knowledge retention. Figure 2 illus-
trates a counterfactual scenario and its associated
test cases.

We use the following metrics to evaluate the
performance on our benchmark. The concrete for-
mulas can be found in Appendix A. We compute
(1) the F1-score over all test cases in the dataset
to measure the overall predictive performance on
counterfactual graphs.
(2) the accuracy on changed facts, i.e., triples that
have a different label before and after the hypothet-
ical scenario is introduced.
(3) the F1-score on unchanged facts, i.e., triples
that have the same label before and after the hypo-
thetical scenario is introduced.

3 CFKGR: Dataset Creation

For our dataset construction, we leverage rules
found by rule mining systems, which capture
prominent patterns in KGs. Automatically mined
rules are naturally compatible with the content of
the KG and are known to be a useful tool for KGC
(e.g., Meilicke et al., 2019; Sadeghian et al., 2019a).
Since there is no trivial way to reliably generate
F−, we only consider the addtionsF+. Concretely,
we define F+ via mined composition rules of the
form

(X, r1, Y ) ∧ (Y, r2, Z)→ (X, r3, Z) (1)

where r1, r2, r3 ∈ R. We refer to (X, r1, Y ) ∧
(Y, r2, Z) as the rule body and (X, r3, Z) as the
inference. The triples (X, r1, Y ) and (Y, r2, Z)
are called the first and second body atom, respec-
tively. Replacing X , Y , and Z by concrete entities
x, y, z ∈ E creates an instantiation of the rule. In
the following, we will use the short-hand notation
(r1, r2, r3) to denote a rule as described in (1).

We choose composition rules since they are well
studied in standard KG completion benchmarks
(Safavi and Koutra, 2020) and inferential bench-
marks (Cao et al., 2021; Liu et al., 2023). More-
over, composition rules, as given in (1), infer lo-
cal changes. This is desirable since most relevant
changes induced by a hypothetical scenario will
likely occur in its close neighborhood. We consider
understanding the implications induced by com-
position rules as a first step to more general and
complex hypothetical reasoning.

2755



Rule: (X, country, Y)     (Y, part of, Z)     (X, continent, Z)

Moscow Russia Canda North
America

country part of

continent

country

Figure 3: Creation of a hypothetical scenario.

3.1 Data Generating Process

In the following, we give a high-level overview of
our data generating process. We focus on creat-
ing hypothetical scenarios for the first body atom
of a given rule. Appendix C provides a detailed
description and the full algorithm.

Given a knowledge graph and a rule set, we
generate several hypothetical scenarios for each
rule by altering a fact in the KG such that it trig-
gers the rule, as is illustrated in Figure 3. Con-
cretely, for each rule (r1, r2, r3), we search for
existing edges e1 := (x, r1, y) ∈ Ftrain and
e2 := (ȳ, r2, z) ∈ Ftrain, ensuring that the re-
sulting hypothetical scenario τ c := (x, r1, ȳ) and
inference τ i := (x, r3, z) are not in the original
KG. Sampling e1 and e2 without any constraints
can result in nonsensical scenarios and inferences.
Hence, we ensure that the entities in τ c and τ i are
suitable for the given relation by restricting them
to entities that occur with said relation in the orig-
inal KG. Once suitable τ c and τ i are found, we
randomly sample two near facts τn from the one-
hop neighborhoodof τ c and one far fact τ f from
its complement. Note that we sample τn and τ f

on the full fact set F , instead of only Ftest, as their
primary purpose is to measure knowledge retention
as opposed to inference capabilities.

When creating head and tail corruptions of a
given fact, we restrict the sample space since ran-
dom corruptions, which tend to result in nonsensi-
cal triples, have previously been shown to be easily
detectable for KGE methods (Safavi and Koutra,
2020). For head (tail) corruptions, we require that
the replacements are also heads (tails) for the rela-
tion in the original graph2. For relation corruptions,
we do not employ additional constraints.

3.2 CFKGR-CoDEx

Based on the procedure described in Section 3.1,
we create the first benchmark datasets for CFKGR

2In rare cases where these constraints only allow for creat-
ing triples already present in the KG or inferred by our rule
set, we default to the full entity set.

Valid Test
Rules Facts Rules Facts

CFKGR-CoDEx-S 5 3600 12 8848
CFKGR-CoDEx-M 5 3936 26 19584
CFKGR-CoDEx-L 5 4000 39 30064

Table 1: CFKGR dataset overview. "Rules" denotes
the number of rules that were used to create the dataset.
"Facts" is the total number of test cases.

based on the CoDEx knowledge graph completion
benchmark (Safavi and Koutra, 2020). We choose
CoDEx since it covers diverse content, uses eas-
ily interpretable relations, and contains rich aux-
iliary information, such as entity types. CoDEx
provides three knowledge graphs of varying sizes
(S, M, and L), collected from Wikidata (Vrandečić
and Krötzsch, 2014), and corresponding compo-
sition rules obtained by the rule-mining system
Amie3 (Lajus et al., 2020). CoDEx-S and CoDEx-
M additionally contain verified negative triples. An
overview over the resources provided by CoDEx
can be found in Appendix B.

We use the available Amie3 patterns for each
CoDEx dataset as our rule set and create at most
25 unique counterfactual triples per body atom for
each rule. We subsequently split them into a vali-
dation and test set, ensuring that there are no over-
lapping rules or counterfactuals between validation
and test 3. Table 1 provides statistics about the
created datasets.

In the following section, we will explore how
well the resulting test cases align with human coun-
terfactual reasoning.

3.3 Human Annotation

We validate our data generating process via human
annotation. For each of the 31 rules in CFKGR-
M, we verify 10 test instances (5 per atom4). We
annotate τ i, τ f , τn1 , τn2 and τ ir′ , and omit the re-
maining corruptions as their construction relies
on the commonly-used closed-world assumption
(Reiter, 1978). This results in 1530 annotated in-
stances, which were labeled by four to six annota-
tors as either likely (1), unlikely (0), or unsure/too
little information (-1), given verbalizations of the

3For M, there are rules which can produce the same coun-
terfactual - inference pairs (using a different context). There
are 14 such duplicates in the test set. Still, there is no overlap
in counterfactuals between validation and test.

4Except for one rule which only produced one unique coun-
terfactual according to our conditions for the second atom.
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Majority Vote Label
# Labeled Expected As expected 0 1 -1 Tied

Inference 306 1 58.2% 60 178 27 41
Far fact 306 1 99.7% 0 305 0 1
Near fact 612 1 95.6% 16 585 2 9
Relation corr. 306 0 86.9% 266 20 3 17

Table 2: Annotation results. "# Labeled" denotes the
number of annotated examples per category. "Expected"
gives the label assigned by our automatic process and
"As expected" gives the percentage of samples for which
the expected label coincides with the majority vote.

hypothetical scenario and context triggering the
respective inference rule. All of our annotators
have have at least a Bachelor’s degree in a STEM
field. We observe a Krippendorff’s alpha (Hayes
and Krippendorff, 2007) of 0.653, computed using
the simpledorff library, which indicates substantial
agreement (Landis and Koch, 1977). The annota-
tion guidelines can be found in Appendix D. Table
2 summarizes the annotation results.

Inferences seem to be the most difficult cate-
gory to annotate as they show the highest amount
of ties and "unsure/too little information" labels.
Moreover, we observe the highest number of de-
viations from our expected label for this test case.
This indicates that rules that were mined for fac-
tual knowledge graph completion cannot always
be used for human-like counterfactual reasoning.

On relation corruptions, we observe a noticeable
number of inferences that are not implied by our
rules, but are still considered valid by humans or
are at least debatable. Possible explanations are
the limited coverage of the rule set or unintuitive
verbalizations of the relations. For near and far
facts, we obtain a label distribution that largely
agrees with our assumptions.

4 Counterfactual Reasoning with
Knowledge Graph Embeddings

KGE models find low-dimensional vector represen-
tations for entities and relations while preserving
the information contained in the KG. To judge the
plausibility of a given triple, KGE models use a
scoring function ϕ(h, r, t) : E × R × E → R. A
triple is typically classified as valid if it satisfies
ϕ(h, r, t) ≥ µr, for a relation-specific threshold
µr ∈ R.

To extend KGEs to our task, we pro-
pose COULDD (COUnterfactual Reasoning With
KnowLedge Graph EmbeDDings), a general
method for adapting existing knowledge graph em-

Algorithm 1: COULDD training and pre-
diction. The short-hand notation ϕθ(Tτc)
denotes scoring all test cases associated
with τ c and Lθ denotes the cross-entropy
loss.

Data: G = {E ,R,F},
CFKGR data D,
params θ0,
# iterations E,
# additional samples N ,
learning rate α,
thresholds µ1, µ2, ..., µ|R|

Result: CFKGR predictions
ŷ ← {}
foreach (τ c, Tτc) ∈ D do

θ ← θ0
for e ∈ {1, ..., E} do

S ← Sample N from Ftrain

B ← {τ c} ∪ S
θ ← Optimizer(Lθ(B), α)
if ϕθ(τ

c) ≥ µr then
break

ŷ ← ŷ ∪ {ϕθ(Tτc)}
return ŷ

beddings with respect to a given hypothetical sce-
nario. COULDD is initialized from existing em-
beddings trained on the original KG. For each hy-
pothetical scenario, these embeddings are updated
and subsequently evaluated on the corresponding
test cases.

COULDD’s update scheme only minimally
changes standard KGE training: In each iteration,
the existing embeddings are fine-tuned on a batch
consisting of the counterfactual triple τ c and N ad-
ditional randomly sampled edges from the training
graph. Negative training examples are generated
by randomly corrupting the head and tail entities
of each triple in the batch. The embeddings are up-
dated using the standard cross-entropy loss. Once
the counterfactual triple τ c exceeds the classifica-
tion threshold, the training is stopped in order to
avoid an excessive perturbation of the pre-trained
embeddings5.

Importantly, COULDD only requires access to
the counterfactual triple τ c and the original fact
set F and does not require additional task-specific
training data or information about the rules used to

5Note that there is no traditional validation set for the
individual updates on which we could perform early stopping.
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CFKGR-CoDEx-S CFKGR-CoDEx-M CFKGR-CoDEx-L
F1 Changed Unchanged F1 Changed Unchanged F1 Changed Unchanged

RESCAL 60.82 27.12 63.28 63.05 21.57 66.92 53.84 71.47 49.64
COULDD-RESCAL 61.68 ± 0.14 32.48 ± 0.73 63.48 ± 0.16 63.85 ± 0.08 26.23 ± 0.16 67.16 ± 0.07 53.94 ± 0.02 84.56 ± 0.35 48.18 ± 0.06

TransE 58.94 23.15 61.87 53.61 23.61 55.83 49.23 66.31 45.37
COULDD-TransE 60.49 ± 0.12 26.8 ± 0.81 63.16 ± 0.09 53.91 ± 0.05 26.06 ± 0.25 55.79 ± 0.06 52.6 ± 0.06 76.56 ± 0.25 47.77 ± 0.04

ComplEx 62.45 29.11 64.90 65.69 11.60 71.83 58.44 65.51 55.26
COULDD-ComplEx 67.76 ± 0.3 37.94 ± 0.67 69.95 ± 0.29 66.78 ± 0.06 34.67 ± 0.23 69.21 ± 0.07 59.44 ± 0.02 82.95 ± 0.26 54.25 ± 0.02

ConvE 61.04 16.64 65.39 56.83 13.15 61.37 55.56 61.84 52.58
COULDD-ConvE 61.51 ± 0.11 16.96 ± 0.72 65.92 ± 0.12 52.69 ± 0.16 17.04 ± 0.16 56.09 ± 0.16 60.6 ± 0.17 45.53 ± 0.61 60.29 ± 0.14

TuckER 64.25 15.01 69.40 65.21 13.15 70.98 52.87 76.74 48.05
COULDD-TuckER 66.03 ± 0.13 35.99 ± 1.0 68.09 ± 0.19 66.09 ± 0.17 43.69 ± 0.38 66.95 ± 0.17 53.53 ± 0.04 88.47 ± 0.34 47.49 ± 0.02

gpt-3.5-turbo 47.83 68.90 40.22 46.72 52.12 42.25 45.80 52.10 40.95

Table 3: Test performance of pre-trained embeddings and COULDD on CFKGR. For COULDD, we report the mean
and standard deviation across 5 runs. Bold entries denote the best performance between pre-trained KGEs and their
counterpart trained with COULDD. The best results on the dataset are underlined. For all scores, higher is better.

generate CFKGR datasets6. As a result, COULDD
can also be applied in rule-free evaluation se-
tups. Algorithm 1 provides a formal description of
COULDD.

5 Experiments

In the following, we conduct two types of ex-
periments: First, we evaluate pre-trained KGEs,
COULDD, and ChatGPT on our CFKGR datasets
with expected labels to assess whether the methods
can apply inference rules found by a rule mining
system in hypothetical scenarios. In our second set
of experiments, we evaluate on human-labeled data
to check whether the methods also capture human
reasoning, which does not necessarily align with
mined inference rules (see Section 3.3).

5.1 General Setup

We use the five pre-trained CoDEx link-prediction
models as initializations for COULDD7. Further
details about the KGE methods are in Appendix E.

For COULDD, we tune the learning rate (α) and
number of additional samples per batch (N ) on
the respective CFKGR validation set, based on the
best overall F1-score, and set the maximum num-
ber of update steps (E) to 20. We carry over the
remaining hyperparameters from the pre-trained
CoDEx models (Safavi and Koutra, 2020). Fur-
ther details regarding the hyperparameters are in
Appendix F.2. Optimization is performed using
Adam (Kingma and Ba, 2014), or Adagrad (Duchi
et al., 2011), depending on the original model con-
figuration. The general classification setup and

6We only use the test cases in the validation set for hyper-
parameter tuning.

7The config files for the models are available at https:
//github.com/tsafavi/codex

relation-specific decision thresholds are equivalent
to the original CoDEx paper8 (Safavi and Koutra,
2020) to ensure comparability. Note that this en-
tails scoring all triples in the tail direction. Since
no negatives are provided for CoDEx-L, we gener-
ate one random tail corruption per validation triple
for threshold tuning (akin to experiments in (Safavi
and Koutra, 2020)). During training, we sample
100 negative examples per triple (50 head and 50
tail corruptions), as this was effective in previous
work (Trouillon et al., 2016; Kotnis and Nastase,
2017).

We implement our experiments by adapting
LibKGE (Broscheit et al., 2020) to support our
proposed COULDD training strategy. We perform
hyperparamter optimization using Optuna (Akiba
et al., 2019). For experiments with ChatGPT, i.e.,
gpt-3.5-turbo, we use the OpenAI API and temper-
ature 0. The used prompts and an example of input
and output can be found in Appendix F.3.

5.2 Results

Table 3 contains the results. A detailed evaluation
per test type can be found in Appendix G. First, we
observe that the KGE performances on CFKGR-
CoDEx-L differ noticeably from CFKGR-CoDEx-
S and CFKGR-CoDEx-M. This is likely due to
lower threshold quality resulting from the absence
of hard negative triples for CoDEx-L.

COULDD achieves the best results in terms
of overall F1-score on all datasets. In particular,
COULDD noticeably improves the performance
on changed facts over the pre-trained embeddings,
except for ConvE. Importantly, we do not observe

8We added a minor correction to the CoDEx threshold
tuning that ensures proper application of the global threshold
for unobserved relations.
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CFKGR-CoDEx-M* CoDEx-M (filtered)
F1 (E) F1 (H) Changed (E) Changed (H) Unchanged (E) Unchanged (H) Overall Rule-wise

RESCAL 89.30 87.61 21.55 13.64 97.20 96.17 92.74 84.72
COULDD-RESCAL 89.03 ± 0.24 87.12 ± 0.24 25.08 ± 0.75 16.25 ± 0.58 96.48 ± 0.20 95.31 ± 0.21 − −
TransE 81.21 79.85 21.55 16.48 88.55 87.73 91.29 80.26
COULDD-TransE 80.64 ± 0.07 79.44 ± 0.10 23.43 ± 0.27 19.2 ± 0.43 87.65 ± 0.11 86.94 ± 0.12 − −
ComplEx 89.01 87.53 9.94 2.84 98.40 97.51 96.01 77.79
COULDD-ComplEx 92.05 ± 0.11 90.43 ± 0.16 37.35 ± 1.08 29.89 ± 1.37 98.29 ± 0.1 97.27 ± 0.1 − −
ConvE 83.96 82.56 14.92 9.09 92.46 91.62 89.29 79.70
COULDD-ConvE 78.39 ± 0.56 77.15 ± 0.72 16.69 ± 1.13 12.39 ± 0.91 86.17 ± 0.62 85.43 ± 0.71 − −
TuckER 89.31 88.08 13.81 7.95 98.26 97.50 96.37 90.33
COULDD-TuckER 92.83 ± 0.12 90.92 ± 0.12 43.43 ± 0.90 34.55 ± 0.91 98.41 ± 0.11 97.21 ± 0.12 − −
gpt-3.5-turbo 63.96 63.36 53.04 53.98 62.75 62.34 − −

Table 4: Case study on CFKGR-CoDEx-M* with expected (E) and human-assigned (H) labels and performance on
the filtered CoDEx-M test set. "Overall" describes the accuracy across all inferences. "Rule-wise" gives the average
accuracy per rule. Bold entries denote the best performance between pre-trained KGEs and their counterpart trained
with COULDD. The best results on the dataset are underlined. For all scores, higher is better.

a case where applying COULDD leads to a no-
ticeable loss of knowledge acquired during pre-
training. In terms of overall F1-score, COULDD-
ComplEx achieves the best results averaged across
the three datasets. On changed facts, COULDD-
TuckER is the best-performing KGE method, likely
because TuckER is well-suited for modeling com-
positional relations (Safavi and Koutra, 2020).
ChatGPT achieves the best scores on changed facts
on two out of three datasets. However, it generally
does not perform well on unchanged facts. Possi-
ble reasons are that it misses relevant background
knowledge present in the KG or does not under-
stand the task on these instances. In summary, we
observe that COULDD consistently improves per-
formance over the pre-trained embeddings, overall
and on changed facts in particular, and does not
strongly degrade performance on unchanged facts.
This indicates that COULDD, to an extent, can be
used to infer plausible counterfactual changes to
the graph when they follow prominent patterns in
the KG.

5.3 Case Study on CoDEx-M

To better understand the results shown in Table 3,
we conduct a case study on CoDEx-M for which
we have a human-annotated CFKGR subset. In
particular, we want to assess how well the pre-
trained CoDEx models perform factual reasoning
with composition rules and how an evaluation on
human-assigned labels affects our results. The
main results are presented in Table 4. Table 12
in the appendix presents a confusion matrix per test
type for COULDD and ChatGPT.

5.3.1 Inference Rules in Factual Contexts
Achieving good performance on changed triples
in Table 3 requires (1) a logical adaption to the
hypothetical scenario and (2) the application of
composition rules that generated the test inferences.
We attempt to disentangle these factors by inves-
tigating whether the CoDEx models captured the
regularities expressed in the Amie3 rules during
pre-training and can apply them in factual scenar-
ios.
Setup. We filter the original CoDEx-M test set for
triples that can be inferred by applying the mined
Amie3 rules to the training set. We only keep triples
that stem from rules that cover at least five triples
in the test set to obtain sensible estimates for the
rule-wise performances. This results in a filtered
test set of 551 instances inferred from 10 rules.
Results. We notice that the performance on the
filtered CoDEx-M test set is consistently high for
all pre-trained KGE methods. This indicates that
they learned the mined inference patterns during
training and lower performances observed in Ta-
ble 3 are likely due to insufficient adaption to the
hypothetical scenario. Appendix H.2 gives a full
overview of rule-wise performances.

5.3.2 Evaluation with Manual Labels
Setup. We create a subset of the CFKGR-CoDEx-
M test set, denoted by CFKGR-CoDEx-M*,
which solely consists of instances that were manu-
ally labeled as described in Section 3.3. We filter
out test cases for which less than three annotators
agreed or the majority vote label was "unsure/too
little information". This results in a dataset com-
posed of 256 hypothetical scenarios and a total of
1159 test cases. The complete label distribution per
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Hypothetical: Joe Frazier (human) died in Moscow (city with millions of inhabitants, largest city, capital)
Context: Joe Frazier (human) was cast in Encino Man (film)
Statement: Is it then still plausible that E-40 (human) has the occupation actor (profession, artist),

given that this is the case in the real world?

Answer by ChatGPT: unlikely
Explanation by ChatGPT: The hypothetical scenario states that Joe Frazier died in Moscow, which is a city with millions of inhabitants.

This fact is not the case in the real world. The context mentions that Joe Frazier was cast in the film Encino Man.
Since the statement is ’Is it then STILL plausible that E-40 has the occupation actor?’,
we need to consider if the hypothetical scenario makes it plausible for E-40 to have the occupation of an actor.
However, the context does not provide any specific information about E-40 or his occupation.
Therefore, we cannot determine the plausibility of E-40 being an actor based on the given information.
Hence, the statement is unlikely.

Table 5: Example prompt and corresponding answer produced by ChatGPT on CFKGR-CoDEx-M*.

test case can be found in Appendix H.1.
Results. First, we note that the overall F1-score and
performance on unchanged facts greatly differ from
the numbers observed for the unfiltered set in Table
3. This is due to the omission of most corruptions
as they were not manually labeled. We observe a
consistent performance drop for KGE-based meth-
ods when evaluating on human-assigned labels in-
stead of expected labels for all metrics. Judging
from the confusion matrix in Table 12, COULDD
cannot reliably identify false inferences that follow
from patterns in the KG, but are invalid according
to the annotators. Moreover, it classifies most out-
dated facts, which are no longer valid given the
hypothetical scenario, as positive. However, the
number of outdated facts (14) is too small to draw
any substantial conlusions from this observation.
For ChatGPT, we observe a slightly reduced overall
performance when evaluating with human-assigned
labels. However, ChatGPT’s score improves on
changed facts for human-assigned labels. A closer
look at the confusion matrix reveals that Chat-
GPT performs better at detecting outdated facts
and false inferences than KGEs. However, as ob-
served before, ChatGPT tends to misclassify facts
that should be retained. A qualitative inspection
reveals that ChatGPT largely misunderstands the
task on such triples: instead of answering whether
they STILL hold given the hypothetical scenario,
it oftentimes tries to infer them. Table 5 gives an
example.

6 Related Work

Inferential KGC Benchmarks. Rule-based in-
ferential benchmarks for KGC (Liu et al., 2023;
Cao et al., 2021) assess a method’s ability to learn
implict rule patterns and use them to predict in-
ferences in the test set based on evidence in the
training set. Cao et al. (2021) create an inferential
test set for CoDEx-M based on a rule set mined

by AnyBurl (Meilicke et al., 2019), akin to our
experiments in Section 5.3.1, and also find that
pre-trained KGEs have strong inferential reasoning
capabilities.
Counterfactual Graph Learning. Leveraging
counterfactuals in graph learning is an emerging
field of research (Guo et al., 2023). Counterfactuals
have recently been utilized to ensure the fairness
of graph-based systems with respect to sensitive
node attributes (Agarwal et al., 2021; Ma et al.,
2022; Zhang et al., 2021), improve interpretabil-
ity by generating counterfactual explanations for
predictions (Lucic, 2022; Numeroso and Bacciu,
2021; Prado-Romero et al., 2022; Xu et al., 2022),
and enhance link prediction performance on the
graph as-is (Chang et al., 2023; Lu et al., 2023; Shi
et al., 2022; Wang et al., 2021; Zhao et al., 2022).

Our work does not fall into any of the above cat-
egories and instead focuses on making predictions
in a counterfactual graph.
CF Reasoning Benchmarks for LLMs. Several
datasets and evaluation schemes have been pro-
posed for assessing the counterfactual reasoning
capabilities of LLMs. Qin et al. (2019) introduce
the task of counterfactual story rewriting, in which
LLMs have to minimally revise a given story with
respect to a counterfactual event. The CRASS
benchmark challenges LLMs to select a valid con-
sequence given a questionized counterfactual con-
ditional in a multiple-choice setting (Frohberg and
Binder, 2022). Li et al. (2023) present LLMs with
a hypothetical premise and two possible comple-
tions for a corresponding statement, one of which
is valid in the real world while the other holds in
the hypothetical scenario.

In contrast, CFKGR poses a binary classification
task, in which the model has to decide whether a
presented statement is plausible in the given hypo-
thetical scenario or not. Further, our benchmark
is based on the knowledge contained in a KG and
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thus considers specific, real-world entities.

7 Discussion

Comparison with Human CF Reasoning. Our
labeling efforts and experiments show that coun-
terfactual reasoning on KGs is a challenging task.
Both KGEs and ChatGPT leave much room for im-
provement on CFKGR. Moreover, as indicated by
our annotation results (Table 2), even humans find
it difficult to judge the plausibility of KG-based
counterfactual statements, especially when they in-
volve unfamiliar situations. For instance, "If Meg
White was a member of Girls Aloud, would Jack
White be part of Girls Aloud?" is a question that
most humans likely do not ask themselves. Never-
theless, automatic systems can be presented with
and evaluated on a wide range of possible scenar-
ios, even if those are implausible or hard to imagine
for humans.

Advantage of KG-based Benchmarks. KGs are
a powerful tool for defining hypothetical scenarios
and their consequences. The rich world knowledge
stored in KGs allows to create interesting case-
specific inferences. In the example question above,
would the judgement change if we replace "Girls
Aloud" by a band that is not a girl group? This
aspect is largely missing from current counterfac-
tual reasoning benchmarks for LLMs (Frohberg
and Binder, 2022; Li et al., 2023), as they mostly
handle generic entities.

8 Conclusion

This work introduces the novel task CFKGR, which
requires models to reason on a counterfactual KG.
By utilizing the world knowledge stored in KGs,
we create datasets consisting of diverse hypotheti-
cal scenarios and their implications, as defined by
inference rules. Further, we propose COULDD,
a general method for counterfactual reasoning on
KGs, and evaluate its effectiveness on automati-
cally generated and human-annotated data. We
extend our experiments to ChatGPT and find that it
generally outperforms COULDD at making coun-
terfactual inferences. However, ChatGPT largely
does not recognize which facts are invariant to the
hypothetical scenario. Both COULDD and Chat-
GPT leave much headroom on the task, highlight-
ing the difficulty of CFKGR.

9 Limitations

The type of rules that we examine is arguably lim-
ited. We consider understanding the implications
induced by composition rules as a first step to
more general and complex hypothetical reasoning.
Moreover, while the set of outdated facts F− is
a key component for defining the counterfactual
KG, there is no trivial way for generating them
reliably without appropriate rules or extensive hu-
man verification. Most rules defined for KGs are
Horn clauses (e.g., Lajus et al., 2020; Meilicke
et al., 2019; Sadeghian et al., 2019b), which, by
definition, do not express negation in the head atom.
Hence, we focus on the addditons F+ in this work.

Furthermore, this work does not consider the
confidences of the mined Amie3 rules but assumes
that they all could be a valid inference rules. As
indicated by our human annotation results, this is
likely not true in practice.

Verbalizing KG triples, in a way that is intu-
itive to humans, is a difficult task. We tried our
best to find suitable verbalizations for the rela-
tions in the CoDEx KG by consulting the corre-
sponding Wikidata definitions as well as ParaRel
(Elazar et al., 2021). In our verbalizations, each
entity is presented with up to three of its associ-
ated entity types9 in order to facilitate reasoning
with lesser-known entites. Nevertheless, unintuitve
verbalizations and missing context from the KG
(with respect to how relations are used) might have
influenced our annotation results and ChatGPT ex-
periments.

Moreover, KGs can contain erroneous or out-
dated facts and automatically constructed CFKGR
examples might rely on these facts. It is possible
that such instances impacted the performance of
ChatGPT on our benchmark.

Lastly, the poor performance of ChatGPT on
unchanged facts could partially be caused by the
system prompt used in our experiments, which can
be found in Appendix F.3. We designed the prompt
based on the instructions provided to the human an-
notators. Nevertheless, it is likely that the prompt
could be adjusted to improve the results of Chat-
GPT on unchanged facts. Appendix I further de-
tails some frequent errors we noticed in ChatGPT’s
responses.

9Whenever more than three entity types were available, we
randomly sampled three of them to enhance readability.
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10 Ethics Statement

We relied on well-established and publicly avail-
able resources to build our datasets and method.
We use the CoDEx knowledge graph and LibKGE,
which are both published under the MIT license.
The config files for the pre-trained CoDEx mod-
els used in our experiments are available on the
CoDEx github repository10.

The counterfactual situations included in our
datasets are randomly generated and purely hy-
pothetical. They do not convey any implications
about the real-world entities referenced in them.
Nevertheless, the created instances could be biased
towards certain entities due to biases in the original
KGs and our employed sampling strategy detailed
in Appendix C.

We recruited annotators on a voluntary basis. We
do not publish any information that could be used to
identify the labelers and our data does not contain
any personal information regarding the annotators.
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A Evaluation Metrics

This section gives the concrete formulas
for the metrics used in Table 3 and Table
4. We denote the full evaluation dataset by
D := {(τ c1 , Tτc1 ), (τ c2 , Tτc2 ), ..., (τ cn, Tτcn)}, where
τ cj denote hypothetical scenarios and Tτcj are the
corresponding test cases. For any triple τ , we
assign the following two binary labels: yτ indicates
whether τ is present in the original fact set F and
ycτ indicates whether τ belongs to the fact set of
the counterfactual graph induced by τ cj , i.e. Fτj .
The prediction for ycτ made by a method is denoted
by ŷcτ .

F1: For this metric, we consider all test
cases of all hypothetical scenarios without any
restrictions. It gives an indication of the overall
predictive performance on counterfactual fact sets.
We choose the F1-score due to the imbalanced
label distribution of our constructed test cases. The
metric is given by

F1 =
2tp

2tp+ fn+ fp
,

where

tp =

n∑

j=1

∑

τ∈Tτc
j

I(ycτ = 1 ∧ ŷcτ = 1),

fn =
n∑

j=1

∑

τ∈Tτc
j

I(ycτ = 1 ∧ ŷcτ = 0),

fp =
n∑

j=1

∑

τ∈Tτc
j

I(ycτ = 0 ∧ ŷcτ = 1)

Changed: We denote the set of changed facts in
Tτcj by T ∗

τcj
. Formally,

T ∗
τcj

:= {τ ∈ Tτcj : (yτ = 0 ∧ ycτ = 1) ∨
(yτ = 1 ∧ ycτ = 0)}.

Intuitively, T ∗
τcj

is comprised of facts that were
not present in the original graph but emerge in the
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counterfactual KG or vice versa. We compute the
accuracy on these cases with respect to ycτ .

Changed =
t̃p

t̃p+ f̃n+ f̃p+ t̃n
,

where

t̃p =

n∑

j=1

∑

τ∈T ∗
τc
j

I(ycτ = 1 ∧ ŷcτ = 1),

f̃n =
n∑

j=1

∑

τ∈T ∗
τc
j

I(ycτ = 1 ∧ ŷcτ = 0),

f̃p =

n∑

j=1

∑

τ∈T ∗
τc
j

I(ycτ = 0 ∧ ŷcτ = 1),

t̃n =
n∑

j=1

∑

τ∈T ∗
τc
j

I(ycτ = 0 ∧ ŷcτ = 0)

Note that in the case of automatically generated
labels (Table 3 and CFKGR-CoDEx-M* (E) in
Table 4), T ∗

τcj
only consists of emerging facts

and hence the ground truth labels ycτ are always
positive.

Unchanged: Let T τcj
denote the set of un-

changed facts in Tτcj . Formally,

T τcj
:= {τ ∈ Tτcj : (yτ = 0 ∧ ycτ = 0) ∨

(yτ = 1 ∧ ycτ = 1)}.

Intuitively, Tτcj is comprised of facts that do not
change their label between F and Fτcj

. We com-
pute the F1-score on such instances due to their
imbalanced label distribution in our constructed
test cases.

Unchanged =
2tp

2tp+ fn+ fp
,

where

tp =
n∑

j=1

∑

τ∈T τc
j

I(ycτ = 1 ∧ ŷcτ = 1),

fn =
n∑

j=1

∑

τ∈T τc
j

I(ycτ = 1 ∧ ŷcτ = 0),

fp =
n∑

j=1

∑

τ∈T τc
j

I(ycτ = 0 ∧ ŷcτ = 1)

|E| |R| |Ftrain| |Fval| |Ftest| Negatives

S 2034 42 32888 1827 1828 Yes
M 17050 51 185584 10310 10311 Yes
L 77951 69 551193 30622 30622 No

Table 6: Overview of CoDEx datasets (Safavi and
Koutra, 2020).

B CoDEx Resources

We use the CoDEx knowledge graph completion
benchmark, which is comprised of three knowledge
graphs (S, M, L) collected from Wikidata based on
seed entities and relations for 13 differernt domains
(e.g., media and entertainment, politics, science)
(Safavi and Koutra, 2020). Table 6 porvides an
overview over the resources provided by CoDEx.

C Details of Dataset Creation

This section contains details of the CFKGR dataset
creation that were omitted in Section 3 due to space
constraints and gives a full algorithmic description
of the procedure.

C.1 Formal Description

Section 3 provides a high-level description on how
we create CFKGR test instances based on the first
body atom of a rule. This section covers the case
where the second body atom is selected for creat-
ing the hypothetical scenario and contains formal
descriptions of the employed constraints.

In the following, we define an atom variable to
distinguish between hypothetical scenarios derived
from the first (atom = 1) versus the second atom
(atom = 2). The general setup is equivalent for both
settings: Given a rule (r1, r2, r3), we search for
existing edges e1 := (x, r1, y) ∈ Ftrain and e2 :=
(ȳ, r2, z) ∈ Ftrain, such that τ i := (x, r3, z) /∈ F .
We employ the following constraints I1, I2, and
I3 when sampling e1 and e2 to ensure plausible
hypothetical scenarios and inferences.
I1: if atom = 1: ∃a ∈ E : (a, r1, ȳ) ∈ F ,

if atom = 2: ∃b ∈ E : (y, r2, b) ∈ F
I2: ∃c ∈ E : (x, r3, c) ∈ F
I3: ∃d ∈ E : (d, r3, z) ∈ F
The above constraints ensure that the constructed
triples τ c and τ i have suitable entities for the given
relation. Intuitively, I1 ensures that we only select
links (ȳ, r2, z) for which the resulting counterfac-
tual triple (x, r1, ȳ) is sensible.

When corrupting a given triple (h, r, t), we em-
ploy the constraints C1, C2 and C3 when selecting
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h′, r′ and t′.
C1: ∃a ∈ E : (h′, r, a) ∈ F
C2: ∃b ∈ E : (b, r, t′) ∈ F
C3: (h′, r, t), (h, r, t′), (h, r′, t) /∈ F ∪ F+

∆ ,
whereF+

∆ denotes the set of inferences made by all
rules in our rule set, given the hypothetical scenario.
C1 and C2 promote challenging head and tail cor-
ruptions, which cannot be trivially identified due
to the triples being nonsensical. C3 ensures that
the generated corruptions are neither present in the
original KG nor implied by the given hypothetical
scenario, given our rule set. In rare cases, enforcing
C1 or C2 would only allow to create triples that
are already in the graph or implied by our rules. In
such instances, we sample from the full entity set
E instead, while still respecting C3.

Algorithm 2: Creation of CFKGR in-
stances for a given rule.
Data: knowledge graph G = {E ,R,F},

inference rule δ,
# of CFs to generate per atom M

Result: CFKGR instances for rule δ
Dδ ← {}
for atom ∈ {1, 2} do

for n ∈ {1, ...,M} do
Randomly sample
(x, r1, y) and (ȳ, r2, z) from Ftrain,
according to I1, I2, I3, I4
if atom = 1 then

τ c ← (x, r1, ȳ)
else

τ c ← (y, r2, z)
τ i ← (x, r3, z)
Sample τn1 , τn2 from N1(τ

c)

Sample τ f from F \ N1(τ
c)

Create corruptions for τ i, τn1 , τn2 , τ f

according to C1, C2, C3
Tτc ← {τ i, τn1 , τn2 , τ f ,

τ ih′ , τ ir′ , τ
i
t′ , ..., τ fh′ , τ

f
r′ , τ

f
t′ }

Dδ ← Dδ ∪ {(τ c, Tτc)}

C.2 Additional Constraints for P361 and P463

For counterfactual triples τ c using the relation P361
("part of") or P463 ("member of"), we introduce
an additional condition when sampling e1 and e2
based on entity types in order to avoid nonsensical
hypothetical scenarios, such as (Iraq, part of, The
Quarrymen). Entity types are available for every
entity in the CoDEx dataset (Safavi and Koutra,

2020) and provide additional information regarding
the entity. For instance, "France" is associated with
the entity type "country" (among others) and "7B"
is tagged as a "musical group". We denote the set
of entity types associated with an entity e ∈ E by
type(e). We define the following constraint:
I4: type(ȳ) ∩ type(y) ̸= {},

if atom = 1 and r1 ∈ {P361, P463} or
if atom = 2 and r2 ∈ {P361, P463}

This condition heuristically ensures that the entity
that replaces the original head/tail of a triple to
create a hypothetical scenario is of a similar type as
the original entity. In the example above, (Iraq, part
of, The Quarrymen) is no longer a valid generation
when I4 is enforced, since the "The Quarrymen"
shares no entity type with the original tail "Middle
East".

C.3 Algorithm
Algorithm 2 describes the dataset creation for
CFKGR. N1(τ

c) denotes the one-hop neighbor-
hood of τ c, excluding the context triggering the
rule. Note that N1(τ

c) is defined on the full fact
set F = Ftrain ∪ Fvalid ∪ Ftest. The remaining
notation follows Sections 2 and 3.

D Human Dataset Verification

This section details the recruitment of the annota-
tors as well as the guidelines provided to them via
the annotation interface.

D.1 Annotator Recruitment and
Demographic

We recruited annotators on a voluntary basis and
did not offer financial compensation. Labelers were
made aware that their annotations will be used and
published in a scientific paper.

We recruited twelve annotators in total, includ-
ing the authors. All of the annotators have at least a
Bachelor’s degree in a STEM field. The annotation
effort varied between different annotators, with the
lowest number of annotated samples being 20 and
the highest being 1020.

D.2 Annotation Guidelines
This section contains the annotation guidelines pro-
vided to the annotators on the annotation interface.
Explanations written in italic were added during
the annotation process as they were requested by
annotators. Apart from the guidelines below, the
annotators were provided with instructions on how
to use the annotation interface.
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The main goal of the task is to judge the
plausibility of presented statements, given a hy-
pothetical scenario and potentially relevant context.

Each annotation prompt presented to you
will consist of the following elements:

• a hypothetical scenario, which you should
assume to be true

• a context, which gives additional information
regarding the entities in the scenario

• a statement, which should be labeled as
likely, unlikely, or unsure/too little infor-
mation

Please assign the label likely if you think the
presented statement is likely to hold given the
hypothetical scenario, the context, and your world
knowledge. Assign unlikely if you do not think so.
Assign the label unsure/too little information if
you cannot confidently judge the plausibility of the
statement based on the presented information.

Expressions in parenthess denote entity types,
which provide additional information for each
entity. They can be helpful when reason-
ing with lesser-known entities. For instance,
the entity ’7B’ is associated with the entity type
’musical group’ to clarify that ’7B’ refers to a band.

Each statement follows the general structure
’Is it then plausible that ..., given that this IS NOT
the case in the real world?’ or ’Is it then STILL
plausible that ..., given that this IS the case in the
real world?’. Please pay attention to this difference
when labeling.

Example 1:

Hypothetical scenario: Paris (city with millions
of inhabitants, city, big city) is located in Japan
(island nation, sovereign state, country)

Context: Japan (island nation, sovereign
state, country) is part of the continent Asia
(continent, continental area and surrounding
islands)

Question: Is it then plausible that Paris (city with
millions of inhabitants, city, big city) belongs to
the continent Asia (continent, continental area and

surrounding islands), given that this is not the case
in the real world?

In this scenario, Paris belonging to the con-
tinent Asia will likely be the case, hence, we assign
the label ’likely’.

Example 2:

In some cases, the statement you are pre-
sented with might not have a strong, obvious
connection to the hypothetical scenario (such as
shared entities). This is intended and should not
affect your annotation. For instance, you might
encounter an example similar to the following:

Hypothetical scenario: Paris (city with millions
of inhabitants, city, big city) is located in Japan
(island nation, sovereign state, country)

Context: Japan (island nation, sovereign
state, country) is part of the continent Asia
(continent, continental area and surrounding
islands)

Question: Is it then still plausible that En-
glish (modern language, natural language,
language) is the official language of United
Kingdom (country, sovereign state, island nation),
given that this is the case in the real world?

If you believe that this statement is still
plausible in a world where Paris is in Japan, assign
’likely’. If you think otherwise or cannot make
a decision based on the presented information,
assign ’unlikely’ or ’unsure/too little information’
respectively. In the example above, we would
expect the label ’likely’, since Paris moving to
Japan should not affect the official language of the
United Kingdom.

Example 3:

The statements might not be sensible for all
examples. For instance, you could come across a
statement like:

Hypothetical scenario: Paris (city with millions
of inhabitants, city, big city) is located in Japan
(island nation, sovereign state, country)
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Context: Japan (island nation, sovereign
state, country) is part of the continent Asia
(continent, continental area and surrounding
islands)

Question: Is it then plausible that Paris (city
with millions of inhabitants, city, big city) is the
unmarried partner of Asia (continent, continental
area and surrounding islands), given that this is not
the case in the real world?

These examples are intentional and you should
annotate them according to the same scheme as the
other examples. In the example above, we would
expect the label ’unlikely’, since a city cannot be
the unmarried partner of a continent.

E KGE Methods

TransE (Bordes et al., 2013) treats relations as
translations in the embedding space. It finds em-
bedding vectors h, r, t ∈ Rde such that h + r ≈ t
for (h, r, t) ∈ F , and uses the scoring function
ϕ(h, r, t) = −||h + r − t||2. ComplEx (Trouil-
lon et al., 2016) maps entities and relations to the
complex space and leverages the scoring function
ϕ(h, r, t) = Re(⟨r,h, t̄⟩), where h, r, t ∈ Cde

and t̄ denotes the complex conjugate of t. Com-
plEx is particularly well-suited for modeling an-
tisymmetric relations (e.g., "part of"). RESCAL
(Nickel et al., 2011) represents the fact set as a
three-dimensional tensor X with Xi,j,r = 1 if (i, r,
j) ∈ F and Xi,j,r = 0 otherwise. Representations
for entities and relations are obtained via a low-
rank factorization Xr ≈ ERrE

T , E ∈ R|E|×de ,
Rr ∈ Rde×de . The score of a given triple is com-
puted as ϕ(h, r, t) = hTRrt, where h and t are
the rows of E corresponding to h and t. Similarly,
TuckER (Balazevic et al., 2019) leverages Tucker
decomposition (Tucker, 1966) to find representa-
tions h, t ∈ Rde , r ∈ Rdr , as well as a core tensor
W ∈ Rde×dr×de which allows sharing knowledge
between all entity and relation embeddings. The
scores are defined as ϕ(h, r, t) =W×1h×2r×3t,
where ×i denotes the tensor product along the i-th
mode. TuckER was shown to be effective for mod-
eling compositional relations (Safavi and Koutra,
2020). ConvE (Dettmers et al., 2018) is a con-
volutional architecture described by ϕ(h, r, t) =
f(vec(f([Mh;Mr]∗ω))W)t, where Mh and Mr

are 2D-reshapings of entity and relation embed-
dings, ω describes the convolutional filters, and

vec denotes vectorization (Ji et al., 2021).

F Experimental Setting

F.1 Implementation and Runtime Details

We run our experiments on a single Tesla V100
GPU with 16GB of memory on a Nvidia DGX1
server. COULDD hyperparameter tuning takes be-
tween around 35 minutes and 50 minutes and a
run on the test set takes between 3 and 15 minutes,
depending on the model and dataset.

For KGE embeddings, we use the pre-trained
CoDEx models (Safavi and Koutra, 2020), which
were trained using LibKGE (Broscheit et al., 2020).
For our experiments with COULDD, we slightly
adapt the LibKGE implementation to allow for our
propsed training scheme. For hyperparameter tun-
ing, we use the GridSampler implemented in
optuna (Akiba et al., 2019) (version 3.3.0). For
computing performance metrics (F1, accuracy, con-
fusion matrix), we use scikit-learn (version 1.3.0).
All results are reproducible with seed 0.

F.2 Hyperparameters

Table 8 lists the hyperparameters used for our
experiments 3. Bold parameters were tuned for
COULDD on a validation set via grid search, while
the remaining parameters were carried over from
the pre-trained models provided by Safavi and
Koutra (2020). For further details on the pre-
trained models, please refer to Safavi and Koutra
(2020). The learning rate (α) was tuned in the
range of {0.001, 0.01, 0.1, 0.15, 0.2}. The number
of additional samples (N ) was chosen in the range
of {0, 127, 255, 511, 1023} for all models except
ConvE. For ConvE, the range was reduced to
{127, 255, 511, 1023} because of its BatchNorm
layer.

F.3 ChatGPT Experimental Setup

For our experiments with ChatGPT, we used the
OpenAI API. We used the model gpt-3.5-turbo-
0613 and set the temperature to 0 for all exper-
iments. The given system prompt, prompt tem-
plates, as well as an input and output example are
given in Table 9.

For two inputs in CFKGR-CoDEx-S, 12 in
CFKGR-CoDEx-M and 23 in CFKGR-CoDEx-L,
ChatGPT did not answer in the desired format. We
nevertheless attempted to extract the answer using
a regular expression but this process could poten-
tially be erroneous. For one instance in CoDEx-M,
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ChatGPT gave the answer “inconclusive”, which
is not one of our accepted labels. We counted this
instance as wrongly classified in our experiments.

G Evaluation per Test Type

Table 10 provides the perfomance per test case for
the results in Table 3. The results suggest that head
corruptions of valid facts are generally harder to
identify than tail corruptions. This is likely partially
due to the setup of the CoDEx triple classification
benchmark, which tunes decision thresholds solely
on tail corruptions and always uses object-oriented
scoring, even when reciprocal relations are avail-
able. We adopted this setup to make our results
comparable to the original CoDEx paper (Safavi
and Koutra, 2020).

H Case Study on CoDEx-M

H.1 CFKGR-CoDEx-M* Label Distribution
Table 7 gives the label distribution of expected
labels, according to our assumptions, and majority
vote labels on CFKGR-CoDEx-M*.

Expected (E) Human (H)

0 1 0 1

τ i 0 181 33 148
τ f 0 255 0 255
τn 0 495 14 481
τ ir′ 228 0 214 14

Table 7: Label distribution in the CFKGR-CoDEx-M*
test set with expected labels (E) and human-assigned
(H) labels.

H.2 Rule-wise Performance on Filtered
CoDEx-M

In Section 5.3.1, we investigate how well the pre-
trained CoDEx models can infer CoDEx-M test
triples that are implied by AMIE3 rules. Note that
these experiments do not introduce any hypotheti-
cal scenarios. Table 11 provides information about
the peformance on individual rules. Note that a
triple can potentially be inferred by multiple rules
and hence contribute to the rule-wise performance
with respect to multiple rules.

H.3 Confusion matrix on
CFKGR-CoDEx-M*

Table 12 gives the confusion matrix for COULDD
and ChatGPT on CFKGR-CoDEx-M* with manu-

ally assigned labels.

I Further ChatGPT Observations

By analyzing the explanations provided by Chat-
GPT, we found some frequent errors in its re-
sponses, which might be indicative of its poor per-
formance on unchanged facts.

First of all, despite the prompt for unchanged
facts clearly stating that the statement “is the case
in the real world”, ChatGPT oftentimes directly
references that it was “not the case in the real
world” in its explanations. However, in many cases,
ChatGPT explained correctly that it should infer
whether a triple is “still plausible” given that it
“was the case in the real world”. This inconsistency
could potentially stem from our system prompt
(see Appendix F.3), which explains the distinction
between the two cases.

Moreover, we noticed that ChatGPT sometimes
gave a wrong prediction when the same entity was
associated with different entity types in the sce-
nario, context and statement due to random sam-
pling (e.g., Budapest (town in Hungary, capital, en-
clave) compared to Budapest (city with millions of
inhabitants, town in Hungary, enclave)). Keeping
entity types consistent could likely help to boost
the performance of ChatGPT on our benchmark.
Nevertheless, humans were still largely able to re-
liably judge the validity of the given statements,
despite the varying entity types.
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RESCAL TransE ComplEx ConvE TuckER
CFKGR-CoDEx-S
Embedding size 512 512 512 256 512
Reciprocal No Yes Yes Yes Yes
Optimizer Adagrad Adagrad Adam Adagrad Adagrad
Regularization

Type l3 l2 None l3 l1
Entity embeddings 2.18× 10−10 1.32× 10−7 9.58× 10−13 3.11× 10−15 3.47× 10−15

Relation embeddings 3.37× 10−14 3.72× 10−18 0.0229 4.68× 10−9 3.43× 10−14

Frequency weighting False False True True True
Dropout

Entity embeddings 0.0 0.0 0.0793 0.0 0.1895
Relation embeddings 0.0804 0.0 0.0564 0.0 0.0
Feature map (ConvE) - - - 0.2062 -
Projection (ConvE) - - - 0.1709 -

Additional samples (N ) 127 255 127 255 255
Learning rate (α) 0.01 0.01 0.1 0.001 0.01
CFKGR-CoDEx-M
Embedding size 256 512 512 512 512
Reciprocal Yes Yes Yes Yes Yes
Optimizer Adagrad Adagrad Adagrad Adagrad Adagrad
Regularization

Type l2 l2 l3 l1 l1
Entity embeddings 9.56× 10−7 1.32× 10−7 1.34× 10−10 1.37× 10−10 3.47× 10−15

Relation embeddings 2.56× 10−17 3.72× 10−18 6.38× 10−16 4.72× 10−10 3.4× 10−14

Frequency weighting False False True True True
Dropout

Entity embeddings 0.0 0.0 0.1196 0.0 0.1895
Relation embeddings 0.0 0.0 0.3602 0.0348 0.0
Feature map (ConvE) - - - 0.3042 -
Projection (ConvE) - - - 0.2343 -

Additional samples (N ) 255 511 0 511 1023
Learning rate (α) 0.01 0.01 0.1 0.001 0.01
CFKGR-CoDEx-L
Embedding size 128 128 128 256 256
Reciprocal No Yes Yes Yes No
Optimizer Adagrad Adam Adagrad Adagrad Adagrad
Regularization

Type l2 l2 l2 l1 l2
Entity embeddings 2.01× 10−16 7.98× 10−14 2.01× 10−16 6.10× 10−16 8.06× 10−11

Relation embeddings 3.52× 10−13 3.42× 10−9 3.52× 10−13 1.03× 10−16 7.19× 10−19

Frequency weighting True False True True True
Dropout

Entity embeddings 0.0 0.0 0.0 0.0064 0.1606
Relation embeddings 0.0 0.0 0.0 0.0 0.0857
Feature map (ConvE) - - - 0.1530 -
Projection (ConvE) - - - 0.4192 -

Additional samples (N ) 0 1023 0 127 127
Learning rate (α) 0.1 0.2 0.2 0.01 0.01

Table 8: Hyperparameters for COULDD experiments. Bold hyperparameters were tuned by us. The remaining are
taken from the original CoDEx paper (Safavi and Koutra, 2020) and kept the same for our experiments.
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System Prompt You are a helpful, honest data labeler who classifies the plausibility of a hypothetical
scenario.
You will be presented:
Hypothetical scenario: This fact is wrong in the real world, but you assume it is true
in the current hypothetical world.
Context: It is true in the hypothetical world, and gives additional information you can
use to reason about the plausibility of the presented statement
A statement which is supposed to be labeled as ’likely’ or ’unlikely’.

Each statement follows the general structure ’Is it then plausible that ..., given that
this IS NOT the case in the real world?’ or ’Is it then STILL plausible that ..., given
that this IS the case in the real world?’. Please pay attention to this difference when
labeling.

Statement Template {{ Statement }}

Return ’likely’ if you think the presented statement is likely to hold given the hypo-
thetical scenario, the context, and your world knowledge.
- If a fact was "the case" in the real world, respond ’likely’ if the hypothetical scenario
does not make it implausible
- If a fact was "not the case" in the real world, respond ’likely’ if the hypothetical
scenario makes it plausible.
Return ’unlikely’ only if the presented statement is unlikely to hold given the hypo-
thetical scenario, the context, and your world knowledge.
- If a fact was "the case" in the real world, respond ’unlikely’ if the hypothetical
scenario makes it implausible.
- If a fact was "not the case" in the real world, respond ’unlikely’ if the hypothetical
scenario does not make it plausible.

If The hypothetical scenario and the context do not provide any specific information
for the statement, respond ’unlikely’ given that the statement is "not the case in the
real world" and ’likely’ if the statement "is the case in the real world".

Respond with a JSON. First, include a explanation of your reasoning in the ’explana-
tion’ field and give then an answer in the ’answer’ field.

Example Statement Hypothetical scenario: Julio Iglesias (human) is married to Rachel Weisz (human)

Context: Rachel Weisz (human) is a citizen of United Kingdom (island nation, Com-
monwealth realm, sovereign state)

Is it then plausible that Julio Iglesias (human) is a citizen of United Kingdom (colonial
power, island nation, country), given that this is not the case in the real world?

Original Label Unlikely

Expected Label (in CF KG) Likely

Example Output {
"explanation": "Based on the hypothetical scenario and the context provided, it is
plausible that Julio Iglesias (human) is a citizen of United Kingdom (colonial power,
island nation, country). The context states that Rachel Weisz (human) is a citizen of
United Kingdom, which implies that she has citizenship in the country. Since Julio
Iglesias is married to Rachel Weisz in the hypothetical scenario, it is likely that he
would also have acquired citizenship in the United Kingdom through marriage.",
"answer": "likely"
}

Table 9: The table shows how ChatGPT was used. It includes templates and an example scenario with the provided
output.
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τ i τ f τ ih′ τ fh′ τnh′ τn τ ir′ τ fr′ τnr′ τ it′ τ ft′ τnt′
Dataset Method

CFKGR-CoDEx-S RESCAL 27.12 99.46 73.78 39.24 56.6 98.55 94.94 94.21 94.76 79.57 51.54 61.66
COULDD-RESCAL 32.48 ± 0.73 99.28 ± 0.2 73.82 ± 1.04 43.15 ± 1.19 55.5 ± 0.53 98.17 ± 0.16 94.86 ± 0.25 94.5 ± 0.25 94.47 ± 0.11 79.78 ± 0.56 54.32 ± 0.41 61.95 ± 0.16
TransE 23.15 95.84 78.84 32.91 55.70 90.78 97.11 95.48 93.94 86.80 52.80 68.72
COULDD-TransE 26.8 ± 0.81 94.39 ± 0.26 82.78 ± 0.29 36.56 ± 0.31 58.16 ± 0.21 89.84 ± 0.21 97.11 ± 0.16 95.66 ± 0.11 93.96 ± 0.04 88.28 ± 0.81 58.37 ± 0.27 71.57 ± 0.07
ComplEx 29.11 98.73 72.15 44.12 58.14 98.82 96.2 97.11 96.20 79.39 56.06 64.65
COULDD-ComplEx 37.94 ± 0.67 93.31 ± 0.66 84.27 ± 0.98 63.83 ± 0.68 71.32 ± 0.85 94.27 ± 0.19 95.77 ± 0.14 97.0 ± 0.14 96.42 ± 0.11 79.06 ± 1.52 72.12 ± 1.3 74.21 ± 0.66
ConvE 16.64 97.65 81.19 43.76 65.46 93.67 96.56 91.32 87.79 92.95 53.53 73.78
COULDD-ConvE 16.96 ± 0.72 97.22 ± 0.18 82.21 ± 0.18 45.53 ± 0.4 65.23 ± 0.41 93.49 ± 0.27 96.6 ± 0.07 91.72 ± 0.07 87.58 ± 0.17 93.56 ± 0.18 55.15 ± 0.49 75.8 ± 0.15
TuckER 15.01 98.37 83.73 45.39 71.34 98.55 95.3 96.93 94.21 89.33 54.79 73.69
COULDD-TuckER 35.99 ± 1.0 97.72 ± 0.54 78.23 ± 0.29 48.1 ± 1.23 67.09 ± 0.56 98.61 ± 0.07 94.29 ± 0.22 96.93 ± 0.23 93.35 ± 0.15 83.11 ± 0.63 58.59 ± 0.62 74.23 ± 0.3

CFKGR-CoDEx-M RESCAL 21.57 97.96 79.41 46.90 68.10 95.75 91.18 91.42 91.30 87.01 58.50 75.57
COULDD-RESCAL 26.23 ± 0.16 96.44 ± 0.19 81.44 ± 0.14 48.91 ± 0.25 70.14 ± 0.27 94.49 ± 0.19 91.23 ± 0.08 91.47 ± 0.23 91.31 ± 0.09 87.19 ± 0.16 59.54 ± 0.32 76.41 ± 0.12
TransE 23.61 88.56 76.31 36.11 62.50 75.37 92.97 92.89 89.26 86.19 53.84 70.14
COULDD-TransE 26.06 ± 0.25 85.85 ± 0.18 76.83 ± 0.27 38.94 ± 0.18 63.68 ± 0.16 74.31 ± 0.14 92.78 ± 0.1 93.17 ± 0.04 89.31 ± 0.03 86.75 ± 0.14 57.63 ± 0.27 70.92 ± 0.09
ComplEx 11.60 97.96 89.38 49.02 75.08 97.55 93.63 94.61 92.65 94.69 59.56 80.39
COULDD-ComplEx 34.67 ± 0.23 97.96 ± 0.0 79.17 ± 0.53 48.95 ± 0.08 69.58 ± 0.21 97.21 ± 0.1 93.09 ± 0.11 94.59 ± 0.03 92.34 ± 0.07 90.36 ± 0.31 59.48 ± 0.05 79.01 ± 0.09
ConvE 13.15 93.06 87.09 41.91 67.97 81.78 95.1 88.32 84.76 94.12 53.68 77.33
COULDD-ConvE 17.04 ± 0.16 84.72 ± 0.45 85.38 ± 0.25 43.94 ± 0.1 68.84 ± 0.42 71.49 ± 0.35 92.4 ± 0.14 86.18 ± 0.61 81.66 ± 0.4 93.5 ± 0.4 54.31 ± 0.59 79.52 ± 0.17
TuckER 13.15 97.96 88.4 50.74 76.76 97.14 92.48 91.18 88.77 95.02 58.33 80.8
COULDD-TuckER 43.69 ± 0.38 98.33 ± 0.11 73.14 ± 0.54 44.07 ± 0.58 67.06 ± 0.18 97.99 ± 0.11 91.99 ± 0.32 90.87 ± 0.46 87.57 ± 0.11 90.1 ± 0.38 58.27 ± 0.68 78.7 ± 0.15

CFKGR-CoDEx-L RESCAL 71.47 99.89 32.09 18.09 23.39 99.63 68.92 74.08 72.88 51.52 53.91 51.41
COULDD-RESCAL 84.56 ± 0.35 99.89 ± 0.0 32.37 ± 0.58 18.16 ± 0.07 23.15 ± 0.14 95.58 ± 0.21 69.2 ± 0.48 74.09 ± 0.07 69.94 ± 0.23 45.71 ± 0.54 53.87 ± 0.07 51.61 ± 0.21
TransE 66.31 99.41 30.07 18.31 20.68 99.25 79.4 48.00 40.82 48.96 46.89 44.97
COULDD-TransE 76.56 ± 0.25 98.99 ± 0.1 30.47 ± 0.55 27.87 ± 0.66 22.47 ± 0.21 99.35 ± 0.06 77.54 ± 0.18 53.22 ± 0.35 43.67 ± 0.19 58.12 ± 0.3 60.04 ± 0.82 55.93 ± 0.37
ComplEx 65.51 99.57 36.14 27.25 33.02 99.44 90.47 84.62 83.93 58.91 64.93 61.07
COULDD-ComplEx 82.95 ± 0.26 99.57 ± 0.0 31.73 ± 0.13 27.29 ± 0.04 29.44 ± 0.09 99.53 ± 0.04 89.03 ± 0.12 84.57 ± 0.03 83.25 ± 0.09 55.5 ± 0.29 64.84 ± 0.07 59.68 ± 0.14
ConvE 61.84 99.52 41.35 36.46 40.66 99.18 91.06 61.63 53.54 61.58 63.70 60.32
COULDD-ConvE 45.53 ± 0.61 94.5 ± 0.36 61.25 ± 0.59 53.79 ± 0.3 57.2 ± 0.47 95.32 ± 0.18 93.18 ± 0.31 73.72 ± 0.73 67.2 ± 0.54 79.45 ± 0.36 78.11 ± 0.42 75.53 ± 0.51
TuckER 76.74 99.79 27.46 14.74 22.78 99.65 75.36 63.23 62.03 53.33 50.56 49.92
COULDD-TuckER 88.47 ± 0.34 99.74 ± 0.07 25.92 ± 0.52 15.94 ± 0.23 19.58 ± 0.29 99.68 ± 0.04 72.59 ± 0.33 64.14 ± 0.44 61.29 ± 0.21 50.07 ± 0.29 52.84 ± 0.14 48.13 ± 0.54

Table 10: Accuracy by test type of pre-trained embeddings and COULDD on CFKGR. For COULDD, we report the
mean and standard deviation across 5 runs.

Support PCA # Test RESCAL TransE ComplEx ConvE TuckER

(P112, P27, P17) 38 0.826 5 1.000 1.000 0.400 1.000 0.800
(P20, P37, P1412) 836 0.818 36 0.972 0.972 1.000 0.944 1.000
(P19, P37, P1412) 665 0.790 23 1.000 0.826 1.000 0.826 0.957
(P26, P27, P27) 682 0.661 15 0.933 0.933 0.867 0.733 0.933
(P27, P37, P1412) 9937 0.543 416 0.962 0.918 0.993 0.901 0.978
(P17, P30, P30) 100 0.427 5 0.200 0.000 0.200 0.000 0.600
(P161, P27, P495) 1464 0.406 87 0.805 0.943 0.920 0.931 0.931
(P159, P17, P17) 137 0.346 6 1.000 0.833 1.000 0.833 0.833
(P131, P17, P17) 82 0.297 5 0.600 0.600 0.400 0.800 1.000
(P161, P20, P840) 87 0.134 6 1.000 1.000 1.000 1.000 1.000

Table 11: Rule-wise performance on the filtered test set of CoDEx-M (see Table 4). For each rule, we report the
number of positive examples (“Support”) and PCA confidence (“PCA”) as computed by Amie3 on the full KG and
the number of inferences in the filtered test set (“# Test”).

CFKGR-CoDEx-M* (H)

τ i τ f τn τr′

TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP
COULDD-RESCAL 13.2 19.8 122.4 25.6 0.0 0.0 8.2 246.8 0.0 14.0 24.0 457.0 196.8 17.2 11.0 3.0
COULDD-TransE 17.0 16.0 121.6 26.4 0.0 0.0 31.6 223.4 5.4 8.6 116.8 364.2 201.8 12.2 12.0 2.0
COULDD-ComplEx 15.4 17.6 98.0 50.0 0.0 0.0 4.0 251.0 2.0 12.0 7.4 473.6 202.4 11.6 13.4 0.6
COULDD-ConvE 18.2 14.8 132.6 15.4 0.0 0.0 35.2 219.8 4.2 9.8 128.4 352.6 197.2 16.8 11.8 2.2
COULDD-TuckER 13.2 19.8 89.2 58.8 0.0 0.0 3.4 251.6 0.0 14.0 8.2 472.8 203.8 10.2 12.0 2.0
gpt-3.5-turbo 21 12 64 84 0 0 188 67 8 6 169 312 125 89 11 3

Table 12: Performance analysis per test type on CFKGR-CoDEx-M* with human-assigned labels. For COULDD,
the reported values are averaged over 5 model runs.
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