
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2501–2525

March 17-22, 2024 c©2024 Association for Computational Linguistics

Graph Guided Question Answer Generation for Procedural
Question-Answering

Hai X. Pham1∗ Isma Hadji1 Xinnuo Xu1 Ziedune Degutyte1 Jay Rainey1

Evangelos Kazakos1† Afsaneh Fazly2 Georgios Tzimiropoulos1 Brais Martinez1

1Samsung AI Center, Cambridge 2Samsung AI Center, Toronto

Abstract

In this paper, we focus on task-specific ques-
tion answering (QA). To this end, we introduce
a method for generating exhaustive and high-
quality training data, which allows us to train
compact (e.g., run on a mobile device), task-
specific QA models that are competitive against
GPT variants. The key technological enabler
is a novel mechanism for automatic question-
answer generation from procedural text which
can ingest large amounts of textual instructions
and produce exhaustive in-domain QA training
data. While current QA data generation meth-
ods can produce well-formed and varied data,
their non-exhaustive nature is sub-optimal for
training a QA model. In contrast, we leverage
the highly structured aspect of procedural text
and represent each step and the overall flow of
the procedure as graphs. We then condition
on graph nodes to automatically generate QA
pairs in an exhaustive and controllable man-
ner. Comprehensive evaluations of our method
show that: 1) small models trained with our
data achieve excellent performance on the tar-
get QA task, even exceeding that of GPT3 and
ChatGPT despite being several orders of mag-
nitude smaller. 2) semantic coverage is the
key indicator for downstream QA performance.
Crucially, while large language models excel at
syntactic diversity, this does not necessarily re-
sult in improvements on the end QA model. In
contrast, the higher semantic coverage provided
by our method is critical for QA performance.

1 Introduction

Asking questions is a natural way for humans to
understand how to perform a task. Questions that
pertain to a given procedure (i.e., a structured task
such as cooking a recipe) encompass both factual
questions about a given step (e.g., what tools are
used in a given step), as well as questions that span
across multiple steps (e.g., the order of steps). A

∗ Corresponding author (pham.xuan.hai@outlook.com)
† E. Kazakos contributed to this work while at SAIC-C.

smart AI agent should be able to handle both types
of questions to assist humans.

While GPT models and competing alternatives
have shown impressive results on multiple appli-
cations, including QA, they require large amounts
of cloud computing resources due to their extreme
sizes, thus being inviable as the QA models behind
a smart assistant. We show that it is possible to
train task-specific small models (e.g. suitable for
running on a mobile phone), that at the same time
are as accurate and complete as GPT variants on
the target task.

High-quality in-domain training data is however
required but, unfortunately, most QA datasets focus
on general text comprehension where the answers
can be spans from the text (Rajpurkar et al., 2016;
Dunn et al., 2017; Joshi et al., 2017; Yang et al.,
2018), free-style answers about a specific context
(Nguyen et al., 2016; He et al., 2018) or obtained
from a conversation history in conversational QA
(Reddy et al., 2019). Similarly, collecting high-
quality QA data at scale requires expensive label-
ing efforts. This motivates our paper, where we
propose a method that ingests large quantities of
procedural instructions (e.g. cooking recipes) and
automatically generates extensive Procedural QA
(PQA) training pairs that can be used to fine-tune a
well-performing small language model.

In particular, the goal is to automatically gen-
erate PQA pairs that elicit information both from
single sentences (or steps) in a procedure as well
as information that requires reasoning over mul-
tiple steps to understand the temporal aspect of a
procedure. While there have been efforts to create
multi-modal QA datasets from recipes that require
alignment between vision and text (Yagcioglu et al.,
2018; Pustejovsky et al., 2021a), to the best of our
knowledge, our work is the first that specifically
concentrates on extracting a rich set of QA pairs
from procedural text. We focus on cooking recipes
as a type of procedural text. In a cooking sce-

2501

nario, single sentence-based questions span local
concepts (e.g., quantities of ingredients, cooking
times, and tools), while temporal questions cover
multiple steps (e.g., order of actions, the contents
of mixtures at certain steps).

To tackle this problem, we propose to leverage
the highly-structured nature of procedural text and
represent the semantics of the procedure as graphs
from which we can automatically generate PQA
pairs. Specifically, to cover all question types per-
taining to individual steps in a recipe, we rely on
Abstract Meaning Representation (AMR) graphs
(Banarescu et al., 2013). We perform a controlled
set of transformations on the AMR graph of a step
to generate a number of question AMRs and then
generate questions from those AMRs using a pre-
trained AMR-to-text model. For temporal ques-
tions that span across multiple steps, we start by
converting the recipe into an action flow graph
(Momouchi, 1980; Hamada et al., 2000; Yamakata
et al., 2020) using a neural graph parser (Donatelli
et al., 2021). We then extract all potential temporal
answers by traversing the graph, and generating
temporal question templates in the AMR space.
We then, once again, rely on AMR-to-text models
to generate corresponding questions.1 Optionally,
our approach can take advantage of LLMs (e.g.,
GPT3 (Brown et al., 2020)) to increase the syntac-
tic diversity and semantic coverage of the gener-
ated questions, either by improving the wording
and paraphrasing the generated questions or via di-
rectly replacing the graph-to-text generation model
with a GPT-based solution that relies on content
selected with our graph-guided approach.

Extrinsic evaluation shows the usefulness of our
generated data in training question-answering mod-
els, which outperforms all considered baselines.
Our results highlight the importance of devising an
approach dedicated to generating QA pairs from
procedural text, as we show small models (e.g.,
T5-base with around 220M parameters) can com-
pete with GPT3 and ChatGPT (175B params) when
finetuned on specialized high-quality data. In ad-
dition, intrinsic evaluation of our generated data
demonstrates its superiority in terms of diversity,
coverage, and overall quality, compared to data
generated using several baselines including GPT3-
based methods.

1We use action flow graphs rather than more recent work on
multi-sentence DocAMR (Naseem et al., 2022) as DocAMR
does not consider the temporal nature of procedural text.

Contributions. In summary the contributions of
our paper are threefold:

• We tackle the problem of task-specific QA
from procedural text and show that small mod-
els can compete with strong LLM baselines
when provided with high-quality and exhaus-
tive training data.

• We introduce a novel graph-based method for
question-answer generation from procedural
text. We draw on existing graph semantic for-
malisms, such as Abstract Meaning Represen-
tations (AMRs), and also take advantage of
Action Flow graphs to represent the temporal
relations among recipe steps. This allows us to
rely on existing text-to-graph parsers as well
as graph-to-text generative models, alleviating
the need for specialized annotations. Notably,
we also show that our method can take advan-
tage of pre-trained LLMs to increase syntactic
diversity and semantic coverage.

• We empirically show that our generated QA
pairs can be used to train compact question-
answering models (e.g., 60M or 220M pa-
rameters) that can compete with strong GPT-
based baselines. Additionally, we show that
the proposed method results in QA pairs with
great diversity and high coverage (compared
to human-generated question-answer pairs).

2 Related Work

Question generation is an important topic within
the natural language generation community (Rus
et al., 2010), where given a source text (i.e., con-
text) and a target answer, the task is to generate the
corresponding question. The answer is either pro-
vided (Song et al., 2017; Zhou et al., 2017; Zhao
et al., 2018; Chai and Wan, 2020; Chan and Fan,
2019; Wang et al., 2020) or automatically extracted
from the context (Golub et al., 2017; Scialom et al.,
2019; Pyatkin et al., 2021; Liu et al., 2020). Our
work follows the latter approach, where we au-
tomatically extract answers and generate corre-
sponding questions. Moreover, compared to ACS-
QG (Liu et al., 2020), our question generation
method does not require additional clue and style
information extracted from the input text, as they
are represented in the semantic graph of the text.

Existing methods either rely on hand-crafted
rules and templates (Heilman and Smith, 2010;

2502

Rakshit and Flanigan, 2021; Fabbri et al., 2020;
Pustejovsky et al., 2021a), or use annotated data
(in the form of text spans as answers, along with
corresponding ground-truth questions) to learn to
automatically generate QA pairs (Patil, 2020; Gong
et al., 2023; Golub et al., 2017; Scialom et al., 2019;
Pyatkin et al., 2021). Rule-based methods offer
more control over the generated data, but are not
easily scalable. Learning-based methods offer bet-
ter scalability, but require costly annotations. Our
graph-based approach combines the benefits of the
two while addressing their short-comings. Specif-
ically, our graph-guided content selection offers
the desired control over the content extracted from
procedural text (to form the answer), and draws
on generic models for graph-to-text generation to
generate questions (Jacob, 2020).

Recent work has shown that Large Language
Models (LLMs) such as GPT3 can be used for gen-
erating QA pairs based solely on the input context
texts (Wang et al., 2021; Yuan et al., 2022). How-
ever, these models are sensitive to the prompt used
to generate the data, offer less control over the gen-
erated QA pairs, and are not cost-effective. In con-
trast, we provide evidence that our graph-controlled
QA generation approach yields high-quality and
diverse data that can be used for training question
answering models that compete with LLMs while
being orders of magnitude smaller.

3 Methodology

In this section, we present our approach to QA
generation from procedural text. We introduce the
AMR and flow graphs that our method relies on
(§3.1), and detail our method for generating ques-
tions from single instructions (§3.2) and tempo-
ral questions spanning across multiple instructions
(§3.3). Lastly, we propose to use LLMs to improve
the language quality of generated questions (§3.4).

3.1 Preliminaries

Abstract Meaning Representation (AMR):
The AMR abstracts away the syntactic idiosyn-
crasies of language and instead draws out the log-
ical meaning of text entities and their relations in
a sentence, following the conventions of common
framesets (Banarescu et al., 2013). Figure 1 de-
picts a recipe instruction (see caption) and its AMR
graph, generated by a text-to-AMR parser (Jacob,
2020), in PENMAN notation. As can be seen in
this example, the AMR graph specifies all entities

(ingredients, tools, cooking time) and their rela-
tions (location, duration, manner) in a sentence. We
draw on this representation to exhaustively identify
contents to ask questions about for each individual
step in a recipe (see §3.2).

(c / cook-01

:mode imperative

:ARG0 (y / you)

:ARG1 (a / and

:op1 (c2 / chicken)

:op2 (ii / ingredient

:mod (o / other)))

:location (p / pot)

:duration (t / temporal-quantity

:quant 20

:unit (m / minute))

:manner (h / heat-01

:mod (m2 / medium))

:purpose (p2 / prepare-01

:ARG0 y

:ARG1 (s / soup)))

Figure 1: AMR example. Linearized AMR graph of the
sentence "Cook chicken and other ingredients in the pot
over medium heat for 20 minutes to prepare the soup".

Flow Graphs: A flow graph (Momouchi, 1980;
Hamada et al., 2000) is a directed acyclic graph
containing actions, objects, other auxiliary entities
(nodes) and their relations (edges), which provide
essential information to complete a task. Impor-
tantly, flow graph relations encode the temporal
order of actions and transformations (modifica-
tions/combinations) of objects. We draw on recent
flow graph corpora and parsers (Yamakata et al.,
2020; Donatelli et al., 2021) to generate action flow
graphs such as the one shown in Fig. 2. We then
use these graphs to generate questions that require
understanding the temporal order of actions and
object transformations over time (see §3.3).

3.2 Question generation from a single
instruction

We extract the AMR graph for each sentence in-
dependently and generate three types of QA pairs
from the graph; namely, role-specific, instruction-
level, and polarity.

Role-specific QA. We begin by selecting the con-
tent that will serve as an answer from the AMR
graph. The AMR graph consists of core and non-
core roles. We select two main core roles (i.e.,

2503

 Add oil and two chopped onions to a pan.
 Cook chopped carrots and turnips in the pan.
 Put the vegetables into a bowl.
 Add lamb to the pan.
 Add chopped thyme and cinnamon.
 Add vegetables, flour, chicken broth and tomato paste.
 Cover the pan.
 Chop the potatoes.
 Mash potatoes with butter and salt.
 Spread the lamb into baking dish.
 Spread mashed potatoes on top with grated cheddar cheese.
 Bake it in the oven.

(a) “Shepherd pie” recipe

oil
Two chopped

onion

Add

pan

chopped carrots

turnipsCook

vegetables bowl

Add

Add

lamb

chopped thyme

cinnamon

pan

Put vegetables

pan

(Cooked lamb)

Add

flour chicken broth

tomato paste

(Cooked lamb)

…

CookwareAction Raw ingredient

Intermediate food item Implicit intermediate food item

Semantic Entity Categories

(b) Semantic flow graph

Figure 2: Flow graph example. The action flow (sub-)graph of the highlighted text section in (a) is shown in (b)
where word tokens are grouped together to form complete semantic entities belonging to one of the main categories.
The semantic graph is further augmented with implicit entities to represent entities that are omitted from the text.

:ARG1, :ARG2) and several non-core roles (i.e.,
:time, :duration, :location, :instrument, :mod, :do-
main, :purpose, :accompanier, :degree, :value and
:quant) to generate answers. Each role in the AMR
consists of either a single concept (e.g., :location in
Fig. 1) or a subgraph (e.g., :ARG1). For roles asso-
ciated with a single concept, the concepts are used
directly as our target answers, whilst for the latter,
we use a pre-trained AMR-to-text model (Jacob,
2020) to convert the subgraph into a target answer.

To generate questions for each of the selected
answers, we construct a corresponding question
AMR. This is achieved by replacing the answer sub-
graph in the original AMR with the amr-unknown
concept and transforming it into a proper AMR
graph for natural question generation. The question
is then generated using a graph-to-question model
finetuned on generic question datasets (Rajpurkar
et al., 2016; Pustejovsky et al., 2021b). The trans-
formation algorithms for different roles as well as
the graph-to-question generative model training are
detailed in the appendix. Figure 3 shows examples
of questions generated for different roles.

Instruction-level QA. Instruction-level ques-
tions are those for which the answer is the entire
sentence. For example, given the instruction [Slice
the onion and coat in flour] and the question [How
do I prepare the onion?], the answer is the full in-
struction. In this category, we cover two types of
questions: 1) “How do you [do something]?” and
2) “What do we do with [something]?”. For the

first type, the question AMR is created by adding
a :manner role with amr-unknown concept to the
original AMR. The second type requires transform-
ing the original AMR into a new AMR in which
all core roles (:ARGx) are grouped together into
:ARG2 to form [something], and the concept of
:ARG1 becomes amr-unknown. Once these trans-
formations are applied we again use the AMR-to-
text model to generate the questions.

Polarity “yes/no” QA. To generate questions
with a “Yes” answer, we add a new node with
the concept amr-unknown connected to the main
verb root node with the :polarity role. To gener-
ate a question with a “No” answer from the same
sentence, we further modify the resulting polarity
question AMR by replacing one randomly chosen
subgraph with a subgraph of the same semantic
role sampled from another AMR.

3.3 Temporal question generation
We are also interested in questions about the trans-
formation / composition of entities across time, as
well as the temporal order of actions. These ques-
tions require content selection from multiple steps.
We focus on three common types of temporal ques-
tions: 1) Composition of a mixture. For example
in Fig. 2, one may ask about the ingredients that go
into vegetables; 2) Next or preceding action. For
example, in Fig. 2, one may want to know what
to do after putting vegetables into a bowl. Note
that in this case the fourth instruction is the start
of another subtask, and the correct answer is the

2504

Input instruction:
Stir buttermilk, chili powder
and cayenne pepper in a bowl.

(s / stir-01
 :ARG1 (a / and)
 :op1 (b / buttermilk)
 :op2 (p / powder
 :mod (c / chili))
 :op3 (p2 / pepper
 :mod (c2 / cayenne)))
 :location (b2 / bowl))

Masking out :ARG1

(s / stir-01
 :ARG1 (a / amr-unknown)
 :location (b2 / bowl))

A: Buttermilk, chili powder and
cayenne pepper
Q: What do you stir in a bowl?

Masking out :op2 of :ARG1 and
transform
(s / stir-01
 :location (b2 / bowl)
 :ARG1 (a2 / amr-unknown)
 :ARG2 (a / and
 :op1 (p2 / pepper
 :mod (c2 / cayenne))
 :op2 (b / buttermilk)))
A: Chili powder.
Q: What is stirred in the bowl with the
cayenne pepper and buttermilk?

Masking out :mod of :op2 of :ARG1 and transform
(s / stir-01
 :location (b2 / bowl)
 :ARG1 (p / powder
 :mod (a2 / amr-unknown))
 :ARG2 (a / and
 :op1 (p2 / pepper
 :mod (c2 / cayenne))
 :op2 (b / buttermilk)))
A: Chili.
Q: What powder is stirred in a bowl with cayenne
pepper and buttermilk?

Figure 3: Role-specific QA. Three questions are created by targeting different roles in the input AMR.

sixth instruction. The correct answer is only clearly
given the action flow graph; 3) The order of actions,
e.g., Is action A performed before/after action B?.

To cover these question types, we propose a hy-
brid approach that relies on flow graphs for content
selection and AMRs for question generation. More
specifically, we create AMR-based templates for
each of the question types, and traverse the flow
graph to select answer contents (represented as
AMR subgraphs extracted from related sentences)
for each question type to fill in the templates. Fi-
nally, we use the AMR-to-text model to generate
the questions. We adopt this hybrid strategy for two
main reasons. First, temporal questions cannot be
constructed directly by modifying the flow graph
as was done for the sentence-based QA genera-
tion. Second, by composing the questions as AMR
graphs, we can rely on the pre-trained AMR-to-text
model to generate natural language questions. We
now detail the approach adopted for each temporal
question type.

Composition of mixtures QA. We design 12
question templates, represented as AMR graphs,
that involve a [mixture_name], such as “What are
the ingredients of the [mixture_name]?” In the
example provided in Fig. 2b, mixture entities are
indicated by cyan boxes in the flow graph. We
only apply these templates on named mixtures, i.e.
we ignore implicit items (dashed boxes in Fig. 2b)
because it is not straightforward to assign names
to such references. We then generate questions for
each named mixture and traverse the flow graph to
obtain the corresponding answer.

Next or preceding actions QA. We use a ques-
tion AMR graph template equivalent to “What do
we do after/before [action Aj]?” to generate ques-
tions. Then, at a particular action step Aj , the
answer is either the next action in the flow graph,
Ak, k = next(j) for a “next” question, or the previ-
ous action in graph, Ai, i = pred(j), for a “before”
question. For example, in Fig. 2a given that Aj=7

is “Cover the pan”, the preceding action is Ai=6,
“Add vegetables, flour, chicken broth and tomato
paste”.

Order of actions QA. Here, we adopt two tem-
plates: “Do we do A or do we do B first?” that
uses AMR “or” composition frame; or “Doing
A or doing B, which is first?” which uses AMR

“amr-choice” composition frame. We also swap A &
B, so that for each pair of {A,B} we can generate
four questions. Once again, the answer is directly
obtained by traversing the flow graph.

3.4 QA augmentation with LLMs
While the proposed graph-guided method offers a
controlled solution to generate diverse QA pairs
from procedural text with wide semantic coverage,
it can nevertheless still benefit from strong LLMs.
In particular, the language used in the QA pairs
generated by the proposed method is tightly bound
to the language used in the associated recipes. In
contrast, humans tend to draw from their own vo-
cabulary when posing questions. Thus, we also
introduce two alternative methods to increase the
syntactic diversity of the generated QA pairs using
LLMs. We use the state-of-the-art GPT3 model.

Answer-based augmentation. As one of the
strengths of our graph-guided approach is exhaus-
tive content selection, one way to augment it with
LLMs is to use answers generated with our ap-
proach and rely on GPT3 to generate correspond-
ing questions (prompt details are provided in the
appendix). However, we noticed that the questions
generated with this approach sometimes do not se-
mantically match the input answers. Therefore,
we filter out the generated questions via round-trip
consistency similar to (Alberti et al., 2019). In par-
ticular, we ask GPT3 to generate corresponding
answers to the questions which it generated previ-
ously. We then compare the answer generated by
GPT3 to the original answer in terms of ROUGE-1
metric and only keep the GPT3-based QA pair if

2505

the score is > 0.25.

Paraphrasing-based augmentation. Another
way to take advantage of LLMs’ ability to gen-
erate diverse syntax is to directly task GPT3 with
paraphrasing our graph-guided synthetic questions.
Specifically, we paraphrase each question 5 times
and filter out any duplicate questions.

4 Evaluation

We describe our experimental setup and question-
answer generation baselines in §4.1, where we also
introduce a new human-annotated PQA set (refer-
ence set) used for evaluation. §4.2 shows extrinsic
evaluations, where question-answering models are
trained with the generated data and evaluated on
the aforementioned reference set. §4.3 describes in-
trinsic evaluations, assessing the distributions and
quality of our generated QA pairs, which further
amplifies the significance of our QA generation
approach.

4.1 Experimental setup

Data. We use cooking recipes as a source of pro-
cedural text and randomly select 100 recipes from
a popular food website (BBC). We use 70 recipes
to generate QA pairs with our method and with
the baselines. For evaluation purposes, we compile
human-annotated QA pairs from the remaining 30
recipes and collected ∼ 50 human-generated QA
pairs per recipe. This yielded a PQA test set with
1857 QA pairs, where ∼ 30% cover temporal ques-
tions that require reasoning over multiple steps in
the recipe. We provide more details on the human
data collection setup in the appendix.

Baselines. We propose a hybrid method for gen-
erating PQA pairs, relying on both graph-based
logical rules, and trained deep generative models.
We thus compare our work to state-of-the-art meth-
ods from each type of approach. Specifically, we
compare to two rule-based methods (Pyatkin et al.,
2021; Fabbri et al., 2020), and two learning-based
methods for QG, including a T5-based model (Patil,
2020) finetuned on SQuAD (Rajpurkar et al., 2016)
and a diffusion-based model (Gong et al., 2023).
We also include comparisons to state-of-the-art
LLMs. In a preliminary study, we found that GPT3
outperforms ChatGPT for the task of QA data gen-
eration so we use the former as a baseline. We
consider two strategies, GPT3-sentence and GPT3-
recipe, to generate QA pairs from sentences and

entire recipes respectively. When evaluating the
methods, including ours, we only consider ques-
tions that can be answered solely from the given
context (i.e., recipe). A detailed description of all
baselines considered is in the appendix.

4.2 Extrinsic evaluation

Question answering. We evaluate the usefulness
of the generated data on the important application
of question answering. We generate PQA pairs
from the 70 recipes in the training set and use them
to train a model for question answering. In partic-
ular, we target the application of open-ended QA,
where given a question, q, and corresponding con-
text, c, (i.e., recipe in this case), the goal is to gen-
erate the correct answer a = F(q, c). Here, F is a
sequence-to-sequence model taking the concatena-
tion of q and c as input and generating the answer,
a. Since our goal is just to compare the different
methods in terms of the quality of the training data
generated, we use a T5-small model (∼ 60M pa-
rameters), and finetune it with data obtained from
each of the considered baselines. We also include
a model finetuned on SQuAD (Rajpurkar et al.,
2016), a widely-used large QA dataset, to illustrate
performance when using generic QA data. Since
we consider open-ended QA, we evaluate the gen-
erated answers using various language generation
quality metrics, including BLEU, F1, ROUGE-L,
and BLEURT (Sellam et al., 2020).
Results: The results summarized in Table 1 demon-
strate the superiority of the data generated with
our approach. Our method with only graph-to-text
models (i.e. without LLM-based augmentations)
outperforms all baselines on all metrics. Impor-
tantly, when used for question answering, this sim-
plest variant of our method also outperforms base-
lines where GPT3 was used for data generation.
These results suggest that the wide coverage of
question types provided by our exhaustive content
selection method plays a more significant role than
the syntactic diversity of the generated language in
the task of question answering. Finally, combining
our graph-guided approach for improved coverage
with GPT3, for improved language, yields the over-
all best results by a wide margin.

Question answering with larger models: Re-
sults summarized in Table 2 show that the gener-
ated data provides enough diversity and coverage
to support the finetuning of a T5 model with up
to 3B parameters, with performance gains consis-

2506

Generation method BLEU F1 ROUGE-L BLEURT

SQuADv2 6.2 23.8 23.4 34.0

Rule-based
Role-based QG (Pyatkin et al., 2021) 3.7 20.4 19.0 37.1
Template-based QG (Fabbri et al., 2020) 6.8 25.4 25.1 35.7

Learning-based
Diffusion-based QG (Gong et al., 2023) 2.8 17.8 16.5 35.4
T5-based QG (Patil, 2020) 5.9 27.6 27.0 38.6

GPT-based
GPT3-sentence 3.4 18.3 17.5 32.0
GPT3-recipe 7.1 26.6 26.2 36.7

Ours
w/o augmentations 7.2 31.4 30.7 40.0
w/ paraphrasing augmentation 7.3 33.5 32.6 42.0
w/ answer-based augmentation 9.9 35.2 34.0 45.8

Table 1: QA performance for different training data generation approaches. A T5-small model was fine-tuned
on different synthetic QA datasets and test results are computed on the human-annotated reference set.

Model #params (B) BLEU F1 ROUGE-L BLEURT

T5-small 0.06 7.2 31.4 30.7 40.0
T5-base 0.22 11.5 42.8 42.0 47.9
T5-large 0.77 13.9 45.0 44.0 47.9

T5-3B

3

16.7 45.5 44.7 51.2
FLAN-T5-XL 16.9 49.3 48.5 51.4

FLAN-T5-XL (wP) 21.8 54.0 53.1 56.3
FLAN-T5-XL (wA) 17.7 46.1 45.0 50.9

GPT-3
175

16.3 42.1 41.8 55.9
ChatGPT 17.3 41.6 41.0 56.2

Table 2: QA performance for different model sizes and LLMs. Different-sized T5 models, trained on our
generated data without LLM augmentations unless explicitly mentioned: (wP) = w/ paraphrasing augmentation,
(wA) = w/ answer-based augmentation. GPT3 and ChatGPT are the upper bound of the “generalist” QA approach.
Performance is measured on the human-annotated reference set.

tently improving as a factor of the model’s capacity.
The results also show that smaller T5 models (e.g.,
T5-base with 0.22B parameters) already provide
excellent performance, with the largest variants be-
ing competitive against (and even surpassing) the
GPT3 and ChatGPT models, despite them being or-
ders of magnitude larger and having been exposed
to much larger amounts of data during training (in-
cluding recipes that likely overlap with our test set).
More interestingly, the FLAN-T5-XL model fine-
tuned on our paraphrased data significantly outper-
forms GPT models, as well as the variant trained
on answer-based augmented data. We attribute
this substantial improvement to our proposed ques-
tion graph transformations, which the LLM answer-
based augmentation approach cannot benefit from.
These transformations enrich the question pool di-
versity that models with larger capacity can effec-

tively exploit, resulting in significant performance
gain. More generally, we believe these results un-
derscore the importance of devising approaches
to generate domain-specific, high-quality data as
proposed in this paper, especially when seeking a
more favorable performance-vs-computational cost
tradeoff on specific downstream tasks.

4.3 Intrinsic evaluation

Question diversity and coverage. We measure
the diversity of generated questions in terms
of Dist-n, the number of distinct n-grams (Li
et al., 2016), and n-gram Diversity, calculated as
1
N

∑N
n=1(Dist-n), N = 5 (Wiher et al., 2022). We

compute these metrics from the questions gener-
ated using the 70 recipes in the training split. On
the other hand, coverage measures how well the
human-generated questions in the reference set are

2507

Generation method Dist-3 ↑ n-gram Div. ↑ Coverage ↑

Rule-based
Role-based QG (Pyatkin et al., 2021) 62.3 62.7 46.5
Template-based QG (Fabbri et al., 2020) 81.1 80.4 40.5

Learning-based
Diffusion-based QG (Gong et al., 2023) 72.4 71.5 42.8
T5-based QG (Patil, 2020) 74.7 74.3 45.6

GPT-based
GPT3 sentence 72.7 72.7 54.9
GPT3 recipe 69.9 71.9 58.4

Ours
w/o augmentations 78.8 77.5 59.0
w/ paraphrasing augmentation 78.3 77.6 67.3
w/ answer-based augmentation 76.2 76.0 67.3

Table 3: Intrinsic evaluation: question diversity & coverage. Comparison of variants of our method and
competing approaches in terms of diversity and coverage of the generated questions. Coverage is measured against
the human-annotated reference set.

covered by questions automatically-generated from
the same recipes. The coverage score is defined as

1
Nref

∑Nref

i=1 maxj∈Ñρ(qrefi , q̃j), where qrefi and
q̃j denote the ith question in reference set N ref

and jth question in generated set Ñ , respectively.
We use BLEURT metric as the pair-wise scoring
function ρ, thus the coverage score not only reflects
semantic resemblance of generated questions w.r.t.
human questions, but also their language natural-
ness and fluency.
Results: Table 3 shows our intrinsic experimental
results and those from competing methods (a sum-
mary of all Dist-n scores, n ∈ [1, 5], is included
in the appendix). Even when relying solely on
a simple graph-to-text generation model (i.e. no
LLM augmentations), our method already far ex-
ceeds all QG baselines, including GPT3. In terms
of diversity, our scores are slightly below those
of Template-based QG (Fabbri et al., 2020). Dif-
ferent from all other methods including ours, in
the Template-based QG approach, the questions
are generated by shuffling parts of the original
sentence to complete templates, therefore retain-
ing most of the original n-gram diversity, however,
the synthesized questions lack semantic adequacy
and language fluency, reflected by low coverage
score. Our method, with or without LLM aug-
metations, scores substantially better Dist-3 scores
than other question generation methods, while also
ensuring higher coverage, yielding overall best re-
sults. Notably, our method without any augmenta-
tion even has slightly better diversity scores than
its LLM-augmented variants, indicating that our
graph-based content selection approach, which is

center amongst three variants, attributes to the rich-
ness and exhaustiveness of the synthetic questions.
Paraphrasing augmentation, by fixing the language
of generated text, further boosts the coverage score
by 14% relative increase. Our variant with answer-
based augmentation, although ensuring good cover-
age, has slightly lower diversity scores, because it
lacks the question graph transformations employed
by other two variants. In addition to the excellent
QA performance of model trained on such data as
demonstrated in our extrinsic evaluation, these re-
sults signify the quality of data generated by our
proposed method.

Overall quality via human evaluation. We fur-
ther conduct a human study to validate the quality
of the generated questions, as well as the match
between questions and answers. Specifically, we
design a human annotation task where the rater
assesses the generated questions in terms of gram-
matical correctness, adequacy, and answerability
from the given context. Each entry was rated by 5
different raters, all of them native speakers. The
corresponding answer is then revealed, and the rater
is asked to judge the faithfulness and completeness
of the answer. We assess all aspects on a 5-point
Likert scale. Note that these metrics focus on the
quality of the questions and answers, which is com-
plementary to the diversity & coverage metrics.
Details of the human annotation setup and process
are in the appendix.
Results: We perform human study for three base-
lines, namely, the best rule-based and learning-
based methods (according to Table 3) and a GPT-

2508

Generation method Q. Correct Q. Adeq Q. Answ A. Faith A. Compl

Role-based QG (Pyatkin et al., 2021) 2.65 2.58 2.98 3.15 2.63
T5-based QG (Patil, 2020) 2.95 3.10 2.63 2.73 1.68
GPT3 recipe 4.70 4.60 4.30 4.43 4.15

Ours w/o augmentations 3.35 3.58 3.40 3.63 2.83
Ours w/ anwer-based augmentation 4.73 4.60 4.55 4.43 4.08

Table 4: Intrinsic evaluation: overall quality via human evaluation. Questions are assessed for correctness (Cor-
rect), adequacy (Adeq), and answerability (Answ); Answers are assessed for faithfulness (Faith) and completeness
(Compl). Scores are up to 5, higher is better.

based model, in addition to two variants of our
method, one with graph-to-text generation, and
one with GPT-based question generation. Table 4
shows that data generated with our approach fares
well across all annotation aspects compared to other
QG baselines. Methods leveraging GPT3, i.e., the
“GPT3 recipe” and “Ours w/ answer-based augmen-
tation”, yield the highest quality by a wide margin,
highlighting again the complementarity of the two
components of our method.

5 Conclusion

In this paper we tackled task-specific QA from
procedural text. To this end, we proposed a
novel method for automatic generation of question-
answer pairs from procedural texts in a comprehen-
sive manner, both in their semantic content as well
as syntactic diversity. We do so by exploiting the
structured nature of the procedural data by using
graph-based representations, and devise a system-
atic way of generating semantically-comprehensive
question-answer pairs. We further enrich the syn-
tactic correctness and diversity through the use
of LLMs. We show that 1) using automatically-
generated in-domain data to train a simple T5
model results in question-answering performance
competitive with very large language models such
as ChatGPT and GPT3. 2) our method results in
excellent coverage of human-generated questions.

6 Limitations

Our proposed method heavily relies on AMRs and
Flow Graph representations and thus our method
is limited to the few languages supported. Multi-
lingual support may become available once AMR
sembank and flow graph corpus are expanded to
support multiple languages. Furthermore, errors
on the graph-parsing strategies are not mitigated
within our method. Finally, we use a simple T5
with standard training to illustrate the performance

for question-answering when training with data
generated by our method. We believe there is
room for further improvements by training more
advanced models on our generated data.

Acknowledgements

We would like to thank the members of SAIC-
Cambridge for their invaluable participation in the
data collection process of the PQA reference set, as
well as the human studies conducted in this work.

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin,

and Michael Collins. 2019. Synthetic QA corpora
generation with roundtrip consistency. In Proc. of the
Annual Meeting of the Association for Computational
Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. of the Linguistic Annota-
tion Workshop and Interoperability with Discourse.

BBC. BBC good food. https:
//www.bbcgoodfood.com/
about-bbc-good-food.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Confer-
ence on Neural Information Processing systems.

Zi Chai and Xiaojun Wan. 2020. Learning to Ask More:
Semi-Autoregressive Sequential Question Genera-
tion under Dual-Graph Interaction. In Proceedings
of the 58th Annual Meeting of the Association for

2509

https://www.bbcgoodfood.com/about-bbc-good-food
https://www.bbcgoodfood.com/about-bbc-good-food
https://www.bbcgoodfood.com/about-bbc-good-food
https://doi.org/10.18653/v1/2020.acl-main.21
https://doi.org/10.18653/v1/2020.acl-main.21
https://doi.org/10.18653/v1/2020.acl-main.21

Computational Linguistics, pages 225–237, Online.
Association for Computational Linguistics.

Ying-Hong Chan and Yao-Chung Fan. 2019. A recur-
rent BERT-based model for question generation. In
Workshop on Machine Reading for Question Answer-
ing.

Lucia Donatelli, Theresa Schmidt, Debanjali Biswas,
Arne Köhn, Fangzhou Zhai, and Alexander Koller.
2021. Aligning Actions Across Recipe Graphs. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
6930–6942, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
Güney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new Q&A dataset augmented with con-
text from a search engine. ArXiv, abs/1704.05179.

Alexander Fabbri, Patrick Ng, Zhiguo Wang, Ramesh
Nallapati, and Bing Xiang. 2020. Template-Based
Question Generation from Retrieved Sentences for
Improved Unsupervised Question Answering. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4508–
4513, Online. Association for Computational Lin-
guistics.

David Golub, Po-Sen Huang, Xiaodong He, and
Li Deng. 2017. Two-Stage Synthesis Networks for
Transfer Learning in Machine Comprehension. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 835–
844, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2023. DiffuSeq: Sequence to
sequence text generation with diffusion models. In
International Conference on Learning Representa-
tions.

Reiko Hamada, Ichiro Ide, Shuichi Sakai, and Hidehiko
Tanaka. 2000. Structural analysis of cooking prepa-
ration steps in japanese. In Proceedings of the Fifth
International Workshop on on Information Retrieval
with Asian Languages, IRAL ’00, page 157–164,
New York, NY, USA. Association for Computing
Machinery.

Wei He, Kai Liu, Jing Liu, Yajuan Lyu, Shiqi Zhao,
Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua Wu,
Qiaoqiao She, Xuan Liu, Tian Wu, and Haifeng
Wang. 2018. DuReader: a Chinese machine reading
comprehension dataset from real-world applications.
In Proceedings of the Workshop on Machine Reading
for Question Answering.

Michael Heilman and Noah A. Smith. 2010. Good
Question! Statistical Ranking for Question Genera-
tion. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages

609–617, Los Angeles, California. Association for
Computational Linguistics.

Brad Jacob. 2020. AMRLib: A python library that
makes AMR parsing, generation and visualization
simple. https://github.com/bjascob/
amrlib.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading
Comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1601–1611,
Vancouver, Canada. Association for Computational
Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A Diversity-Promoting Objec-
tive Function for Neural Conversation Models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Bang Liu, Haojie Wei, Di Niu, Haolan Chen, and
Yancheng He. 2020. Asking questions the human
way: Scalable question-answer generation from text
corpus. In Proceedings of The Web Conference 2020,
WWW ’20, page 2032–2043, New York, NY, USA.
Association for Computing Machinery.

Yoshio Momouchi. 1980. Control structures for actions
in procedural texts and PT-chart. In Conference on
Computational Linguistics.

Tahira Naseem, Austin Blodgett, Sadhana Kumaravel,
Tim O’Gorman, Young-Suk Lee, Jeffrey Flanigan,
Ramón Fernandez Astudillo, Radu Florian, Salim
Roukos, and Nathan Schneider. 2022. DocAMR:
Multi-sentence AMR representation and evaluation.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Conference on
Neural Information Processing Systems - Workshops.

Suraf Patil. 2020. Question generation using transform-
ers. https://github.com/patil-suraj/
question_generation.

James Pustejovsky, Eben Holderness, Jingxuan Tu,
Parker Glenn, Kyeongmin Rim, Kelley Lynch, and
Richard Brutti. 2021a. Designing multimodal
datasets for nlp challenges. arXiv:2105.05999.

James Pustejovsky, Eben Holderness, Jingxuan Tu,
Parker Glenn, Kyeongmin Rim, Kelley Lynch, and
Richard Brutti. 2021b. Designing multimodal
datasets for NLP challenges. arXiv:2105.05999.

Valentina Pyatkin, Paul Roit, Julian Michael, Yoav Gold-
berg, Reut Tsarfaty, and Ido Dagan. 2021. Asking
It All: Generating Contextualized Questions for any

2510

https://doi.org/10.18653/v1/2021.emnlp-main.554
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.18653/v1/D17-1087
https://doi.org/10.18653/v1/D17-1087
https://doi.org/10.1145/355214.355237
https://doi.org/10.1145/355214.355237
https://aclanthology.org/N10-1086
https://aclanthology.org/N10-1086
https://aclanthology.org/N10-1086
https://github.com/bjascob/amrlib
https://github.com/bjascob/amrlib
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.1145/3366423.3380270
https://doi.org/10.1145/3366423.3380270
https://doi.org/10.1145/3366423.3380270
http://arxiv.org/abs/2112.08513
http://arxiv.org/abs/2112.08513
https://github.com/patil-suraj/question_generation
https://github.com/patil-suraj/question_generation
https://doi.org/10.18653/v1/2021.emnlp-main.108
https://doi.org/10.18653/v1/2021.emnlp-main.108

Semantic Role. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1429–1441, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Geetanjali Rakshit and Jeffrey Flanigan. 2021. ASQ:
automatically generating question-answer pairs using
AMRs. arXiv:2105.10023.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lintean,
Svetlana Stoyanchev, and Christian Moldovan. 2010.
The first question generation shared task evaluation
challenge. In International Natural Language Gen-
eration Conference.

Thomas Scialom, Benjamin Piwowarski, and Jacopo
Staiano. 2019. Self-Attention Architectures for
Answer-Agnostic Neural Question Generation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6027–
6032, Florence, Italy. Association for Computational
Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning Robust Metrics for Text Genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Linfeng Song, Zhiguo Wang, and Wael Hamza.
2017. A unified query-based generative model
for question generation and question answering.
arXiv:1709.01058.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford Alpaca: An instruction-following LLaMA
model. https://github.com/tatsu-lab/
stanford_alpaca.

Bingning Wang, Xiaochuan Wang, Ting Tao, Qi Zhang,
and Jingfang Xu. 2020. Neural question generation
with answer pivot. In AAAI Conference on Artificial
Intelligence.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021. Want to reduce la-
beling cost? GPT-3 can help. In Conference on
Empirical Methods in Natural Language Processing.

Gian Wiher, Clara Meister, and Ryan Cotterell. 2022.
On decoding strategies for neural text generators.
TACL.

Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Nazli
Ikizler-Cinbis. 2018. RecipeQA: A challenge dataset
for multimodal comprehension of cooking recipes.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Yoko Yamakata, Shinsuke Mori, and John Carroll. 2020.
English Recipe Flow Graph Corpus. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 5187–5194, Marseille, France. Eu-
ropean Language Resources Association.

Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev,
and Cordelia Schmid. 2021. Just ask: Learning to
answer questions from millions of narrated videos.
In International Conference on Computer Vision.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Xingdi Yuan, Tong Wang, Yen-Hsiang Wang, Emery
Fine, Rania Abdelghani, Pauline Lucas, Hélène
Sauzéon, and Pierre-Yves Oudeyer. 2022. Select-
ing better samples from pre-trained LLMs: A case
study on question generation. arXiv:2209.11000.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa Ke.
2018. Paragraph-level Neural Question Generation
with Maxout Pointer and Gated Self-attention Net-
works. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3901–3910, Brussels, Belgium. Association
for Computational Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and M. Zhou. 2017. Neural question
generation from text: A preliminary study. In Natu-
ral Language Processing and Chinese Computing.

2511

https://doi.org/10.18653/v1/2021.emnlp-main.108
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.18653/v1/P19-1604
https://doi.org/10.18653/v1/P19-1604
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2203.15721
https://aclanthology.org/2020.lrec-1.638
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424

A Summary

Here we provide all details. We begin by describing
the PQA human data collection (i.e. reference set)
and the human study setup in §B and §C, respec-
tively. Next, we provide more detailed descriptions
of the baselines considered in this work in §D. Fi-
nally, we provide further technical details about the
proposed approach in §F.

B PQA reference dataset collection

Recall that we select 100 recipes from BBCfood
(BBC), and randomly sample 70 recipes for train-
ing and 30 recipes are held off for the test set. For
each recipe in the test (reference) set, we set up an
interactive cooking simulation with two annotators,
where one annotator asks questions that would help
complete the task, and the other answers the ques-
tions. Both questions and answers are recorded
and transcribed afterward. Question annotators are
provided with detailed instructions, similar to the
example shown in Listing 1. On the other hand,
answer annotators are given the recipe text and
ingredients and asked to interactively give the re-
sponse to the question annotator. To ensure that
QA pairs can be solely answered from the recipe,
the answer annotator is instructed to reply with:
“the recipe does not specify that”, anytime a ques-
tion asked cannot be answered from the recipe text
alone.

C Human evaluation details

We design a human annotation task to evaluate the
overall quality of questions and answers generated
by a model. Specifically, we ask human raters to
assess a set of generated questions with respect
to grammatical correctness, adequacy, and answer-
ability from a given context. For each question, the
corresponding answer is then revealed to the rater,
and they are asked to judge the faithfulness and
completeness of the answer. Each question-answer
pair is rated by 5 native English speakers. The hu-
man raters are provided with detailed annotation
instructions shown in Listing 2.

D Question generation baselines

In this section, we provide further technical details
for the methods used as baselines.

Rule-based QG (Pyatkin et al., 2021). Given a
sentence, this method uses rules to generate ques-
tions for all semantic roles associated with a given

entity, independently of the presence or absence
of answers. Since this method is sentence-based,
we use it to automatically generate questions for
each step in a recipe. Also, since this method does
not offer a solution for answer generation, we take
the generated questions and accompanying recipe
and use Alpaca (Taori et al., 2023) to automatically
generate corresponding answers and filter out ques-
tions for which there is no answer in the recipe.

Template-based QG (Fabbri et al., 2020). A sen-
tence is segmented into [Fragment A] + [answer]
+ [Fragment B] components. The [answer] com-
ponent is replaced with the question wh-word, and
re-combined with [Fragment A] and [Fragment B]
in different orders to create questions. Then, simi-
lar to the role-based QG baseline, we use Alpaca
to generate answers given the generated questions
and context.

T5-based QG (Patil, 2020). Following previous
work (Yang et al., 2021) we use a T5 model (Raffel
et al., 2020) finetuned on the SQuAD dataset (Ra-
jpurkar et al., 2016; Patil, 2020) for the task of ques-
tion generation. Specifically, similar to previous
work (Yang et al., 2021) we provide the finetuned
model with the recipe text and let it automatically
generate QA pairs.

Diffusion-based QG (Gong et al., 2023). We use
a recent approach for non-autoregressive question
generation based on text diffusion. We use Alpaca
to generate corresponding answers.

GPT3-based QG (Brown et al., 2020). We con-
sider GPT3 as an alternative method for question
generation. We consider two variants: (i) GPT3-
sentence, where we provide GPT3 with each step
in the recipe independently and task it with gener-
ating all possible questions about its content. (ii)
GPT3-recipe, where we give the entire recipe text
as context and task GPT3 with generating all possi-
ble questions, with the goal of pushing GPT3 to ask
temporal questions that span over multiple steps.

E Intrinsic evaluation

We provide all intrinsic evaluation scores in Ta-
ble 5, including all Dist-n metrics, n ∈ [1, 5], as
a more complete version of Table 3 in the main
paper. We also conduct paraphrasing experiments
on all datasets generated by baseline methods. No-
tably, our method without any augmentation still

2512

Listing 1 Example simulation instructions to elicit question-answer pairs for a recipe.

1 You are asked to cook using the following ingredients:
2

3 couscous, chargrilled artichokes, dijon mustard, olive oil, dill leaves,
parsley leaves, lemon, watercress, sea bass fillets↪→

4

5 There are 8 steps you need to finish.
6

7 Your task is to cook by interacting with the system.
8

9 You can ask any questions you have. For example:
10 What ingredients do I need in the second step,
11 Should I mix ingredient A with ingredient B?,
12 Where should I put ...?", "How can I prepare ... ?,
13 In step 3, I need to do ..., right?,
14 How much ... do I need?,
15 Do I need A or B?,
16 When should I do ...?
17 Why do I need to ...?
18 Should I do A first or B first?,
19 What ingredients do I need to prepare...?
20 ...
21 The system will provide you with the necessary information.
22 You don't have to start with the first step, but to complete the task, you

must receive a confirmation for each step of the recipe.↪→
23

24 Note that:
25 * Please imagine that you are in the kitchen, in front of all the

ingredients and READY TO COOK.↪→
26 * You DO NEED detailed information for cooking, e.g. the order of putting

ingredients, the place to put the ingredients, the amount of
ingredients you need.

↪→
↪→

27 * Try to ask different types of questions. For example, you are not
encouraged to ask "what ingredients do I need for step N?"
repetitively.

↪→
↪→

28 * You can only ask general questions, like "what should I do next?", one
time throughout the entire process.↪→

29

2513

Listing 2 Instructions provided to the human raters for assessing the overall quality of question and
answer pairs.

1

2 RECIPE: {RECIPE_TEXT}
3 QUESTION: {QUESTION}
4 ANSWER: {ANSWER}
5

6 This task contains two phases. In the first phase, you need to read the
RECIPE and the QUESTION above. You have to score the↪→

7 question on the basis of following three metrics. Note that, when scoring on
the basis of one metric, please ignore the re↪→

8 st two entirely.
9

10 * Grammatical correctness: How well-phrased and grammatical is the question?
11 - 1: absolutely grammatically incorrect
12 - 2: mostly grammatically incorrect
13 - 3: somewhat grammatically incoreect
14 - 4: mostly grammatically correct
15 - 5: absolutely grammatically correct
16

17 * Adequate: Does the question make sense in the context of the recipe?
18 - 1: absolutely inadequate
19 - 2: mostely inadequate
20 - 3: somewhat adequate
21 - 4: mostely adequate
22 - 5: absolutely adequate
23

24 * Answerability: Is it possible to provide an answer to the question ONLY
using the information provided in the recipe?↪→

25 - 1: absolutely not answerable
26 - 2: mostely not answerable
27 - 3: somewhat answerable
28 - 4: mostely answerable
29 - 5: absolutely answerable
30

31 Now, if all the numbers about are equal or more than 4, please continue the
evaluation below. Otherwise, please click submit.↪→

32

33 In the Second phase, you need to continuously read the ANSWER above. You have
to score the answer on the basis of following two metrics. Note that,
when scoring on the basis of one metric, please ignore the rest two
entirely.

↪→
↪→
↪→

34

35 * Faithfulness: Does the answer ONLY contain the information provided in the
recipe?↪→

36 - 1: absolutely not faithful
37 - 2: mostely not faithful
38 - 3: somewhat faithful
39 - 4: mostely faithful
40 - 5: absolutely faithful
41

42 * Answer's completeness: Does the provided answer completely address the
question?↪→

43 - 1: completely fails to address the question
44 - 2: mostely fails to address the question
45 - 3: somewhat address the question
46 - 4: mostely address the question
47 - 5: completely address the question

2514

Generation Method Dist-1 Dist-2 Dist-3 Dist-4 Dist-5 n-gram Div Coverage

Rule-based

Role-based QG (Pyatkin et al., 2021) 98.7 81.1 62.3 43.9 27.5 62.7 46.5
Role-based QG w/ paraphrasing 98.9 83.7 67.6 51.5 36.2 67.6 n/a

Template-based QG (Fabbri et al., 2020) 95.4 90.3 81.1 72 63.2 80.4 40.5
Template-based QG w/ paraphrasing 97.3 89.8 79.8 69.9 60.1 79.4 n/a

Learning-based

Diffusion-based QG (Gong et al., 2023) 95.2 85.9 72.4 58.7 45.4 71.5 42.8
Diffusion-based QG w/ paraphrasing 97.1 87.4 75.2 62.9 50.6 74.6 n/a

T5-based QG (Patil, 2020) 96.5 87.4 74.9 62.4 50 74.2 45.6
T5-based QG w/ paraphrasing 98.2 88.1 76.4 64.6 52.9 76.0 50.9

GPT-based

GPT3 sentence 99.8 86.4 72.7 59.1 45.5 72.7 54.9
GPT3 sentence w/ paraphrasing 99.2 87.7 75.4 63.1 50.9 75.3 57.8

GPT3 recipe 99.6 94.9 69.9 54.9 40.1 71.9 58.4
GPT3 recipe w/ paraphrasing 99.4 86.2 72.5 58.8 45.2 72.4 61.0

Ours

w/o augmentations 93.4 89.2 78.8 68.3 57.8 77.5 59.0
w/ paraphrasing augmentation 96.7 89.0 78.3 67.5 56.7 77.6 67.3
w/ answer-based augmentation 98.7 88.1 76.2 64.4 52.5 76.0 67.3

Table 5: Intrinsic evaluation: question diversity and coverage. This table shows all scores of all baseline
generated datasets and their paraphrased supersets.

surpasses the paraphrased supersets of the base-
lines, showcasing the effectiveness of our proposed
graph-based question generation method.

F Further technical details

F.1 Model learning
Graph-to-question generative model. While an
off-the-shelf AMR-to-text generator (Jacob, 2020)
works well on general sentences, it often fails to
generate correct questions from question AMRs
as we observed empirically. This problem may be
due to the insufficiency of question data in the stan-
dard AMR datasets. To attenuate this issue and
improve question generation performance, we fine-
tune a T5-base model to generate questions from
AMRs specifically. We parse questions taken from
SQuAD (Rajpurkar et al., 2016) and R2VQ (Puste-
jovsky et al., 2021b) datasets into question AMRs
and use the data to train our AMR-to-question
model. We use the same training setting as AMR-
lib (Jacob, 2020), secifically we train the T5-base
model for 8 epochs using AdamW optimizer, batch
size = 8, starting learning rate = 1e−4 with linear
schedule. The model was trained on a single 1080ti
GPU in 20hrs.

Question-answering model training. We train
one T5 models for each training dataset (QA pairs
generated by one of the QG methods, including
baselines and ours) using the same settings as fol-
lows: we train each model for 12 epochs using
AdamW optimizer with β = {0.9, 0.999}, weight
decay = 0.01, batch size = 256, starting learning
rate = 1e−5 with cosine schedule. T5-small mod-
els were trained using eight 1080ti GPUs in under

3hrs. T5-base model was trained in one day us-
ing the same GPUs. T5-large and T5-3B/XL were
trained for one and two days, respectively, using
eight V100 GPUs.

F.2 GPT3 prompts details
We use GPT3 for several tasks: (i) as a baseline
question generation model, with two variants of
GPT3-sentence and GPT3-recipe as explained in
§D above; and (ii) to augment our approach either
as an alternative graph-to-text generation model
(GPT3-QG), or as an added component to para-
phrase the outputs of our graph-to-text genera-
tion module (GPT3-paraphrasing). For the GPT3-
sentence and GPT3-recipe baselines, we follow up
with a prompt to also elicit an answer (Answer Gen-
eration). We describe the prompts used for each
case in Table 6.

F.3 Question generation from single
instrutions

F.3.1 Role-specific QA
:ARG1 The general algorithm to generate all
questions on different subgraphs under :ARG1 is
described in Algorithm 1.
:ARG1 splitting and regrouping. One of the lim-
itations of graph-to-text generator is that, if the
concept of :ARG1 is a compound such as in the ex-
ample of Figure 3 in the main text: “Stir buttermilk,
chili powder and cayenne pepper in a bowl”, then
it is unable to generate question about a :opX role
in the compound (e.g. :op1 (b/ buttermilk):

(s / stir-01 :ARG1 (a / and) :op1 (b / buttermilk)
:op2 (p / powder :mod (c / chili)) :op3 (p2 / pepper
:mod (c2 / cayenne))) :location (b2 / bowl))

2515

Task Prompt

GPT3-sentence
Sentence: {CONTEXT}
Instruction: Read the above sentence, and ask {N_PAIR} different questions that can only be answered
by referring to the given sentence.

GPT3-recipe
Recipe: {CONTEXT}
Instruction: Read the recipe above, and ask {N_PAIR} different questions that can only be answered
by referring to the given recipe.

GPT3-paraphrasing Rewrite this sentence: {QUESTION_SENTENCE}

GPT3-QG
Context: {CONTEXT}
Instruction: Read the above context, and ask {N_PAIR} different questions that can be answered as
“{ANSWER}”. Do not generate answers.

Answer Generation Answer the question using information in the preceding background paragraph.
If there is not enough information provided, answer with “The recipe does not specify”

Table 6: Prompts used to generate questions, answers, or paraphrases for the various GPT3-based models.

Our proposed solution is to transform the above
AMR into

(s / stir-01 :ARG1 (b / buttermilk) :ARG2 (a /
and) :op1 (p / powder :mod (c / chili)) :op2 (p2 /
pepper :mod (c2 / cayenne))) :location (b2 / bowl))

then ask question about :ARG1 by replacing “but-
termilk” with amr-unknown. We can gradually ap-
ply a similar transformation for :op2 and :op3 in
the above example. If :ARG2 exists in the original
sentence, we check whether :ARG1 and :ARG2 are
semantically equivalent. If they are equivalent, the
remaining :opX roles in :ARG1 are merged with
:ARG2. Otherwise, we convert the original :ARG2
role into :instrument or :location, and then split
:ARG1.

:ARG2 Directly placing amr-unknown on :ARG2
would not work most of the time. We empirically
found that, the graph-to-text generator is unable to
generate correct question if the amr-unknown con-
cept is placed directly on :ARG2 role. This limita-
tion may originate from AMR data that the model
was trained on, which does not contain questions on
:ARG2. Furthermore, in order to prepare question
data to finetune the generator, we used the text-to-
graph parser to parse questions in the R2VQ dataset
into question AMRs, from which we observed that
there was not any questions on :ARG2. Thus,
we proposed a solution that swaps :ARG1 and
:ARG2, turning :ARG2 into :ARG1, from which
we can generate questions about :ARG2 (now in
the form of :ARG1). However, there are two ma-
jor problems with swapping: 1) Whether the con-
cept of :ARG2 is a food item. If :ARG2 describes
a tool then swapping will invalidate the original
sentence. 2) Whether the concepts of :ARG1 and

:ARG2 are swappable - in other words, are they of
equivalent roles?. For example, the sentence “Mix
chicken with spices” and its transformed version
“Mix spices with chicken” are semantically equiva-
lent, but “Add spices to chicken” and “Add chicken
to spices” are not.

To address the first problem, we create a filter
to check if :ARG2 is a tool or not. We do so by
first gathering all :instrument concepts from the
YouCook2 dataset, and during QA generation, we
check if the concept of :ARG2 is an instrument
among the list, in that case we convert :ARG2 core
role to :instrument role and ask question on :in-
strument instead. To solve the second problem,
we devise a set of rules to determine if :ARG2
and :ARG1 are semantically equivalent. Firstly,
we check the verb if it implies moving direction
or not. Such verbs include “add”, “put”, “pour”,
etc.. Secondly, because :ARG2 typically follows
a preposition, we check if the preposition is di-
rectional, ie. it’s among “in”, “on”, “to”, “into”,
“over”. In such cases, we do not carry out swapping
and instead convert :ARG2 into :location, and ask
question about :location as usual.

One example is shown in Figure 4.

:time The procedure is shown in Algorithm 2.
Notably, in order to overcome the limitation of the
AMR-to-text generator, we first remove all non-
core roles from the AMR graph, except for :time.

Quantity (-quantity) concepts. This section ap-
plies to all quantity concepts, except temporal-
quantity which often appears in :duration role. The
procedure is shown in Algorithm 3. The key idea
is to search for the :quant role within the subgraph
of -quantity concept, and replace its concept (or

2516

Algorithm 1 Generate questions about :ARG1

1: procedure GENERATE_ARG1_ATTRIBUTE_QUESTION

2: ret = {}
3: for role in :ARG1 concept sub-roles do
4: if role = :mod then
5: if exist_role(:quant) then:
6: remove_role(:quant)
7: end if
8: ret.add(replace_amr_unknown(:mod))
9: else if role = :quant then

10: ret.add(replace_amr_unknown(:quant))
11: end if
12: end for
13: return ret
14: end procedure

1: procedure GENERATE_ARG1_QUESTIONS

2: ret = {}
3: ret.add(replace_amr_unknown(:ARG1))
4: if :ARG1 concept is single entity then
5: ret.add(generate_ARG1_attribute_question())
6: else if :ARG1 concept is compound then
7: Split entities in :ARG1
8: for each entity do
9: Set entity as concept of :ARG1, other entities form :ARG2

10: ret.add(replace_amr_unknown(:ARG1))
11: ret.add(generate_ARG1_attribute_question())
12: end for
13: end if
14: return ret
15: end procedure

- Original sentence:
We mix salt and chicken.
(m / mix-01

:ARG0 (w / we)
:ARG1 (s / salt)
:ARG2 (c / chicken))

- Directly replace concept of ARG2 with amr-unknown:
(m / mix-01

:ARG0 (w / we)
:ARG1 (s / salt)
:ARG2 (a / amr-unknown))

How much salt do we mix?
- Swap concepts of ARG1 and AGR2:
(m / mix-01

:ARG0 (w / we)
:ARG1 (a / amr-unknown)
:ARG2 (s / salt))

What do we mix with salt?

Figure 4: Example questions generated for the concept of :ARG2 role.

2517

Algorithm 2 Gennerate questions about :time

1: Remove all roles except :ARG1, :ARG2, :time
2: if concept of :time starts with “until” then
3: replace :time with :extent
4: return replace_amr_unknown(:extent)
5: else
6: return replace_amr_unknown(:time)
7: end if

rather, value) with amr-unknown. Note that, due
to limitations of the text generator, we are unable
to generate the correct question on “:quant” in a
large graph, hence before that, we must simplify
the graph.

Algorithm 3 Generate questions about quantity.
1: Remove all roles except :ARG1, :ARG2, :lo-

cation, and the role in question.
2: return replace_amr_unknown(:quant)

Other roles The other supported roles are: :du-
ration, :location, :instrument, :mod, :domain, :pur-
pose, :accompanier, :degree, :value and :quant.
Their questions are generated as described in Algo-
rithm 4. With a few exceptions, we can simply re-
place the concept of a target role with amr-unknown
to generate a question about that role.

Algorithm 4 Direct question generation for AMR
roles.

1: if role = :mod then
2: remove_role(:quant)
3: return replace_amr_unknown(:mod)
4: else if role = :quant then
5: Remove all roles except :ARG1, :ARG2,

:location, and the target role.
6: return replace_amr_unknown(:quant)
7: else
8: return replace_amr_unknown(role)
9: end if

F.3.2 Instruction-level questions
There are two types of questions to ask “how to do
something”:

• How do you [do something]?

• What do we do with [something]?

How do you [do something]? The procedure is
described in Algorithm 5. The goal is achieved by

adding the :manner role with amr-unknown con-
cept. To overcome the limitation of AMR-to-text
generation, we remove all non-core roles from the
AMR graph before generating the question.

Algorithm 5 “How” question generation
1: Remove all non-ARG roles and corresponding

concepts
2: return add_role(:manner, amr-unknown)

What do we do with [something]? We generate
questions for the whole set of original entities in
:ARGx, as well as every single entity. The proce-
dure is described in Algorithm 6, and is summa-
rized here:

• Grouping all :ARGx into :ARG2. This step
basically combines all food items into one
single compound defining “something”.

• Adding :ARG1 with amr-unknown concept, to
enable question generation.

• Replacing the current verb frame with “do-02”
frame.

Algorithm 6 “What do we do with [something]?”
question generation

1: ret = {}
2: Remove all non-ARG roles and corresponding

concepts
3: if :ARG2 exists then
4: merge all :ARGx into :ARG1
5: end if
6: replace_concept(graph_top, “do-02”)
7: Rename :ARG1 → :ARG2
8: //generate one question about the entire com-

pound in :ARG2
9: ret.add(add_role(:ARG1, amr-unknown)

10: //generate question about every single entity in
:ARG2

11: Split entities in :ARG2
12: for each entity do
13: Set entity as the sole concept of :ARG2 →

new_graph
14: ret.add(new_graph)
15: end for
16: return ret

Some examples are shown in Listing 3.

2518

Listing 3 Examples of generating “What do we do...?” questions.

1 - The original instruction:
2 "Fry the coated chicken wings in oil at 350 degrees for 3-5 mins."
3

4 - Original graph:
5 (f / fry-01
6 :mode imperative
7 :ARG0 (y / you)
8 :ARG1 (w / wing
9 :part-of (c / chicken)

10 :ARG1-of (c2 / coat-01))
11 :ARG2 (o / oil)
12 :location (t / temperature-quantity
13 :quant 350
14 :scale (c3 / celsius))
15 :duration (b / between
16 :op1 (t2 / temporal-quantity
17 :quant 3
18 :unit (m / minute))
19 :op2 (t3 / temporal-quantity
20 :quant 5
21 :unit (m2 / minute))))
22

23 - Simplifying the graph:
24 (f / fry-01
25 :mode imperative
26 :ARG0 (y / you)
27 :ARG1 (w / wing
28 :part-of (c / chicken)
29 :ARG1-of (c2 / coat-01))
30 :ARG2 (o / oil))
31

32 - Question on all food items:
33 (f / do-02
34 :ARG0 (y / you)
35 :ARG2 (a / amr-unknown
36 / and
37 :op1 (w / wing
38 :part-of (c / chicken)
39 :ARG1-of (c2 / coat-01))
40 :op2 (o / oil))
41 :ARG1 a)
42 What do you do with a coated chicken wing and oil?
43

44 - Question on single entity:
45 (f / do-02
46 :ARG0 (y / you)
47 :ARG2 (w / wing
48 :part-of (c / chicken)
49 :ARG1-of (c2 / coat-01))
50 :ARG1 (a / amr-unknown))
51 What do you do with a chicken's coated wings?
52 --------------------------------
53 (f / do-02
54 :ARG0 (y / you)
55 :ARG2 (o / oil)
56 :ARG1 (a / amr-unknown))
57 What do you do with oil?

2519

F.3.3 Polarity “yes/no” questions
The procedure is described in Algorithm 7. The
key idea is to add a new node to the original AMR,
with the concept of amr-unknown connected to the
main verb node with the :polarity role.

F.4 Temporal question generation

F.4.1 Instructions & action graph
Figure 5 shows an example of a cooking recipe and
its corresponding flow graph. As can be seen in
the flow graph, the dependencies among actions
and other cooking entities (e.g., ingredients and
intermediate food items) do not necessarily follow
the sequential order of the steps in the recipe.

F.4.2 Temporal question templates and
examples

Composition of mixture. We design 12 question
templates, listed below:

1. “What are the ingredients of the {mix-
ture_name}?”

2. “What are the ingredients to prepare the
{mixture_name}?”

3. “What are the ingredients required for the
{mixture_name}?”

4. “What are the ingredients required to prepare
the {mixture_name}?”

5. “What are the ingredients needed for the
{mixture_name}?”

6. “What are the ingredients needed to prepare
the {mixture_name}?”

7. “What is in the {mixture_name}?”

8. “What ingredients are in the {mix-
ture_name}?”

9. “What ingredients go into the {mix-
ture_name}?”

10. “What ingredients are for the {mix-
ture_name}?”

11. “What ingredients make the {mix-
ture_name}?”

12. “What do I need for the {mixture_name}?”
We only apply these question templates with a

named mixture, and ignore implicit mixtures and
pronouns (such as “it” and “them”). The procedure
is described in Algorithm 8. Some examples of
questions generated from the graph in Figure 5 are
shown in Listing 4.

Questions about preceding/next action. In this
task we employ two templates:

• “What do we do before Ai?”

• “What do we do after Ai?”.

The algorithm to generate “next” action is given
in Algorithm 9. Notice in this algorithm, we limit
Ak to those with k > i. Some examples are shown
in Listing 5 and 6. To generate “before” question,
we will find the previous action instead of the next
one in the flow graph.

Questions about the order of actions. We adopt
two templates:

• “Do we do A or do we do B first?”: using
AMR “or” composition frame.

• “Doing A and doing B, which is first?”: using
AMR “amr-choice” composition frame.

We also swap A & B, so for each pair of
{Ai, Aj} we can generate four questions. Full ex-
amples are shown in Listing 7.

2520

Algorithm 7 “Yes/No” question generation
1: remove_role(:mode)
2: add_role(:ARG0, choice({“I”,“we”,“you”}))
3: add_role(:polarity, amr-unknown)
4: sample_and_replace(role) for role in orginal_AMR # for “No” question

oil chopped onion

Add

pan

chopped carrots

turnipsCook

vegetables bowl

Add

Add

lamb

chopped thyme

cinnamon

Cover

Chop

potatoes

butter

salt

baking dish

mashed potatoes

grated cheddar cheese

it

oven

Mash

Spread

Bake

(oiled) pan

Put vegetables

pan

(Cooked lamb)

Add

flour chicken broth

tomato paste

(Cooked lamb +
vegetables) pan

potatoes

lamb

SpreadOn top

(Cooked lamb)

11.1 1.2 2

"Add oil and two chopped onions to a pan."
 "Cook chopped carrots and turnips in the pan."

 "Put the vegetables into a bowl."

"Add lamb to the pan."
 "Add chopped thyme and cinnamon."

"Chop the potatoes."
 "Mash potatoes with butter and salt."

"Spread the lamb into baking dish."

"Add vegetables, flour, chicken broth and tomato paste."
 "Cover the pan."

"Spread mashed potatoes on top with grated cheddar cheese."
 "Bake it in the oven."

Figure 5: An example of a cooking recipe (divided into subtasks, each containing several instructions), and the
corresponding flow graph (divided into subgraphs corresponding to each subtask). We can see that the recipe may
be followed in a different order than the sequential ordering of the steps in the written recipe.

2521

Algorithm 8 Generate questions about “mixture”.

1: procedure GET_INGR_OF_MIXTURE(graph, mixture)
2: prev_act_id = graph[mixture].prev_act_id
3: action = graph[prev_act_id]
4: ret = {}
5: for ingr ∈ action.input do
6: if action.input[ingr] < 0 then
7: ret.add(ingr)
8: else
9: others = get_ingr_of_mixture(graph, ingr)

10: if len(others) > 0 then
11: ret.add(others)
12: end if
13: end if
14: end for
15: return ret
16: end procedure

1: procedure GENERATE_MIXTURE_QUESTION(graph, templates)
2: ret = {}
3: for action ∈ graph.action_with_mixtures() do
4: for mixture ∈ action.mixtures() do
5: ingrs = get_ingr_of_mixture(graph,mixture)
6: answer = create_answer(ingrs)
7: for template ∈ templates do
8: question = create_question(template,mixture)
9: ret.add((question, answer))

10: end for
11: end for
12: end for
13: return ret
14: end procedure

2522

Listing 4 Examples of generating questions about a “mixture”.

1 The original instruction:
2 "Put the vegetables into a bowl."
3

4 Q: What is the ingredient in vegetable preparation? (type 2)
5 (ii / ingredient
6 :domain (a / amr-unknown)
7 :purpose (p / prepare-01
8 :ARG1 (v / vegetable)))
9

10 Q: What ingredients are required to prepare vegetables? (type 4)
11 (r / require-01
12 :ARG1 (ii / ingredient
13 :domain (a / amr-unknown))
14 :purpose (p / prepare-01
15 :ARG1 (v / vegetable)))
16

17

18 A: Chopped carrots and turnips.
19 (c / chop-01
20 :ARG1 (a / and
21 :op1 (c2 / carrot)
22 :op2 (t / turnip)))

Algorithm 9 Generate questions about the next action.

1: procedure GENERATE_NEXT_ACTION_QUESTION(graph, templates)
2: ret = {}
3: for action ∈ graph.actions() do
4: next_actions = {}
5: if action.next_action ̸= NULL then
6: next_actions.add(action.next_action)
7: other_actions = find_prev_actions(graph, action.next_action)
8: for a ∈ otheractions do
9: if a.id > action.id then

10: next_actions.add(a)
11: end if
12: end for
13: end if
14: if len(next_actions) > 0 then
15: questions = create_question(templates, action)
16: for a ∈ next_actions do
17: answer = get_action(graph, a)
18: for question ∈ questions do
19: ret.add((question, answer))
20: end for
21: end for
22: end if
23: end for
24: return ret
25: end procedure

2523

Listing 5 Examples of generating questions about the next action (from recipe in Fig. 5 above).

1 The instruction in focus (#7):
2 "Chop the potatoes."
3

4 Q: What will we do next?
5 (d / do-02
6 :ARG0 (w / we)
7 :ARG1 (a / amr-unknown)
8 :time (n / next))
9

10 Q: What do we do after chopping potatoes?
11 (d / do-02
12 :ARG0 (w / we)
13 :ARG1 (a / amr-unknown)
14 :time (a2 / after
15 :op1 (c / chop-01
16 :ARG1 (p / potato))))
17

18 A: Mash potatoes with butter and salt.
19 (m / mash-01
20 :mode imperative
21 :ARG0 (y8 / you)
22 :ARG1 (p8 / potato)
23 :accompanier (a10 / and
24 :op1 (b4 / butter)
25 :op2 (s / salt)))

Listing 6 Examples of generating questions about preceding action (from recipe in Fig. 5 above).

1 The instruction in focus (#10):
2 "Spread mashed potatoes on top with grated cheddar cheese."
3

4 Q: What do we do before spreading mash potatoes on top with grated cheddar
cheese?↪→

5 (d / do-02
6 :ARG0 (w / we)
7 :ARG1 (a / amr-unknown)
8 :time (b / before
9 :op1 (s / spread-01

10 :ARG1 (p / potato
11 :ARG1-of (m / mash-01))
12 :ARG2 (t / top)
13 :accompanier (c / cheese
14 :mod c
15 :mod (c2 / cheddar))
16 :ARG1-of (g / grate-02))))
17

18 A: Mash potatoes with butter and salt.

2524

Listing 7 Examples of generating “which is first” questions.

1 Instruction #0: Add oil and two chopped onions to a pan.
2 Instruction #1: Cook chopped carrots and turnips in the pan.
3

4 Question 1: "First, do we add oil and 2 chopped onions to the pan,
5 or do we cook the chopped carrots and turnips in the pan?"
6 (o3 / or
7 :op1 (a / add-02
8 :ARG0 (w / we)
9 :ARG1 (a2 / and

10 :op1 (o / oil)
11 :op2 (o2 / onion
12 :quant 2
13 :ARG1-of (c / chop-01)))
14 :ARG2 (p / pan))
15 :op2 (c4 / cook-01
16 :ARG1 (a3 / and
17 :op1 (c2 / carrot
18 :ARG1-of (c3 / chop-03))
19 :op2 (t / turnip))
20 :location (p2 / pan)
21 :ARG0 w)
22 :polarity (a4 / amr-unknown)
23 :ord (o4 / ordinal-entity
24 :value 1))
25

26 Question 2: "First, add oil and 2 chopped onions to the pan,
27 or cook the chopped carrots and turnip in the pan?"
28 (a / amr-choice
29 :op1 (a3 / add-02
30 :ARG1 (a2 / and
31 :op1 (o / oil)
32 :op2 (o2 / onion
33 :quant 2
34 :ARG1-of (c / chop-01)))
35 :ARG2 (p / pan))
36 :op2 (c4 / cook-01
37 :ARG1 (a4 / and
38 :op1 (c2 / carrot
39 :ARG1-of (c3 / chop-03))
40 :op2 (t / turnip))
41 :location (p2 / pan))
42 :ord (o3 / ordinal-entity
43 :value 1))
44

45 Answer: "First, add oil and 2 chopped onions to the pan."
46 (a3 / add-02
47 :ARG1 (a2 / and
48 :op1 (o / oil)
49 :op2 (o2 / onion
50 :quant 2
51 :ARG1-of (c / chop-01)))
52 :ARG2 (p / pan)
53 :ord (o3 / ordinal-entity
54 :value 1))

2525

