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Abstract

Despite the impressive advancements achieved
through vision-and-language pretraining, it
remains unclear whether this joint learning
paradigm can help understand each individual
modality. In this work, we conduct a compara-
tive analysis of the visual representations in ex-
isting vision-and-language models and vision-
only models by probing a broad range of tasks,
aiming to assess the quality of the learned rep-
resentations in a nuanced manner. Interestingly,
our empirical observations suggest that vision-
and-language models are better at label predic-
tion tasks like object and attribute prediction,
while vision-only models are stronger at dense
prediction tasks that require more localized in-
formation. We hope our study sheds light on
the role of language in visual learning, and
serves as an empirical guide for various pre-
trained models. Code will be released at https:
//github.com/Lizw14/visual_probing.

1 Introduction

The joint learning of vision and language offers
mutual benefits. As evident by the recent advance-
ments in vision-and-language pretraining (VLP)
models (Radford et al., 2021; Jia et al., 2021; Wang
et al., 2022; Singh et al., 2022), they attain not only
impressive performance on multi-modal tasks like
visual question answering, but also on specialized
uni-modal vision tasks like ImageNet classifica-
tion (Deng et al., 2009), or language tasks GLUE
language understanding (Wang et al., 2019).

Despite the superior performance, there is lit-
tle understanding of how multimodal learning can
help visual representations. Therefore, we hereby
are motivated to compare the visual representations
in existing vision-and-language (VL) models and
vision-only (V) models from a probing perspective.
Specifically, we probe the visual representations
through a range of probing tasks that evaluate dif-
ferent properties, including semantics knowledge

and localized information, in order to gain a fine-
grained understanding of the visual representations.
This is inspired by recent works on multimodal
feature probing (Ilharco et al., 2021; Zhang et al.,
2022), which studies the opposite question to ours,
i.e., the role of vision in language models.

Fig. 1 illustrates our probing pipeline. We first
extract image features using different pretrained
models, and then train a simple prediction head
to align the model’s representation space with the
label space of interest. We make the head as sim-
ple as possible based on the intuition that less
expressive heads can more selectively reflect the
quality of the representations (Hewitt and Liang,
2019). The probing is done on various tasks and
datasets: object name classification on the Visual
Genome dataset (Krishna et al., 2017), attribute
prediction on the VAW dataset (Pham et al., 2021),
object detection and instance segmentation on the
MSCOCO dataset (Lin et al., 2014), and seman-
tic object part segmentation on the PartImageNet
dataset (He et al., 2022a). With these probing tasks,
we compare vision-and-language pretrained mod-
els including OFA (Wang et al., 2022), FLAVA
(Singh et al., 2022) and CLIP (Radford et al., 2021)
with advanced vision-only models including MAE
(He et al., 2022b) and MOCOv3 (Chen et al., 2021).

Interestingly, our experiments suggest that VL
models are much better at the label prediction tasks
(e.g., object class and attribute prediction), while
vision-only models are stronger at dense predic-
tion tasks like object detection and segmentation.
In other words, multimodal models encode more
semantic information in visual representations to
better predict fine-grained labels, but fail to en-
rich the localization information that is required by
spatial-aware tasks. This finding is further verified
by a more detailed analysis of the segmentation
and attribute prediction results, which reveals in-
triguing properties of the unimodal and multimodal
representations.
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Figure 1: We compare the visual representations from unimodal and multimodal models on five tasks, in order to
probe the semantics and localization knowledge encoded in the representations.

In summary, we probe the visual representations
in popular VL and vision-only pretrained models
on a broad spectrum of tasks and suggest that multi-
modal representations encode better semantics. We
hope our extensive probing results can serve as a
fine-grained benchmark for the publicly released
pretrained models, which provides an empirical
guide to help researchers choose which model to
use for different downstream tasks. Moreover, by
offering these insights into the role of language in
multi-modal learning, we hope to catalyze future
explorations in this direction.

2 Related work

Vision-and-language pretraining (VLP). VLP
methods perform well on multi-modal downstream
tasks like visual question answering (Antol et al.,
2015) and image captioning (Vinyals et al., 2015)
and show potential on single-modal tasks. For ex-
ample, dual encoders trained with a contrastive
loss like CLIP (Radford et al., 2021) and ALIGN
(Jia et al., 2021) achieve superior visual learning
performance. While earlier VLP methods (like
LXMERT (Tan and Bansal, 2019), UNITER (Chen
et al., 2020), OSCAR (Li et al., 2020b), VinVL
(Zhang et al., 2021) ) rely on image features ex-
tracted by separately trained vision models like
Faster-RCNN (He et al., 2017) or Resnet (He et al.,
2016), more recent works learn the visual features
jointly with language. Representative works in-
clude OFA (Wang et al., 2022), Florence (Yuan
et al., 2021), FLAVA (Singh et al., 2022), Unified-

IO (Lu et al., 2022), CoCa (Yu et al., 2022), and
SimVLM (Wang et al., 2021) etc. We refer readers
to (Gan et al., 2022) for more details.

Vision and language benefit each other. Several
recent works in NLP suggest that multimodal learn-
ing can help language understanding. Vokenization
(Tan and Bansal, 2020) suggests vision improves
the grounding ability of language models. Gordon
and Van Durme (2013) shows reduced reporting
bias in multimodal world. Z-LaVI (Yang et al.,
2022) and VIDLANKD (Tang et al., 2021) show
language understanding performance can be im-
proved by better visual imagination or knowledge
distillation from videos. Recent work (Zhang et al.,
2022) analyzes language and multi-modal models
and shows that vision can help language models
learn better commonsense knowledge and mitigate
reporting bias. However, there is little understand-
ing of the opposite question, i.e. how does the vi-
sual learning differ in multimodal and unimodal
models.

Probing. Probing is a widely used strategy in NLP
for interpreting representations (Shi et al., 2016;
Belinkov and Glass, 2019). Various works use
probing to show that language representations en-
code a broad range of properties like part-of-speech
(Belinkov et al., 2017), syntax (Hewitt and Man-
ning, 2019), semantics (Li et al., 2021), sentence
length (Adi et al., 2017), etc., and to compare dif-
ferent language models in those properties (Tenney
et al., 2019). Probing has also been adopted to un-
derstand multimodal representations in terms of the
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capacity for instance retrieval (Ilharco et al., 2021),
inter-modality knowledge (Salin et al., 2022), un-
derstanding of verbs (Lindström et al., 2020), entity
and syntactic grounding (Li et al., 2020a), and vi-
sual commonsense knowledge (Zhang et al., 2022),
etc. With probing, multi-modal VL models are
compared with uni-modal language models to as-
sess the advantage of multi-modal learning. How-
ever, probing has not been widely explored for
visual representations, despite as a fast on-the-fly
metric for model evaluation (Dosovitskiy et al.,
2020; He et al., 2022b; Chen et al., 2021) comple-
mentary to fine-tuning. To our knowledge, we are
the first to compare VL models and vision-only
models using probing.

3 Method

To analyze the capacity of the learned representa-
tions of different models, we choose a set of tasks
to probe the models. For each task, we first extract
features using the pretrained models, then we train
a simple standard head to predict the results. Mathe-
matically, for every image I ∈ R3×w×h, we extract
its features f ∈ RC×W×H using the off-the-shelf
visual encoders in the pretrained models. Here
(w, h) is the size of the input image and (C,W,H)
is the size of the feature. Then a prediction head P
is trained to predict the task-specific results based
on feature f . In the whole process, only the head P
is trained while the pretrained model (i.e., feature
extractor) is frozen.

In this section, we will first describe the probing
tasks, datasets and the prediction head for each task
(Sec. 3.1), then we describe the evaluated models
(Sec. 3.2), and finally how to make the comparison
settings fair for every model (Sec. 3.3).

3.1 Probing tasks and datasets

We choose five probing tasks: object name predic-
tion, attribute prediction, object detection, instance
segmentation and semantic segmentation for ob-
ject parts. Among the five tasks, object name and
attribute prediction focus more on predicting the se-
mantic labels, while the others are dense prediction
tasks that highly rely on spatial information.

Object name prediction. Understanding object
names is critical in various multi-modal down-
stream tasks like VQA and image captioning, in
which text descriptions refer to objects by their
names. Given an image and a bounding box, object
name prediction requires predicting the name of

the object in the box. We use the Visual Genome
dataset (Krishna et al., 2017) for training and evalu-
ation in this task. Images in Visual Genome mostly
come from MSCOCO (Lin et al., 2014) and con-
tain multiple objects. For each object, the annota-
tions provide its bounding box, name and attributes
(color, material, etc.). The annotations cover 151
object classes for 1.3M objects in 108k images.

A simple linear classifier is used to predict object
names. More specifically, for each object, we first
use ROI-Pooling (Ren et al., 2015) to average pool
the features according to its box, then use a linear
layer on top of the pooled features to predict the
name class of the object. Cross entropy loss is
used to train the head. Note that the ground-truth
bounding box coordinates are provided to the head
for both training and testing.

Object attribute prediction. Similar to object
name prediction, attribute prediction requires pre-
dicting attributes for the object in the given bound-
ing box. As shown in (Zhang et al., 2021), visual
features with better-encoded attribute information
can substantially improve the performance of multi-
modal tasks. This motivates us to treat the attribute
as an important axis for evaluating visual repre-
sentation. The VAW dataset (Pham et al., 2021)
is used for object attribute prediction. VAW im-
proves the noisy attribute annotations in Visual
Genome. VAW annotates 620 attributes belong-
ing to 8 categories, including color, shape, size,
material, texture, action, state, and others. Every
attribute is annotated as positive, negative, or un-
known for each instance. The annotation covers
260k instances from 72k images, which is a subset
of Visual Genome images. Mean average precision
(mAP) is used to evaluate the prediction results
following (Pham et al., 2021).

Since attribute prediction is formulated as a
multi-label classification problem, the prediction
head is similar to object name prediction, but has
several differences. First, binary cross entropy loss
is used for training instead of cross entropy. Sec-
ond, since the attributes naturally come with a long-
tailed distribution, to prevent the rare attributes
(e.g., playing) from being overriden by the fre-
quent ones (e.g., black), we assign higher weights
to rare attributes and lower weights to frequent ones.
Third, for the attributes labeled as unknown, we
treat them as negative labels with a small (0.001)
weight. Those strategies are borrowed from (Pham
et al., 2021).
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Task Dataset # of classes Metric Prediction head

object name prediction Visual Genome (Krishna et al., 2017) 151 accuracy linear classifier on ROI features
attribute prediction VAW (Pham et al., 2021) 620 mAP linear classifier on ROI features
part semantic segmentation PartImageNet (He et al., 2022a) 40 mIOU head from Segmenter (Strudel et al., 2021)
object detection MSCOCO (Lin et al., 2014) 80 mAP head from VitDet (Li et al., 2022)
instance segmentation MSCOCO (Lin et al., 2014) 80 mAP head from VitDet (Li et al., 2022)

Table 1: The details of {dataset, number of classes, metric, prediction head} for the five probing tasks.

Object detection and instance segmentation.
While object name/attribute prediction tests the
ability to predict class labels when the object
bounding box is given, we are also interested in
tasks that focus more on locating the objects. We
choose object detection and instance segmentation
on MSCOCO (Lin et al., 2014) for this purpose.
MSCOCO contains 330K images with 1.5 million
object instances in 80 categories. The bounding
box and segmentation mask are annotated for each
instance. mAP, i.e., mean of average precision for
each category, is adopted as the evaluation metric.

Because detection and segmentation cannot be
completed using a simple head like a linear layer,
we adopt the prediction head in VitDet (Li et al.,
2022) as our probing head. While the widely used
Mask-RCNN is based on convolutional neural net-
work (CNN) features, Li et al. (2022) propose a
variant that is more suitable for non-hierarchical
transformer features. Considering the fact that most
of our evaluated models are transformer-based, we
adopt this VitDet head for probing in our work. Un-
less specified, all the experiment settings are kept
the same as Li et al. (2022).

Part semantic segmentation. While image classi-
fication accuracy on ImageNet dataset (Deng et al.,
2009) is the most commonly used metric for eval-
uating visual representations, the recent PartIma-
geNet dataset (He et al., 2022a) provides additional
annotations for the ImageNet images, thus enables
finer-grained evaluation. PartImageNet annotates
segmentation masks of 40 object parts (e.g., head,
body, tail) for 11 categories of objects on 24k im-
ages. Using this dataset, we perform semantic seg-
mentation of object parts as an additional probing
task that requires localization information.

For the segmentation head, we use the mask
transformer decoder in Segmenter (Strudel et al.,
2021) due to its simplicity and impressive perfor-
mance on standard datasets. Strudel et al. (2021)
adapts transformers for semantic segmentation with
the proposed “mask transformer decoder” on top
of the embeddings produced by the transformer en-

coder (standard ViT). In our probing, we replace
their transformer encoder with the pretrained mod-
els to be evaluated and train the mask transformer
decoder to output the semantic segmentation map.
Because our goal is to fairly compare different mod-
els instead of achieving high performance, we re-
duce the input image size (from 1024 × 1024 to
224 × 224). A linear layer is used to match the
feature’s dimensions and bilinear upsampling is
used to match feature’s spatial sizes. All the other
training settings are kept the same.

3.2 Evaluated models

We evaluate five models: three representative VL
models including CLIP, OFA and FLAVA, and two
vision-only models including MAE and MOCOv3.
Among the five models, CLIP and MOCOv3 are
trained using contrastive loss, while the others are
trained with sequence modeling losses. We choose
these models because they are representative and
highly popular, and their pretrained weights and
code are publicly available. In the following, we
describe the models, especially their visual compo-
nents, and how we extract features from them.

CLIP (Radford et al., 2021). CLIP is a dual en-
coder model trained with contrastive loss using
400M image-text pairs. The image embeddings
produced by the image encoder, which can be ei-
ther a ResNet or a transformer, and the text em-
beddings produced by the text encoder are trained
to be closer with each other in the embedding
space when the image and text pair matches. The
learned image embeddings are shown to have su-
perior transferability on various downstream tasks.
In our study, image features are extracted using the
pretrained image encoder.

OFA (Wang et al., 2022). OFA is a unified model
that targets both uni-modal and multi-modal tasks.
The vision tasks (image classification and object
detection), language tasks, and multi-modal tasks
(VQA, region/image captioning, visual grounding)
are all formulated into a sequence-to-sequence gen-
eration problem. In particular, special visual tokens
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from discrete-VAE (Van Den Oord et al., 2017;
Esser et al., 2021) are used for image infilling and
the object bounding box coordinates are also dis-
cretized into special tokens. The OFA model first
uses a ResNet (Res101 for OFAbase) to encode im-
ages, then use the transformer encoder and decoder
to generate the target sequence from image and text
features. Cross entropy loss is used as supervision.
OFA is pretrained using 20M image-text pairs with
additional uni-modal data. To obtain visual repre-
sentations, we feed the model with only the image
(i.e., empty text), send it through the ResNet, and
take the output of the transformer encoder.

FLAVA (Singh et al., 2022). FLAVA is a fully
transformer-based unified model. Similar to OFA,
the model solves both uni-modal and multi-modal
tasks. However, the differences lie in (a) tasks,
(b) model architecture, and (c) training loss. (a)
FLAVA does not have bounding boxes in the vocab-
ulary, and thus does not support box-related tasks
like object detection, visual grounding or region
captioning. (b) FLAVA is fully based on transform-
ers; it uses two separate transformer encoders to
encode images and texts, then uses several more
transformer layers for multi-modal fusion. (c)
FLAVA takes multiple losses including CLIP-like
contrastive loss, masked image/text/multi-modal
modeling losses, and image-text matching loss.
FLAVA is pretrained on 70M image and text pairs.
We take the output of the visual transformer en-
coder as image representations.

MAE (He et al., 2022b). Masked Auto-Encoder
(MAE) is a self-supervised vision model trained
with a masked image modeling task. MAE en-
codes masked image patches with a transformer
encoder and reconstructs the missing pixels with
a lightweight decoder trained with MSE loss. Un-
like OFA and FLAVA, the reconstruction for MAE
happens in the continuous pixel space, which does
not require dVAE to generate discretized image
tokens. MAE is trained only with ImageNet-1k
data and shows promising transfer performance to
downstream tasks.

MOCOv3 (Chen et al., 2021). We choose MO-
COv3 to represent self-supervised vision transform-
ers trained with contrastive loss. During training,
two crops for each image under random data aug-
mentation are encoded by two encoders, a key en-
coder and a query encoder, into two vectors named
“key” and “query” respectively. During training,
the goal is to retrieve the corresponding “key” by

the “query”. Similar to MAE, MOCOv3 is trained
using ImageNet-1k.

3.3 Comparison settings

To make the comparison fair, we carefully choose
the model size and input size, and ensure differ-
ent methods are comparable. As probing tasks are
highly sensitive to image size and feature’s spatial
size, for all the models on all the tasks, we fix the
input image resolution to be 224*224. We choose
this size because 224*224 is the input size for pre-
training for all the models except OFA (OFA is
pretrained with size 384 for base version and 480
for large). For dense tasks, although the original de-
tection and segmentation models (i.e., VitDet and
Segmenter) use larger input image sizes for bet-
ter performance, we unify the input size because
our goal is to fairly compare models, rather than
achieving the best performance.

We find the probing results sensitive to the
models’ input patch size, because different patch
sizes produces features with different spatial sizes.1

Therefore, considering the availability of pretrained
checkpoints with different model sizes and input
patch sizes, we try our best to align the feature
size and evaluate with the ViT-B/16 backbone by
default. Because OFA is not purely transformer-
based, we evaluate on the base size, which has a
ResNet + transformer encoder with 120M parame-
ters (comparable to the 86M ViT-B/16). More de-
tails of the evaluated models are shown in Tab. 8.

4 Experiments

4.1 Implementation details

For object name and attribute prediction, the mod-
els are trained with a learning rate of 0.001 and
batch size of 64 for 200 epochs. We adopt early
stopping based on validation performance, then re-
port performance on the test split using the best
model. For object detection and segmentation on
the COCO dataset, the model is trained for 120k
iterations with batch size 20. The learning rate is
first set to 8e-5, then decay twice at step 100k and
115k with a factor of 0.1. For part segmentation,
we train the model with a learning rate of 0.01 and
batch size of 128 for 200 epochs. The validation
performance for the final checkpoint is reported.
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Task VG Obj. VAW Attr. COCO Det. COCO Seg. Part Seg. IN1k ft. IN1k probe

V+L
OFA 57.13 61.67 25.04 19.38 33.11 82.2 -
FLAVA 54.29 61.51 21.06 17.20 34.77 - 75.5
CLIP 51.54 61.15 19.55 15.56 40.61 - 80.2

V MAE 49.52 52.59 25.29 22.05 42.30 83.6 68.0
MOCOv3 47.81 54.44 20.31 16.96 40.11 83.2 76.7

Table 2: Probing results on five tasks. VL models perform better on label prediction tasks, while vision-only models
perform better on dense prediction tasks. Finetuning and linear probing results on ImageNet for each model (cited
from original papers) are also shown for reference. The best and the second best scores are in bold and underlined.

MSCOCO PartImageNet
mAP Semantic Localization mIOU Semantic Localization

V+L
OFA 19.38 60.02 17.41 33.11 71.71 84.15
FLAVA 17.20 61.48 14.67 34.77 75.28 83.76
CLIP 15.56 68.24 13.25 40.61 80.21 86.80

V MAE 22.05 46.85 20.69 42.30 75.03 89.50
MOCOv3 16.96 49.80 15.08 40.11 76.18 86.08

Table 3: Detailed analysis of instance segmentation and part segmentation results. We evaluate the segmentation
results (standard metric mAP, mIOU) from two additional perspectives: semantics (F1 score for semantic class
prediction) and localization (mAP/mIOU for foreground/background segmentation). While V models are better on
the standard metrics, VL models are better when evaluated with semantics metrics.

4.2 Probing results

We probe the five models on each of the five prob-
ing tasks. We make sure that the experiment set-
tings, including model size, input size, training
protocol and data splits, are well aligned for every
model in order to make fair comparisons. The prob-
ing results are shown in Tab. 2. We also include the
ImageNet finetuning accuracy and linear probing
accuracy of each model for reference, because they
are widely-used metrics for model evaluation. On
each task, we compare the VL models and V mod-
els. Note that the evaluation metric for each task
is different (as in Tab. 1), performance on different
tasks cannot be compared and we only compare
numbers in each column separately.

For object name prediction and attribute predic-
tion, VL models consistently perform better than
V models. For object name prediction on Visual
Genome, VL models all achieve more than 51%
accuracy while V models get accuracy less than
50%; for attribute prediction on VAW, mAP for VL
models are higher than 61% while lower than 55%
for V models. This suggests that representations
from VL models capture richer semantic informa-
tion about the objects in each image, which can be

1E.g. for input images of 224*224, ViT-B/16 produces
visual representations with size 768*14*14, while ViT-B/14
gives feature size 768*16*16, which will affect probing.

decoded using a simple linear layer. In contrast, in
V models the name and attribute information are
not explicit enough.

For the dense prediction tasks, MAE performs
the best on all three tasks. For part semantic seg-
mentation on PartImageNet, MOCOv3 and CLIP
also get decent performance (> 40%) that is close
to MAE (42%), while the other two VL models are
lower by a large margin (< 35%). For object de-
tection on MSCOCO, OFA gets close mAP (25.0)
to MAE (25.3) while the performance of the other
three models are much lower; however, when it
comes to instance segmentation, the advantage of
MAE is more clear, surpassing all the other models
with a margin larger than 2.7%.

Interestingly, comparing the object detection and
instance segmentation results on COCO, we find
that the performance drops of V models are consis-
tently smaller than VL models, which indicates that
V models learn better localized representations.2

For example, for OFA, the mAP for segmentation
is 5.7% (25.04-19.38) lower than that for detection;
while the drop MAE and MOCOv3 are smaller

2Both the metrics and the datasets are the same for in-
stance segmentation and detection, thus the results can be
compared. The only difference between mAP for detection
and instance segmentation is that when calculating overlaps
between predictions and ground truths, one uses the pixel-wise
IOU (intersection-over-union) rather than bounding box IOU.
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(3.2%, 3.3%). Because segmentation requires more
localized features than detection to find the bound-
ary of objects, the performance gap between de-
tection and segmentation can be an indicator of
the localized information in the representations,
considering those two tasks are based on the same
dataset. With the more-localized representations,
the model can better predict the mask boundary.
Therefore, the smaller gap of vision-only models
suggests they learn more localized representations.

To further verify this finding, we next take a
closer look into segmentation results, which more
clearly compare the semantics and localization in-
formation in different models.

A closer look at the segmentation results. We
evaluate the instance segmentation results on
COCO and semantic segmentation results on Par-
tImageNet using two more metrics: (a) the la-
bel prediction metric, and (b) the foreground-
background segmentation metric, where (a) is an
indicator for semantics and (b) for localization. The
motivation is that the segmentation metrics (mAP
for instance segmentation, mIOU for semantic seg-
mentation) require correctly predicting both the
class label and the boundary, so the quality of both
determines the score. Therefore, we propose two
additional metrics to measure the two factors sep-
arately. For (a), for each image, we transform its
predicted segmentation map into label predictions,
and evaluate the quality using the multi-label pre-
diction metric. In particular, we treat the appeared
classes in the segmentation map as positive labels
and the others as negative; then the label predic-
tions are evaluated using the F1 score. F1 score
is defined as 2∗precision∗recall

precision+recall , where precision and
recall are averaged over label classes. For (b), we
merge all the different object categories and pro-
cess the segmentation map into binary labels, i.e.,
foreground and background, then report the mIOU
(for instance segmentation) or mAP (for semantic
segmentation) of the binary segmentation maps.

Tab. 3 shows the segmentation results on COCO
and PartImageNet evaluated using the above two
metrics. Although MAE achieves the best perfor-
mance on both datasets, when looking at the seman-
tic and localization results, we find that its advan-
tage mainly comes from better localization, rather
than semantics. In terms of semantics, VL mod-
els perform much better than MAE. For example,
on the MSCOCO dataset, VL models achieve F1
scores higher than 60, while MAE and MOCOv3

are lower than 50. The results suggest that while
MAE is better at finding the object boundaries
when predicting segmentation masks, VL models
are better at predicting labels for the objects.

In Fig. 2, we show several examples of the part
segmentation results on PartImageNet. In the ex-
amples, MAE captures the object’s shape more
accurately, like the curly snake body, the shark’s
small fin, and the quadruped contour. However,
MAE and MOCOv3 make more mistakes in la-
beling the regions compared to VL models. For
example, MAE wrongly predicts the shark fin as
a reptile foot, and the quadruped as a reptile; MO-
COv3 confuses the quadruped head and foot as the
fish head and fins. Those examples more explicitly
compare the semantics and localization knowledge
learned by VL and V models.

Analysis on different attribute groups. We fur-
ther decompose the attribute prediction results into
different attribute groups. In the VAW dataset, at-
tributes are categorized into 8 groups: action, tex-
ture, shape, size, color, material, state, and others.
The results are shown in Fig. 3. Interestingly, de-
spite the overall better results of VL models, we
find that their advantages differ in different groups.
For example, the gap between VL and V models in
the “action” category is more significant than in the
“texture” category. Intuitively, “action” is less visu-
ally grounded then “texture” requires more context
and semantic information, on which VL models is
better at, suggesting that while vision-only ones are
better at predicting highly visually grounded local
attributes (e.g., texture), VL models are better at
more abstract ones.

4.3 More analysis

Findings of contrastive training. The results
also show that contrastive models perform rela-
tively better on localization for single-object im-
ages than multi-object images. Among the five
tasks, part segmentation on PartImageNet dataset
are based on single-object images from ImageNet,
while the other four tasks are based on COCO-style
multi-object images. In Tab. 3, comparing the con-
trastively trained models (CLIP, MOCOv3) and
the models trained with sequence modeling objec-
tives (OFA, FLAVA, MAE), we find that contrastive
models perform relatively better on PartImageNet
than MSCOCO. For example, on PartImageNet,
CLIP outperforms the other two VL models (i.e.,
OFA and FLAVA) by a large margin (more than
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Ground-truth OFA FLAVA CLIP MAE MOCOv3
vision-and-language vision-only

Figure 2: Compared to vision-and-language models, vision-only models more accurately predict the boundary of
segmentation masks, but make mistakes in labeling the regions.
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Figure 3: A closer look at the attribute prediction results
by separately evaluating different types of attributes.
The advantage of VL models is more significant in
the more abstract categories (e.g., action) than visu-
ally grounded categories (e.g., texture).

6% mIOU); on MSCOCO, it under-performs them.
The semantic and localization evaluation suggests
that this difference is mainly caused by localiza-
tion, e.g., the localization results of CLIP is much
better than OFA and FLAVA on PartImageNet. A
similar observation can be obtained by comparing
MOCOv3 and MAE: although MOCOv3 under-
performs MAE on both datasets, the gap is much
smaller on PartImageNet than MSCOCO (2.2 vs.
5.1). Therefore, we suggest that the localization
ability of contrastive models is relatively stronger
on single-object images.

The effect of model size. To study the effect of
model size, in Tab. 4, we show the probing results
with size base and large for MAE and OFA. For
MAE, a larger model size improves performance
on all the probing tasks in parallel for 1% to 2%.
However, note that this improvement is less signif-
icant compared to the big gaps between different

model types. For OFA, except for the marginal im-
provement in attribute prediction, the larger model
size hurts probing results on the other four tasks.
The reason for the decrease is that the OFAlarge is
pretrained with a larger input image size (480*480)
compared with OFAbase model (384*384). Be-
cause we probe all models with the same image
size (224*224) for a fair comparison, the gap in im-
age size between pretraining and probing is more
significant for OFAlarge. In summary, the effect of
model size is less considerable than other factors
like model type or input image size.

obj. attr. det. seg. p-seg.

MAEbase 49.52 52.59 25.29 22.05 42.30
MAElarge 51.91 53.38 29.67 25.63 44.85

OFAbase 57.13 61.67 25.04 19.38 33.11
OFAlarge 52.33 62.01 21.23 16.51 32.04

Table 4: The influence of model size is less considerable
than other factors like model type.

The effect of downstream finetuning. Tab. 5 com-
pares probing results of models with and without
finetuning on downstream tasks. For MAE, the re-
sults are based on the base size; for OFA, the results
are on large size, due to the availability of publicly
released model checkpoints. For both models, fine-
tuning on image classification on ImageNet-1k and
VQA on VQAv2 hurts the probing performance
to varying degrees (except for attribute prediction).
This indicates that while in pretraining, the model
learns features that capture various fine-grained
information about the image, during finetuning to-
wards a specific task, only information useful for
the task is kept and other information is dropped.
Moreover, compared with ImageNet finetuning,
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finetuning on VQA leads to a much smaller per-
formance decrease in probing results, suggesting
that the change in probing results depends on the
nature of downstream tasks. In this case, VQA
requires more fine-grained information about ob-
jects, attributes, etc., resulting in a smaller drop
than ImageNet finetuning.

obj. attr. det. seg. p-seg.

MAE 49.52 52.59 25.29 22.05 42.30
MAEIN1k 45.16 53.82 21.41 17.74 35.62

OFA 52.33 62.01 21.23 16.51 32.04
OFAIN1k 50.54 60.74 18.91 14.67 27.56
OFAV QA 51.42 63.40 19.01 14.22 28.34

Table 5: Probing results of models finetuned on down-
stream tasks. Finetuning hurts the probing performance
in most cases.

5 Conclusion

This work compares the visual representations in
multimodal and unimodal models by feature prob-
ing. By comparing three representative VL models
and two V models on five probing tasks, we find
that VL models are stronger in label prediction
tasks, while vision-only models are better in dense
prediction tasks. We hope our diagnostic findings
serve as an empirical guidance for future works in
choosing models for different downstream tasks,
as well as exploring the role of language in visual
representation learning.

6 Limitations

This study is limited by the coverage of pretrained
models. We only evaluate models which have pub-
licly accessible checkpoints, and which can be
aligned in terms of model sizes, patch sizes, etc.
Because we do not have enough computational re-
sources to retrain the models, our comparisons are
restricted by the released ones. In addition, we
are aware that the evaluated models are not well-
aligned on many aspects, like the training data,
model architecture, training objectives and hyper-
parameters, etc. However, aligning those compo-
nents requires significant amount of GPU resources
and training effort. With the limitations, we evalu-
ated the released model checkpoints and hope our
results can serve as empirical analysis for future
researchers.
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A Appendix

Tab. 6 shows the standard deviations when repeat-
ing experiments for 3 times, which shows the sig-
nificance of the probing results. Tab. 7 shows the
numerical numbers for Fig. 3. Tab. 8 compares
the details of the evaluated models, in terms of the
feature sizes, model architectures, training data and
objectives.

COCO det COCO seg

OFA 25.06 ± 0.02 19.37 ± 0.01
MAE 25.30 ± 0.02 22.03 ± 0.05

Table 6: Standard deviations for 3 repeated experiment
runs.
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all color material shape size action state texture other

V+L
OFA 61.67 47.10 59.85 59.13 60.27 63.35 59.18 52.73 66.88
FLAVA 61.51 50.94 60.71 59.42 59.61 60.39 57.05 54.69 66.10
CLIP 61.15 44.93 63.04 57.17 57.88 59.71 57.60 55.34 66.96

V MAE 52.59 41.77 46.80 53.07 53.60 45.55 52.27 50.31 57.77
MOCOv3 54.44 41.47 53.08 53.85 57.93 47.25 55.02 52.91 59.32

Table 7: Detailed attributes prediction results corresponding to Fig. 3.

OFA FLAVA CLIP MAE MOCOv3

Feature size 768*14*14 768*14*14 768*14*14 768*14*14 768*14*14
Architecture ResNet blocks

+ transformer encoder
+ transformer decoder

ViT
+ transformer text encoder
+ multimodal encoder
+ heads for different tasks

ViT
+ transformer
text encoder

ViT
+ transformer
decoder

ViT

Visual feature
extractor

ResNet blocks
+ transformer encoder

ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16

Data 25M pairs + unpaired 70M pairs + unpaired 400M pairs 1.2M images 1.2M images
Data source CC, VQA, GQA, RefCOCO,

ImageNet-21k, OpenImages,
Piles...

CC12M, YFCC, VG, COCO,
ImageNet-1k, CCNews, BookCor-
pus...

Unknown (Inter-
net)

ImageNet-1k ImageNet-1k

Training task multiple tasks with a unified
next-token prediction loss

contrastive
+ image text matching
+ masked multimodal modeling
+ masked image modeling (dVAE)
+ masked language modeling

contrastive masked im-
age modeling
(MSE)

contrastive

Table 8: Details of the compared models.
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