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Abstract

There is an intricate relation between the prop-
erties of an image and how humans behave
while describing the image. This behavior
shows ample variation, as manifested in hu-
man signals such as eye movements and when
humans start to describe the image. Despite
the value of such signals of visuo-linguistic
variation, they are virtually disregarded in the
training of current pretrained models, which
motivates further investigation. Using a corpus
of Dutch image descriptions with concurrently
collected eye-tracking data, we explore the na-
ture of the variation in visuo-linguistic signals,
and find that they correlate with each other.
Given this result, we hypothesize that variation
stems partly from the properties of the images,
and explore whether image representations en-
coded by pretrained vision encoders can cap-
ture such variation. Our results indicate that
pretrained models do so to a weak-to-moderate
degree, suggesting that the models lack biases
about what makes a stimulus complex for hu-
mans and what leads to variations in human
outputs.

1 Introduction

Humans can capture the gist of an image usually
incredibly fast – 100 msec could be enough (Oliva,
2005; Oliva and Torralba, 2006); however, they
would need more time to act on an image. For in-
stance, human behavior while describing images
illustrates the intricacies of visuo-linguistic pro-
cesses. There may be repetitions, silent intervals
and disfluencies, with considerable degrees of vari-
ation in what is uttered across speakers. The period
prior to the utterance involves perceiving the im-
age, conceptualizing the message, retrieving the
labels of the entities to mention, formulating and
preparing to articulate a grammatical and relevant
utterance (Levelt, 1981; Slobin, 2003).

As a result, we observe variations in speech on-
sets, as in Figure 1, which could be indicative of the

Min: 1.69 sec Max: 7.07 sec

Figure 1: The images with the minimum and maximum
mean speech onsets across speakers in the dataset. The
image with the maximum onset also elicits the highest
variation in the first nouns of the descriptions.

relative cognitive complexity induced by the im-
ages (Coco and Keller, 2015; Gatt et al., 2017).
In addition, different speakers might start their
utterances with different words (starting points,
see MacWhinney, 1977), continuing to produce a
varied set of image descriptions (linguistic vari-
ation) with variation in gaze. These signify the
intricate cross-modal relation between visual and
linguistic processes in humans (Griffin and Bock,
2000; Ferreira and Rehrig, 2019).

Although human data can be rich in behavioral
signals, current pretrained multimodal models vir-
tually never receive information about such sig-
nals during training. The models generate descrip-
tions without necessarily modeling how human pro-
cesses unfold. For instance, deep neural networks
can output words at the same rate even for images
that would result in diverse speech behavior by hu-
mans due to complexity or ambiguity. Moreover,
there is a gap between the manner in which hu-
mans perceive stimuli as compared to how large
models process them. Model-predicted surprisal
values for linguistic input can be lower than hu-
man surprisal, possibly due to the massive size of
the training data and the number of model param-
eters (van Schijndel and Linzen, 2021; Arehalli
et al., 2022; Oh and Schuler, 2023a,b). Models
also display different patterns of visual attention
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compared to humans (Das et al., 2016).
We argue that it is essential to consider human

signals such as speech onsets and looking times,
as they reflect the complexity and ambiguity of
visuo-linguistic tasks (Coco and Keller, 2015; Gatt
et al., 2017; van der Meulen et al., 2001; Meyer
and van der Meulen, 2000; van Miltenburg et al.,
2018b). It is therefore desirable if models encode
what leads to variations in such signals to help gen-
erate image descriptions in a way that is aligned
with human processing and with types of varia-
tion observed in human data (van Miltenburg et al.,
2018a). To this end, several applications have ex-
ploited human gaze to enhance image captioning
and visual question answering models (Sugano and
Bulling, 2016; He et al., 2019; Takmaz et al., 2020;
Sood et al., 2021, 2023). Still, the relation be-
tween gaze on images and language is not widely
researched in NLP (Alacam et al., 2022).

We first explore the natural dynamics in visuo-
linguistic processes using The Dutch Image De-
scription and Eye-tracking Corpus (DIDEC; van
Miltenburg et al., 2018b). This corpus provides
gaze and speech data concurrently collected while
participants describe images depicting real-life
scenes. We preprocess the DIDEC dataset exten-
sively, and propose metrics to quantify the varia-
tion in visual and linguistic modalities. We reveal
for the first time significant correlations between
speech onsets, variation in starting points, descrip-
tions and gaze.

We hypothesize that this variation is partly due
to the properties of the images, and that similar
images would elicit similar amounts of variation.
Given the superior performance of pretrained en-
coders that are widely used in multimodal mod-
els, we investigate whether visual encoders such
as CLIP (Radford et al., 2021) and ViT (Dosovit-
skiy et al., 2021) capture information regarding
the variation in visuo-linguistic signals.1 This is
akin to probing pretrained models for meaningful
syntactic and semantic information; see Conneau
et al., 2018. Using a similarity-based prediction
method (Anderson et al., 2016), we find that the
pretrained encoders capture variation in signals to
a limited extent. Our findings suggest that underly-
ing factors leading to variation are encoded rather
weakly by pretrained models. With our work, we
aim to direct attention towards the importance of

1Code and data available at https://github.com/
ecekt/visuolinguistic_signal_variation.

the information contained in such signals and the
variation thereof when crowdsourcing data as well
as during model development.

2 Background

We first give an overview of visuo-linguistic pro-
cesses in humans in Section 2.1, and then, in mod-
els in Section 2.2.

2.1 Visuo-Linguistic Processes in Humans

Cross-modal processes Describing images re-
quires the linear unfolding of complex cross-modal
processes between vision and language (Hender-
son and Ferreira, 2013; Griffin and Bock, 2000;
Gleitman et al., 2007; Coco and Keller, 2012; Fer-
reira and Rehrig, 2019; Henderson, 2017). There
exist several theories regarding how the ‘lineariza-
tion’ (Levelt, 1981) takes place in sentence for-
mulation in relation to visual processes (Griffin,
2004; Meyer, 2004; Ferreira and Rehrig, 2019).
These theories consider the speaker’s knowledge
and expectation regarding the contents of the im-
age, as factors affecting the allocation of gaze and
the formulation of a description (Henderson, 2017;
Ferreira and Rehrig, 2019). In addition, the way
people look at an image changes based on the task
at hand (Yarbus, 1967; Buswell, 1935; Castelhano
et al., 2009), with similar sequences of fixations
(scanpaths) leading to the production of similar
sentences (Coco and Keller, 2012). Therefore, we
hypothesize that the variation in language produc-
tion and eye movements could be correlated.

Starting points A sentence must have a starting
point, given that words need to be uttered in a linear
order (Levelt, 1981). We take the first uttered noun
as the starting point of image descriptions. The
focus on nouns is motivated by the fact that gaze
scanpaths are frequently represented by sequences
of object categories, which tend to be expressed
by nouns. Additionally, the order of mention of
these categories is the point of interest in lineariza-
tion studies that investigate language production
parallel to visual processes (Ferreira and Rehrig,
2019). Starting points can be selected based on a
variety of factors (canonical word order of the lan-
guage, perspective of the speaker, complexity of the
planned sentence; see MacWhinney, 1977). When
describing images, visual properties of an image
influence how a sentence begins and unfolds (Bock
et al., 2004). These findings signify how the selec-
tion of starting points can be influenced by a set of
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complex visuo-linguistic factors.

Variation in image descriptions People gener-
ally describe images with some variation. Jas and
Parikh (2015) report that images with people and
large objects tend to be described more specifically,
whereas generic buildings, ambiguous scenes and
images with less-important objects tend to elicit
more varied descriptions. The degree to which
the descriptions of an image vary is referred to as
‘image specificity’ by Jas and Parikh (2015), who
propose an automatic metric to quantify it using
the similarity scores between the WordNet paths
of words in descriptions (Miller, 1994). van Mil-
tenburg et al. (2018b) explore image specificity
in the corpus that we use in this study, utilizing
word2vec vectors (Mikolov et al., 2013) to com-
pute the similarity scores. They find that the varia-
tion in descriptions is only to a limited extent due
to the image’s contents as there also seems to be
an effect of language (English vs. Dutch). Addi-
tionally, their results indicate that attention maps
extracted using gaze data do not help predict image
specificity (van Miltenburg et al., 2018b). In this
work, we also quantify and predict image speci-
ficity proposing different approaches.

Speech onsets Slower speech onsets indicate that
a deliberate, effortful process is taking place, as
compared to fast onsets; as claimed in the dual
process theory (Wason and Evans, 1974; Kahne-
man, 2012). Various intertwined linguistic and
visual processes modulate speech onsets and the la-
tency of referring to an object (Meyer and van der
Meulen, 2000; Coco and Keller, 2015), such as the
contents of an image and the locations of the ob-
jects (Gatt et al., 2017; Esaulova et al., 2019). This
indicates that speech onsets are strongly linked to
image features. Given the importance of speech on-
sets in relation to visuo-linguistic processes and the
cognitive requirements of a task, the mean speech
onset induced by an image across speakers is one
of the signals we focus on.

2.2 Multimodal NLP
Pretrained models Many recent multimodal
models employ frozen pretrained unimodal models
and combine them with either no further training or
via trained lightweight mapping networks (Berrios
et al., 2023; Alayrac et al., 2022; Mañas et al., 2023;
Tsimpoukelli et al., 2021; Li et al., 2023; Mokady
et al., 2021; Chen et al., 2022). Particularly, the
visual encoder of the CLIP model (Radford et al.,

2021) has been utilized in these models as a foun-
dation model with strong zero-shot capabilities that
improves multimodal models (Shen et al., 2022).

By training classifiers on top of visual encoders,
Berger et al. (2023) predict the existence of linguis-
tic features such as passive voice and the use of
numeral expressions in image descriptions, and in-
dicate that the selection of such linguistic features
is constrained by visual features. These findings
point to the underlying capabilities of pretrained
models pertaining to human cognitive processes.

Human signals in NLP Most previous research
into the use of human signals focuses on text-only
cases (Klerke et al., 2016; Barrett et al., 2018, 2016;
Mishra and Bhattacharyya, 2018; Hollenstein et al.,
2021a, 2022, 2021b; Pouw et al., 2023; Ding et al.,
2022; Ren and Xiong, 2021; Dong et al., 2022;
Khurana et al., 2023; Mathias et al., 2020; Zhang
et al., 2020). However, the relationship between
human gaze on images and language production,
and its potential contribution to computer vision
and NLP has been investigated even before the
existence of pretrained models (Yun et al., 2013).
Research into whether the attention distributions in
multimodal models correlate with human attention
reveals contrasting findings (Das et al., 2016; Gella
and Keller, 2018; He et al., 2019; Sood et al., 2021).
Several works show that the use of human gaze
enhances image captioning and visual question an-
swering (Sugano and Bulling, 2016; He et al., 2019;
Takmaz et al., 2020; Sood et al., 2021, 2023). Yet,
modeling gaze in conjunction with linguistic pro-
cesses is still an under-explored area in NLP (Ala-
cam et al., 2022).

In our work, we investigate the variation of a set
of human signals in a corpus, as well as whether
pretrained vision encoders can encode information
related to these signals. Although such models are
shown to be very effective in multimodal tasks, they
are still under-explored from this point of view.

3 Data

We aim to explore the variation in human signals in
visuo-linguistic processes and whether pretrained
models can capture such variation in a realistic
setup. A dataset consisting of simultaneous lan-
guage production and eye movements over com-
plex images would enable such an exploration.
Therefore, we opt for using the DIDEC corpus (van
Miltenburg et al., 2018b) instead of other existing
image description datasets with eye-tracking, as
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this corpus allows us to delve into the dynamics of
visual and linguistic processes in parallel. There ex-
ist few datasets containing such information, which
we did not opt for utilizing, as they differ in their
tasks (narratives; Vaidyanathan et al., 2018), or
the processing steps the authors have taken, e.g.,
only a small subset of the captions were checked
manually (Vaidyanathan et al., 2018); the authors
sample one gaze point every 4 points (He et al.,
2019). The DIDEC dataset comprises manually
checked descriptions of high quality, and the gaze
data is provided in a raw format enabling custom
processing.

We use the ‘production viewing’ subset of
DIDEC, which contains spoken descriptions for
307 real-life images originating from the MS
COCO dataset (Lin et al., 2014), with high-quality
eye-tracking data.2 45 participants describe ≈ 102
images without a time limit. On average, each
image has 15 descriptions (4604 in total). Next,
we explain how we extract features correspond-
ing to human signals in visuo-linguistic processes
from this dataset, to obtain 4586 descriptions with
speech onsets, starting points, and fixated regions.

3.1 Visual Data
Using the raw gaze samples in DIDEC (van Mil-
tenburg et al., 2018b) labeled as fixations, saccades,
and blinks, we create fixation windows by treat-
ing saccades and blinks as boundaries (Salvucci
and Goldberg, 2000). The gaze samples in the
fixation window are then put into a list, skipping
the ones that fall outside the boundaries of the im-
ages. To visually represent a fixation, we feed its
gaze points as coordinate prompts to the Segment
Anything Model (SAM; Kirillov et al., 2023). Us-
ing the prompts, this model predicts the objects
the gaze corresponds to, and outputs masks cor-
responding to fixated regions. We use the ViT-L
version of the model building on vision transform-
ers (Dosovitskiy et al., 2021), as it achieves good
performance (Kirillov et al., 2023). We obtain a
single mask per fixation window. The masks some-
times span non-contiguous regions; therefore, we
utilize the bounding box based on the x-y limits of
the predicted mask.

3.2 Linguistic Data
Speech onsets The dataset supplies audio files
for spoken descriptions and their transcripts. To

2The other subset contains data from ‘free viewing’, where
the participants simply looked at the images for 3 seconds.

extract word-level timestamps, we use Whis-
perX (Bain et al., 2023) based on Whisper (Radford
et al., 2023).3 We relay the transcripts directly into
the alignment function of WhisperX. The output
contains the start and end timestamps of each word.
This also allows us to extract information regard-
ing when the participants start talking, i.e., speech
onsets. The mean speech onset is 3.42 sec, and the
median is 2.65 sec. We observe variation across
participants and images, as the onsets can go up to
25.37 sec with a standard deviation (SD) of 2.45.

Starting points We use the spaCy library for
tokenization, part-of-speech tagging, and lemmati-
zation of the words in the descriptions.4 For Dutch,
the library provides 3 models (small, medium, and
large). Upon manual inspection of 50 random sam-
ples from the data processed by each model, we
opted for the large model, which yields the least
number of errors. See Appendix A for more details.

4 Variation in Human Signals

We first delve into the nature of the variation across
humans per image in the DIDEC dataset. Our fo-
cus is on uncovering potential correlations between
the variations in human signals in visuo-linguistic
processes. We first explain how we quantify each
signal and its variation, see Figure 2 for an exam-
ple image with all of its variation scores. Then,
we conduct pairwise correlation analyses between
the 4 variables. If there exist correlations between
variations across signals, one can speculate that at
least part of the correlation stems from the image,
with the rest being potentially due to factors such
as viewing order, priming and cognitive load.

4.1 Variation in Speech Onsets

We inspect the mean and SD of speech onsets
per image, see histograms in Appendix B. The
mean onsets per image range between 1.69 and
7.07 seconds, constituting a non-normal distribu-
tion skewed towards shorter onsets (p < .001,
65.77% of the onsets shorter than the mean onset).
For some images, some participants start talking
immediately; whereas, in other cases, they wait
for a considerable amount of time before speak-
ing. This observation resonates with the fast and
slow systems from the dual process theory (Wason
and Evans, 1974; Kahneman, 2012), suggesting

3The model for obtaining alignments for audio in Dutch:
jonatasgrosman/wav2vec2-large-xlsr-53-dutch

4nl_core_news_lg pipeline from https://spacy.io/
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een pier waar het heel erg druk is uh rechts is een vis aquarium waar je vissen kan aanraken
(a pier where it is very busy uh on the right is a fish aquarium where you can touch fish)

een drukke straat met een aantal restaurants pier 39
(a busy street with a number of restaurants pier 39)

pier waar veel mensen lopen
(pier where many people walk)

een drukbezette pier
(a busy pier)

een toeristische plaats waar veel verschillende entertainment dingen te doen zijn
(a touristic place where there are many different entertainment things to do)

de ingang van een aquarium met veel mensen op een plein
(the entrance to an aquarium with many people in a square)

Mean onset: 3.46 seconds
Variation in starting points: 11

Most common starting point: pier
Image specificity BLEU-2: 0.39

Variation in gaze: 38.47

Figure 2: An image with its variation scores, a subset of its descriptions (along with the English translations in
parentheses), and the eye movements of a single participant. In the descriptions, the words in boldface indicate the
starting points in Dutch and their equivalents in English.

that more complex processes are recruited while
describing certain images. However, even for a
single image, the participants might start speaking
at varying times (with SD per image ranging from
0.44 to 6.33). This suggests that various factors are
at play while describing images, such as contextual
and speaker-specific effects.

To have a better picture of onset variation, we
compare the onsets for an image against each other.
Leaving one onset out of the set of onsets for an
image, we calculate the average of the rest (≈ 14
onsets). The difference between the average and
the left-out onset corresponds to error. We perform
this calculation for each sample. Then, we take the
mean over all the samples, which yields an error of
1.625 seconds. This error is a proxy for the aver-
age variation over the participants, which suggests
that there is a difference in response times across
humans when prompted with the same image.

The DIDEC corpus comes with 3 mutually-
exclusive image subsets called ‘lists’. Each par-
ticipant views only one list. We find that the mean
onsets in List 2 are significantly shorter than the
other two sets (p < .001, independent samples t-
test). Since both the images and the participants
are different across lists, it is not straightforward
to separate their effects. See Appendix C for a
participant-based analysis of mean onsets.

4.2 Variation in Starting Points

Counting the first nouns of image descriptions re-
veals that there is an imbalance in the starting
points in the data. The participants utter words
such as man, person, woman, bus and street most
frequently as the first noun of a description (370,
238, 221, 174, 141, respectively, constituting in

total 25% of the samples). This is potentially due
to the salience of such entities and their frequency
in the images. We represent the variation in starting
points by the number of unique starting points ut-
tered per image, yielding mean = 6.45, min = 1,
max = 13. These values indicate that some im-
ages elicit the same first nouns, whereas some oth-
ers prompt the production of a range of starting
points.5

4.3 Variation in Full Descriptions
Each image can be described in distinct ways, both
in terms of the words uttered and their order. We
quantify the linguistic variation in image descrip-
tions, following a different approach compared to
Jas and Parikh (2015) and van Miltenburg et al.
(2018b). We adopt a widely used natural lan-
guage generation metric, BLEU (Papineni et al.,
2002). This metric computes n-gram-based pre-
cision scores between a generated sentence and a
set of references. We opt for the bigram version
(BLEU-2), since we are mostly interested in the
surface form variation of words, and to a limited
extent, the sequences of words. BLEU-2 allows us
to measure the linguistic variation in descriptions
independently of a pretrained model.6 We calculate
the BLEU-2 score between a description and the

5We compute variation in starting points with respect to ex-
act noun lemma matches, without considering synonyms that
could refer to the same object. We believe that this captures
the type of variation that is of interest for starting points, since
lexical choices reflect categorization and conceptualization of
objects that can be affected by the visual context in which the
object is situated (Gualdoni et al., 2023).

6See Appendices D and E for a semantic variation
metric we propose using Dutch BERT-based representa-
tions (BERTje; de Vries et al., 2019), another combining
BERTje and BLEU-2-based variation, as well as a comparison
to human annotations provided by Jas and Parikh (2015).
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remaining descriptions for the image constituting
the reference set. Then, we take the average over
all descriptions of an image.7 This method yields
an extensive range of normally distributed scores
(µ = 0.53,min = 0.25,max = 0.81).

4.4 Variation in Gaze

The variation in eye movements has been quan-
tified in various ways in the literature: scanpath
complexity, dispersion of the heatmap of gaze on
an image, entropy of the gaze distribution (Coco
and Keller, 2015). We propose a distance metric
based around the contents of fixated regions and
their orders. We represent a scanpath in the form
of a sequence of fixation bounding boxes repre-
sented as (x1, y1, x2, y2). Given two scanpaths S1

and S2, for each fixation box in S1, we find the
most similar box in S2 that yields the highest ra-
tio of intersection over union (IoU) between the
bounding boxes. The IoU dissimilarity (1− IoU)
as well as the normalized positional distance be-
tween these boxes are summed up. This step is
performed for all fixation boxes in S1. The total
gives us a comparison score for two scanpaths. We
compare S1 to all the other scanpaths for the same
image and then, take the average. Each scanpath
for the image is compared to the rest of the related
scanpaths in the same way. This yields 15 image-
scanpath variation scores, whose mean corresponds
to the gaze variation score of a single image. The
higher this score is, the more variation exists in
the gaze modality. We obtain a range of gaze vari-
ation scores for the whole set (mean = 24.00,
min = 11.22, max = 38.79).

4.5 Correlation between Variations

In the previous subsections, we have quantified the
variation in speech onsets, starting points, descrip-
tions and gaze per image, see Appendix F for the
images with the minimum and maximum scores
across our variables of interest. We now turn to
the correlation between the variation types. Since
the initial common point is the image itself, we
hypothesize that image features contribute to vary-
ing levels of variation in different modalities. We
run Spearman’s correlation between each type of

7This metric is similar to Self-BLEU (Zhu et al., 2018),
which was proposed to calculate the diversity of the sentences
generated by a model. In Self-BLEU, each generated sentence
is compared to the rest of the generated sentences within a
document, and an average of the whole set is computed to
indicate how varied a model’s generations are.

Figure 3: Spearman’s correlation coefficients between
the mean onsets per image (Onset), the variation in
starting points (Starting), BLEU-2-based variation in
full descriptions (Description), and the variation in gaze
(Gaze) in the full dataset. Since higher BLEU scores
mean less variation unlike the trends in the other mea-
sures, we utilize 1−BLEU for better interpretability.
All of the correlations are significant, p < .001.

variation.8 When interpreting the magnitudes of
the correlation coefficients, we use the terminol-
ogy suggested by Prion and Haerling (2014). See
Figure 3 for all correlation results.

We find a significant negative correlation, ap-
proaching moderate effect, between BLEU-2-based
linguistic variation and the mean onset of an im-
age (Spearman’s ρ = −0.391, p < .001, see Ap-
pendix G for the regression line). This means that
speakers start describing images that yield more
similar descriptions earlier.9 In addition, as starting
points vary, image descriptions become less similar
(moderate, Spearman’s ρ = −0.516, p < .001),
indicating that initial deviations continue until the
end of language production.

We find that the variation in gaze significantly
correlates with speech onsets (moderate, Spear-
man’s ρ = 0.455, p < .001); the variation in
starting points (weak, Spearman’s ρ = 0.350, p <
.001); and the variation in full descriptions (mod-
erate, Spearman’s ρ = −0.485, p < .001). These
outcomes indicate that high variation in gaze tends
to co-occur with longer onsets, high variation in
starting points, and less similarity in descriptions.10

8We conduct Spearman’s rank correlation analysis to un-
cover monotonic relations in the data. This type of corre-
lation does not assume a particular distribution of the data
(non-parametric, as opposed to Pearson’s normality assump-
tion). Since some of the signals we have investigated are
non-normally distributed (e.g., speech onsets), and the dataset
is relatively small, we opted for Spearman.

9Unlike this correlation, we find that speech onsets are not
correlated with how many words or nouns are uttered.

10Investigating the correlation between these types of varia-
tion and the number of objects in an image is not straightfor-
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The correlations reveal a connection between the
variation in visual and linguistic modalities. We hy-
pothesize that the underlying reasons for such vari-
ation partly reside in the features of an image, echo-
ing the claims by Jas and Parikh (2015) and Berger
et al. (2023). In this sense, similar images are ex-
pected to elicit similar amounts of variation. Hence,
the results motivate our research into whether im-
age features as encoded by pretrained models can
capture the variation in gaze and language.

5 Similarity-based Prediction

In light of the correlation findings in Section 4, we
expect image features to be predictive of the varia-
tion in visuo-linguistic signals to some extent. We
explore if the similarity scores between image fea-
tures encoded by pretrained models would be mean-
ingful when capturing variation in human signals.
In particular, we hypothesize that the signals that
are more internal to the pretrained models’ training
objectives would be captured better. For instance,
CLIP was trained with respect to an image-to-text
alignment objective (Radford et al., 2021); hence,
it would be reasonable to expect that signals that
are more inherent to the visual and language data
could be encoded better compared to speech onsets,
which are never seen by the model.

Approach We employ an approach that was pro-
posed as an alternative to training regression mod-
els and representational similarity analysis, for pre-
dicting fMRI signals given linguistic input (Ander-
son et al., 2016). Using the similarities between
model-encoded stimuli (embeddings of concepts)
and the corresponding fMRI responses, the authors
predict the fMRI signals for novel stimuli for which
embeddings exist. This approach has been utilized
to assess the extent to which deep neural networks
capture brain representations in language-only and
visually grounded setups (Anderson et al., 2017;
Bruera et al., 2023; Bruera and Poesio, 2023). We
explain how we operationalize this extrapolation
method for our purposes in Section 5.1. As this
approach does not require training, it is suitable for
shedding light on the predictive power of pretrained
image representations, given the small size of the
dataset we use. We determine the splits based on
the images. Hence, to mitigate imbalance issues,
we create 50 random split setups with ∼90% train-
ing (277 images) and ∼10% test sets (30 images),

ward, as current object detection algorithms annotate images
exhaustively, yielding a high number for many images.

and report results on the average of these 50 setups.
Across setups, the training sets have similar rep-
resentative powers in terms of their CLIP vector
similarities to the images in the corresponding test
sets.

Visual encoders To encode the images, we ex-
ploit three visual encoders: CLIP, ViT, and a ran-
domly initialized CLIP model (without training at
all). We use the ViT-B/32 version of CLIP’s vi-
sual encoder (Radford et al., 2021), and extract
the final 512-dimensional output for each image.
Since this encoder has been trained in coordination
with CLIP’s textual encoder (Radford et al., 2021),
we expect it to capture not only vision-related fea-
tures, but also properties that are aligned with lan-
guage. In addition, we test the representations of
a purely visual encoder trained on object recogni-
tion, ViT (Dosovitskiy et al., 2021). We extract
the last hidden states from ViT, and use the vec-
tor corresponding to the [CLS] token as the image
representation. Finally, we also experiment with a
randomly-initialized version of CLIP (RNDCLIP),
along the lines of what Berger et al. (2023) did to
avoid the information learned during pretraining.

5.1 Predicting the Variation in Descriptions

From the training set, we retrieve k images that
are closest to the target image—the image for
which we predict a signal variation score—based
on their representational similarities, echoing the
k-nearest neighbors algorithm. The final score is
the weighted average of the variation found in the
neighboring images. The weights correspond to
the similarity scores between the retrieved images
and the target image.

As depicted in Table 1, we find significant, yet
weak, positive correlations for almost half of the
50 split configurations both for CLIP and ViT, with
no meaningful correlations for RNDCLIP. CLIP
slightly outperforms ViT, suggesting that language
alignment in the visual modality yields a potential
benefit in estimating the variation in descriptions.

The loss corresponds to the average difference
between the predicted and target scores across the
dataset. The losses are similar across encoder types
despite the differences in correlations. Since this
method makes predictions based on the ground
truth outputs of the retrieved set, it is likely that the
predictions remain in a similar range.
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Model Coefficient Sig. Loss

CLIP 0.3380 27 0.0738
ViT 0.3135 23 0.0723
RNDCLIP 0.0472 3 0.0744

Table 1: Predicting variation in descriptions with the
similarity-based approach, k = 277. Averages over 50
random splits. ‘Coefficient’ and ‘Sig.’ correspond to
Spearman’s ρ correlation coefficient and how many runs
out of 50 yield significant correlations with p < 0.05.

5.2 Predicting Onset
We perform the similarity-based prediction ap-
proach outlined in Section 5.1 to predict mean
speech onsets per image. Since longer onsets can
be associated with more cognitively demanding im-
ages, we are interested in the average onset elicited
by each image. The results (see Table 2) indicate
that, by using a larger sample of CLIP-encoded
images, we can obtain predictions weakly correlat-
ing with the target onsets. The differences in the
results when using different k values suggest that
the choice of the retrieval set limits the boundaries
of the predictions, even though the median image
similarity score for k = 1 is 0.77 in the dataset.

Model Coefficient Sig. Loss Range

CLIP-277 0.2981 18 0.8216 3.37 - 3.50
CLIP-10 0.2500 10 0.7989 2.60 - 4.37
CLIP-5 0.2265 14 0.8149 2.26 - 4.81
CLIP-1 0.0640 4 1.0746 1.69 - 6.39
ViT 0.2428 17 0.8072 3.11 - 3.67
RNDCLIP 0.0350 3 0.8249 3.38 - 3.47

Table 2: Predicting mean speech onsets with the
similarity-based approach. The numbers in the model
names correspond to k when retrieving closest images
from the training set. RNDCLIP and ViT with k = 277.
‘Range’ is the range of the predictions for the test set.

When we use 277 images encoded with ViT
to obtain the image similarities, the correlation is
weaker than the same setup with CLIP. When we
encode the images with RNDCLIP, although the
loss is quite similar to the other setups, there is no
meaningful correlation. The predictions in general
center around the mean onset, as they are based on
the outputs from the retrieval set.

5.3 Predicting Starting Points
We utilize the similarity-based prediction algorithm
to predict the first uttered nouns of the descriptions.
Since this is a subtask of generating descriptions,

we consider this an interesting use case. For each
image, we represent the most common first noun
as a one-hot vector (with the dimensions being
739, corresponding to the size of the first-noun
vocabulary of the whole dataset). We report the
accuracy of predicting the correct starting point.

Model k = 277 k = 10

CLIP 13.00% 31.73%
ViT 26.47% 30.53%
RNDCLIP 11.27% 10.40%
Baseline - Random 4.00% 4.00%
Baseline - Most common 11.27% 11.27%

Table 3: Predicting starting points with the similarity-
based approach and the baselines, percentage of cor-
rectly identified starting points for different k values.

As illustrated in Table 3, all setups attain scores
that outperform the baseline where we predict ran-
dom starting points (theoretically, for a uniform
distribution of starting points, 1/739 = 0.14%).
We also predict the most common starting point
(‘man’), which performs similarly to RNDCLIP.
With pretrained encoders, it is better to utilize lower
k to attain better accuracy, since very similar im-
ages likely contain similar objects that are men-
tioned earlier in the utterances. Both CLIP and ViT
show similar performances when k = 10, hinting
at the relation between their training objectives and
starting points, which often correspond to the most
salient entity in the image.

5.4 Predicting the Variation in Gaze

We apply the similarity-based approach to predict
the variation in gaze. The results (Table 4) reveal
that the gaze variation can be approximated to a
moderate extent with CLIP. Using a smaller re-
trieval set is beneficial, suggesting a strong link
between image properties and the variation in gaze.
Since CLIP has a powerful visual encoder (Shen
et al., 2022), it is reasonable that the similarities be-
tween image features encoded by CLIP seem more
meaningful when predicting the variation in gaze.

The outcomes are in line with our hypothesis that
signals that could be considered more internal to
the models’ training objectives would be captured
better, whereas external signals can be captured
weakly. For instance, speech onsets and surface
form variation in descriptions can be deemed ex-
ternal to CLIP’s space. Therefore, we claim that
there could be room for incorporating such exter-
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Model Coefficient Sig. Loss Range

CLIP-277 0.4035 30 4.0200 23.55 - 24.45
CLIP-10 0.4253 35 3.5774 17.05 - 29.63
CLIP-5 0.4435 33 3.5707 15.43 - 32.92
CLIP-1 0.4687 39 3.8889 11.22 - 38.79
ViT 0.3801 28 3.8847 22.62 - 25.67
RNDCLIP 0.0109 2 4.0571 23.76 - 24.26

Table 4: Predicting gaze variation using the similarity-
based approach. Targets range between 11.22 and 38.79.

nal signals when training or fine-tuning pretrained
multimodal models, and the models would benefit
from such signals. It should be noted, though, since
human processes are complex, there could be extra-
neous factors beyond image features that influence
variation, which makes it difficult for models to
capture these signals perfectly.

Min: 3.381 Max: 3.488

Figure 4: Images with the minimum and maximum
predicted mean onsets. The image with the minimum
was also predicted to elicit the lowest variation in gaze.

5.5 Examples
We illustrate the images with the minimum
and maximum mean onsets as predicted by the
similarity-based approach in Figure 4. Figure 5
depicts predicted variation in descriptions, and Fig-
ure 6 the predicted variation in gaze. We see a
tendency to predict shorter speech onsets, more
similar descriptions and gaze patterns in images
containing a couple of people compared to scenes
of streets with no visible or salient humans, a find-
ing resonating with the conclusions drawn by Jas
and Parikh (2015). This is potentially due to the
salient and non-ambiguous nature of humans in
images, as opposed to general street scenes with
cars, buses and non-salient humans.

6 Conclusion

We quantified the variation in speech onsets, start-
ing points, descriptions and gaze using a Dutch
dataset of image descriptions with eye-tracking
data. Our findings revealed the extent of varia-
tion in the process of describing images, and that

Min: 0.529 Max: 0.541

Figure 5: BLEU-2-based linguistic variation scores as
predicted by the similarity-based approach.

Min: 23.666 Max: 24.308

Figure 6: Variation in gaze as predicted by the similarity-
based approach.

variations in different signals correlate with each
other. Furthermore, using a similarity-based pre-
diction approach, we showed that image repre-
sentations encoded by pretrained vision encoders
capture variation in visuo-linguistic behavior to a
weak-to-moderate extent. This pattern can be inter-
preted in light of models’ pretraining objectives, as
the predictions correlated more strongly for signals
more internal to the objectives. Our study has im-
plications for how human processes unfold as well
as pretrained models’ capabilities to represent such
processes.

Human and machine processing have differ-
ences, and we are motivated by the potential bene-
fits of making the models increasingly knowledge-
able about the multimodal landscape of human data.
Although the impact of fine-tuning an already pow-
erful pretrained model on a small-scale dataset with
human signals could be modest, we hope that our
work motivates the collection of more signals dur-
ing crowdsourcing. For instance, it would be bene-
ficial to take into account how long it took partici-
pants to complete a task given a certain stimulus,
indicating the relative complexity and the uncer-
tainty induced by the task as well as the stimulus.
By inducing biases based on human signals, models
can further take advantage of the information con-
tained within such signals. Although it would be
difficult to capture the full extent of the intricacies
of human processing, this could help, for instance,
a model interacting with human users to generate
responses more aligned with human expectations.
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Limitations

In this work, we use a dataset in Dutch; however,
the crossmodal interaction between vision and lan-
guage could show some variation based on the prop-
erties of the languages (i.e. word order and mor-
phological constraints), leading to variation in vi-
sual attention and structural choices (Norcliffe and
Konopka, 2015; Myachykov et al., 2011). There-
fore, the findings might differ based on the lan-
guages of the datasets and the pretrained models.
It would also be informative to explore other mod-
els and tasks, as well as explicit, discrete features
that would contribute to the prediction of visuo-
linguistic variation. Regarding the data, there could
be possible noise in human signals and our prepro-
cessing steps that affect the findings. Investigat-
ing the variation in gaze before/after speech onset
with participant-specific analyses could also reveal
interesting dynamics. As the dataset contains de-
scriptions from 45 participants, with on average
15 participants describing each image, a different
pool of participants (in particular, of a different
size) may produce disparate results. A larger cor-
pus may also allow for the training and fine-tuning
of models. This is a line of work we have not ex-
plored in detail in this work, as a probing approach
where we trained lightweight layers on top of im-
age representations yielded even lower correlation
coefficients and higher losses.
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may be perpetuating biases that are not desirable.
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A Data Preprocessing

We use spaCy to extract the first noun of each de-
scription. The numbers of errors in terms of lemma-
tization and POS-tagging are as follows when us-
ing the small, medium, and large spaCy models
for Dutch, respectively: 33, 32, 23 mistakes in the
full descriptions, and 3, 2, 2 for the first nouns.
As the utterances sometimes contain incomplete
sentences and disfluencies, POS-tagging may not
be reliable in such cases, especially in the later
parts of the utterances. However, the large model
was reliable both for full descriptions and the first
nouns. Hence, we chose to use the data processed
by the large model. The model was not able to tag
any nouns in 7 descriptions; for those, we use the
<unk> token as a placeholder starting point. We
also skipped nouns such as ‘photo’ (‘a photo of a
car’), ‘number’ (as in ‘a number of cats’), ‘couple’
(as in ‘a couple of kids’).

B Distribution of Speech Onsets

The histograms of the mean speech onsets and
their standard deviations reveal non-normal dis-
tributions, as illustrated in Figure 7.

Figure 7: Distributions of onset means and SDs for the
images in the whole dataset.

C Participant-Based Correlation Analysis

To have a better understanding of speaker-specific
dynamics, in addition to calculating statistics per
image, we also look into per-participant statistics.
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Each participant describes around 100 images, each
with a possibly different speech onset. We calcu-
late the correlation between a participant’s speech
onsets and the BLEU-2-based linguistic variation
score of the corresponding images. In 24 out of
45 participants, we find significant moderate nega-
tive correlations. All 45 participants have negative
correlation coefficients, indicating that all partic-
ipants tend to start describing an image earlier if
that image elicits less linguistic variation across
speakers. This suggests that although there can be
speaker-specific and contextual factors, the features
of an image can also have an overarching effect on
the behavioral responses across speakers, and may
allow for the prediction of such responses.

D BERTje-based Variation in
Descriptions

We inspect linguistic variation by comparing the
representations of the descriptions extracted using a
Dutch BERT model (BERTje; de Vries et al., 2019).
To calculate variation based on BERTje, we utilize
the last hidden state corresponding to the [CLS]
token for each description as the representation.
Then, for each image, we calculate the pairwise
cosine similarities between these representations.
The average of these similarities is assigned as the
variation found in the descriptions of an image.
This method yields scores in the narrow range of
0.69 − 0.86, which indicates semantically quite
similar descriptions. Since most descriptions have
semantics suitable for the corresponding image, the
variation in the semantic space is not substantial.
Between BERTje-based variation and speech on-
sets, we reveal a slight negative correlation (Spear-
man’s ρ = −0.212, p < 0.01). The SD of speech
onsets is even less correlated with BERTje-based
variation (Spearman’s ρ = −0.151, p < 0.01).

E Further Analyses on Linguistic
Variation Metrics

We also combine BERTje- and BLEU-2-based vari-
ation scores by taking their mean. This metric
yields correlations comparable to the ones achieved
by the BLEU-2 version, with a moderate increase
in the correlation to the starting point variation and
mean onset, yet a decrease in the correlation to
gaze variation. For the sake of simplicity, we opt
for the BLEU-2 version.

We also compare the BLEU-2-based met-
ric against human evaluations for a different

dataset provided by Jas and Parikh (2015), which
achieves a significant correlation (Spearman’s ρ =
−0.40, p < .001), albeit to a moderate extent. Jas
and Parikh (2015) propose a metric that achieves a
stronger correlation (ρ = 0.72). Note that the pro-
vided human annotations were obtained through 3
annotators evaluating sentence similarities without
looking at the images (comparing only 2 sentences
at a time). In our dataset, using our metric, we
compare 1 description against 14. As a result, the
procedure for human annotations may not be well-
aligned with our method (i.e., our metric compares
1 sentence against 4 for their dataset, as each image
has 5 descriptions).

F Example Images with Scores

We illustrate the images with the minimum and
maximum scores per variable of interest as calcu-
lated with our metrics. Figure 9 depicts variation in
the descriptions Figure 10 the variation in starting
points, and Figure 11 the variation in gaze.

G Correlation between Human Signals of
Variation

We illustrate the correlation between the mean on-
set and the BLEU-2 scores of full descriptions in
Figure 8.

Figure 8: Correlation between mean onset and BLEU-2.

Min: 0.248 Max: 0.811

Figure 9: BLEU-2-based linguistic variation scores.

2086



Min: 1 Max: 13

Figure 10: Variation in the number of unique starting
points. For the image with the minimum score, all the
speakers start with keuken, meaning kitchen. The image
with the maximum score has descriptions starting with a
variety of words: bureau, fitness, huiskamer, springding,
atletiek, balk, hoek, tafel, plek, turnattribuut, restaurant,
bank, turnobject.

Min: 11.22 Max: 38.79

Figure 11: Variation in gaze. The image with the mini-
mum score elicited more similar scanpaths across speak-
ers than the one with the maximum score.
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