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Abstract

Argument Mining (AM) aims to uncover the ar-
gumentative structures within a text. Previous
methods require several subtasks, such as span
identification, component classification, and re-
lation classification. Consequently, these meth-
ods need rule-based postprocessing to derive ar-
gumentative structures from the output of each
subtask. This approach adds to the complex-
ity of the model and expands the search space
of the hyperparameters. To address this diffi-
culty, we propose a simple yet strong method
based on a text-to-text generation approach
using a pretrained encoder-decoder language
model. Our method simultaneously generates
argumentatively annotated text for spans, com-
ponents, and relations, eliminating the need for
task-specific postprocessing and hyperparame-
ter tuning. Furthermore, because it is a straight-
forward text-to-text generation method, we can
easily adapt our approach to various types of
argumentative structures. Experimental results
demonstrate the effectiveness of our method,
as it achieves state-of-the-art performance on
three different types of benchmark datasets: the
Argument-annotated Essays Corpus (AAEC),
AbstRCT, and the Cornell eRulemaking Cor-
pus (CDCP).

1 Introduction

Argument Mining (AM) is a form of discourse
analysis that seeks to identify the structure of an
argument within a text (Lawrence and Reed, 2019).
This structure is typically represented through a
dependency tree or a directed acyclic graph, as
shown on the right-hand side of Figure 1. In the
dependency tree, nodes correspond to text spans
that contain arguments, which are then classified
into specific argument types. The edges between
the nodes represent the relations between the argu-
ments.

Annotated corpora have been constructed for
argument mining to reveal the argumentative struc-

ture across various fields, such as student es-
says (Stab and Gurevych, 2014, 2017), biomedical
research (Mayer et al., 2020), and more. These cor-
pora serve as the standard benchmark datasets, al-
lowing for the performance evaluation of argument
mining systems. Given its practical applications in
downstream tasks, such as text summarization (Fab-
bri et al., 2021; Elaraby and Litman, 2022) and au-
tomatic essay scoring (Nguyen and Litman, 2018),
argument mining has recently gained significant
attention in discourse analysis.

Neural models enhanced the performance of
argument mining, along with other natural lan-
guage processing tasks. Early models employed a
pipeline approach involving three subtasks: iden-
tifying the argumentative text span, determining
the argument type, and establishing the relation
between the two arguments (Stab and Gurevych,
2017; Niculae et al., 2017). However, recent mod-
els treat argument mining as dependency parsing
and perform it in an end-to-end manner (Ye and
Teufel, 2021; Morio et al., 2022). These models are
complex as they require separate mechanisms for
each of the three tasks to be incorporated into the
model. Therefore, postprocessing is necessary to
build valid dependency trees. Furthermore, hyper-
parameter tuning poses difficulties in implementing
these models.

To tackle these difficulties, we exploited a
simple text-to-text generation model with the
Translation between Augmented Natural Lan-
guages (TANL) (Paolini et al., 2021), which has
achieved state-of-the-art performance on sentence-
level structured prediction tasks such as relation
extraction, named entity recognition, and semantic
role labeling. Implementing TANL into AM, we
offer significant advantages: (1) a simple architec-
ture that eliminates complex postprocessing and
hyperparameter tuning, (2) the ability to adapt to
various annotations based on the dataset, and (3)
the potential to use recent large language models.
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Studies abroad and the cultural aspect of the experience Studying abroad is one very 
common thing that students do, and they have different reasons for that. I believe that 
studying abroad has many advantages. Students gain a lot out of the experience personally, 
academically, and culturally. First of all, students who study outside their countries can get a 
lot of experience living in a foreign country. Living in a new country requires a great amount 
of flexibility and adaptability in one’ s character. For example, students might face many 
challenges in the host country. Therefore, they should be able to deal with the obstacles  …

[ studying abroad has many advantages | major claim ] [ Students gain a lot out of the 
experience personally, academically, and culturally | claim for ] [ students who study outside 
their countries can get a lot of experience living in a foreign country | claim for ] [ Living in a 
new country requires a great amount of flexibility and adaptability in one’ s character | premise 
| support = students who study outside their countries can get a lot of experience living in a 
foreign country ] [ students might face many challenges in the host country | premise | support 
= Living in a new country requires a great amount of flexibility and and adaptability ... ]

studying abroad has many advantages 

Living in a new country requires a great 
amount of flexibility and adaptability in 
one’ s character

Students gain a lot out of the experience 
personally, academically, and culturally

students who study outside their countries 
can get a lot of experience living in a 
foreign country

students might face many challenges in 
the host country

Figure 1: Overview of our methods. For our methodology, we input text into a pretrained encoder-decoder, such as
T5 and FLAN T5. This process generates an argumentatively annotated text with spans, components, and relations.
We then postprocess the output text to extract the argumentative structure.

Experimental results from three bench-
mark datasets, Argument-annotated Essays
Corpus (AAEC) (Stab and Gurevych, 2017),
AbstRCT (Mayer et al., 2020) and Cornell
eRulemaking Corpus (CDCP) (Park and Cardie,
2018), demonstrate that our method achieved the
state-of-the-art scores on both Component-F1 and
Relation-F1 when using FLAN T5 (Chung et al.,
2022):XXL (11B). Furthermore, by preventing the
model from generating irrelevant text spans, which
cannot be arguments, we successfully reduced the
computational time for inference in AbstRCT by
30% without compromising performance.

2 Related Work

2.1 Argument Mining

AM involves three critical subtasks: identifying
the arguments within a text, determining their argu-
ment type, and establishing the relations between
these arguments. These steps are crucially required
in revealing the argumentative structure of a text.
Earlier methods used a pipeline architecture, where
argumentative span identification was performed
first, followed by component classification1 and
relation classifications (Persing and Ng, 2016; Eger
et al., 2017; Kuribayashi et al., 2019; Morio et al.,
2020). However, such an approach can result in the
accumulation of errors from previous subtasks.

To improve the pipeline-based approach, recent
studies employ an end-to-end method (Morio et al.,
2022; Bao et al., 2022; Ye and Teufel, 2021; Eger

1An argumentative text span assigned with a label, such as
Claim or Premise, is called a component.

et al., 2017). Ye and Teufel (2021) and Morio
et al. (2022) used a network architecture based on a
biaffine parser, which achieved state-of-the-art per-
formance on paragraph and essay level evaluation.
This approach treats the argumentative structure as
a dependency tree and uses a dependency parsing
algorithm to parse them. Despite being end-to-end
models, they often require hand-crafted rules (Eger
et al., 2017; Ye and Teufel, 2021) or an optimum
branching algorithm (Morio et al., 2022) to form
dependency trees from the outputs of three lay-
ers corresponding to subtasks. Additionally, these
models present challenges in tuning hyperparame-
ters such as the learning rate, given the embedding
of three subtasks within a network.

By contrast, Bao et al. (2022) use an encoder-
decoder model to perform AM as a genera-
tion task. They employ a constraint pointer-
mechanism (CPM) for BART (Lewis et al., 2020)
to predict the index of words in the input text. How-
ever, our work differs from theirs as we focus on
the text-to-text generation task. This enables us
to maximize the use of the decoder without mak-
ing any modifications to the pretrained language
model.

2.2 Information Extraction as a Generation
Task

The recent development of pretrained language
models (Raffel et al., 2020; Lewis et al., 2020)
has led researchers to tackle information extraction
tasks such as relation extraction (Huguet Cabot and
Navigli, 2021; Lu et al., 2022) and event extrac-
tion (Li et al., 2021; Lu et al., 2021) as generation
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AAEC AbstRCT CDCP

# component 6,089 3,279 4,931
# relation 3,832 2,060 1,220
# components with multiple parents 0 31 160
% words in nonargumentative span2 28.09 49.30 0

Table 1: Statistics of AAEC, AbstRCT, CDCP.

tasks. Nayak and Ng (2020) compared two models
for the relation extraction task: copy mechanism-
based decoding and text-to-text generation. How-
ever, the results did not conclusively determine
which method is superior.

Translation between Augmented Natural Lan-
guages (TANL) (Paolini et al., 2021) extends
Nayak and Ng (2020)’s approach to text-to-text
generation. This methodology has proved highly ef-
fective for tasks such as relation extraction, named
entity recognition, semantic role labeling, and
coreference resolution. This success can be at-
tributed to the implementation of a more powerful
pretrained encoder-decoder model, T5. In a re-
cent study, Hu and Wan (2023) proposed using T5
for sentence-level RST parsing as a form of text-
to-text generation, demonstrating its effectiveness
in analyzing sentence structures. Their research
motivates us to view document structure analysis,
specifically argument mining, as more of a text gen-
eration task than a conventional natural language
understanding task. To address this text-to-text gen-
eration task, we propose using T5 within the TANL
framework, which could be a significant solution.

3 Proposed Methods

Figure 1 provides an overview of our approach
based on TANL (Paolini et al., 2021). To obtain
the argumentatively annotated text for TANL, we
align the original text with the given argumentative
spans, their types, and relations. Then, we fine-tune
T5 with the TANL framework using the annotated
texts.

3.1 Task Formalization

Given an input text x consisting of n words, it
can be represented as x = [x1, . . . , xn]. The ob-
jective of span identification is to extract spans
s = [xstart, . . . , xend] that include the argument.
Here, start and end indicate the indices marking
the beginning and end of the span, respectively.
Such extracted spans are denoted as (start, end).
Component classification labels the identified spans

2We used SpaCy 3.6.1 as a tokenizer for word counts.

with component labels c from a set C. Set C con-
tains all component labels present in the dataset.
As a result of the classification, components are
represented as (start, end, c). Relation classifi-
cation involves selecting source and target spans
from the extracted spans and assigning a relation
label r from a predefined set R. Set R holds all
relation labels in the dataset. The source and tar-
get spans are expressed as (startsrc, endsrc) and
(starttgt, endtgt) respectively. Consequently, the
output from relation classification can be illustrated
as (startsrc, endsrc, starttgt, endtgt, r).

3.2 Argumentatively Annotated Text
We adapt the output format of TANL’s joint en-
tity and relation extraction task to AM. When a
text span ssrc with a specific component label c de-
pends on another text span stgt by a relation label
r, we represent it as “[ ssrc | c | r = stgt ]”. How-
ever, if the span ssrc does not depend on others, we
omit stgt and the relation label r, denoting it as
“[ ssrc | c ]”. Below is an example illustrating the
application of TANL’s method to AM:

Input: For this reason , many marine
lives have been endangered , in the ex-
tremes part of the reef become uninhab-
itable for these marine species . Thus ,
it is apparent that tourism has threatened
the nature environments .

Output: For this reason , [ many ma-
rine lives have been endangered , in
the extremes part of the reef become un-
inhabitable for these marine species |
premise | support = tourism has threat-
ened the nature environments ] . Thus ,
it is apparent that [ tourism has threat-
ened the nature environments | claim for
] .

3.3 Elimination of Unnecessary Text Spans
TANL attempts to annotate textual structure while
maintaining integrity of the original input text.
However, our focus moves to tasks that require doc-
uments as input, in contrast to the original TANL’s
requirement for sentence-level inputs. Reducing
the maximum number of tokens in the encoder and
decoder models is crucial for efficient computing.
As a result, we exclude nonargumentative spans
from TANL’s annotation scheme. Table 2 shows ex-
amples of annotation with nonargumentative spans
and without nonargumentative spans.
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Input Text Advantages and disadvantages of the prevalent of English With the development of global-
ization , English became the dominated language in national trade , conference and many
important events . This phenomenon has aroused a heated discussion in public . Some people
claim that the prevalent of English brings a great number of benefits for people .

w/ nonargumentative span Advantages and disadvantages of the prevalent of English With the development of global-
ization , English became the dominated language in national trade , conference and many
important events . This phenomenon has aroused a heated discussion in public . Some people
claim that [ the prevalent of English brings a great number of benefits for people | claim for ] .

w/o nonargumentative span [ the prevalent of English brings a great number of benefits for people | claim for ]

Table 2: Example of input text and output in TANL and our format. The table shows that our output format reduces
the number of tokens compared to the TANL format by removing tokens that do not contain any components or
relations.

Argumentative Structure

[ The credit reporting agencies don’t automatically remove old debts . | value | reasons = nor do
they check to see if a newly reported debt is in fact a 9 year old debt that has been resold numerous
times . ] [ The credit reporting agencies don’t automatically remove old debts . | value | reasons =
The burden of proof is put on the consumer to prove it is an old debt . ]

repeated representation

[ The credit reporting agencies don’t automatically remove old debts . | value | reasons = nor do
they check to see if a newly reported debt is in fact a 9 year old debt that has been resold numerous
times . | value | reasons = The burden of proof is put on the consumer to prove it is an old debt . ]

serial representation

nor do they check to see if a newly reported debt is in fact a 
9 year old debt that has been resold numerous times.

FACT
The burden of proof is put on the consumer to prove it 
is an old debt.

The credit reporting agencies don’t automatically 
remove old debts.

FACT

VALUE

RASONSRASONS

Table 3: Examples of repeated representation and serial representation in CDCP.

3.4 Representation of Components with
Multiple Parents

The AM dataset contains components that depend
on multiple parents. The output format of TANL’s
joint entity and relation extraction task cannot rep-
resent such structures in text, as it only adds annota-
tions to the input text without repetition or deletion.
To address components with multiple parents, we
employ two representations: repeated representa-
tion and serial representation3. These examples
are illustrated in Table 3. As an illustration, a com-
ponent with VALUE labeled “The credit reporting
agencies don’t automatically remove old debts.” de-
pends on two components labeled REASONS. The
repeated representation treats these as two separate
relations and represents them sequentially, while
the serial representation represents the first relation
followed by the second.

3Serial representation is based on TANL’s nested entities
and multiple relations output format

4 Experiments

4.1 Dataset

We used three major benchmark datasets:
Argument-annotated Essay Corpus (AAEC) (Stab
and Gurevych, 2017) , AbstRCT (Mayer
et al., 2020) and the Cornell eRulemaking
Corpus (CDCP) (Park and Cardie, 2018).
AAEC includes annotations of components and
relations for essays written by students. It
contains two types of data: essay-level and
paragraph-level. At the essay level, AM is per-
formed on the entire essay as input, whereas
at the paragraph level, AM is performed on
the predefined paragraphs. AAEC provides
three component labels C = {MAJORCLAIM,
CLAIM, PREMISE} and four relation labels R =
{FOR, AGAINST, SUPPORT, ATTACK}. Accord-
ing to the AAEC annotation guidelines, a CLAIM is
always dependent on a MAJORCLAIM. Therefore,
in our experiments, we adapted the labels to in-
clude four component labels C = {MAJORCLAIM,
CLAIMFOR, CLAIMAGAINST, PREMISE} and
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two relation labels R = {SUPPORT, ATTACK}.
During evaluation, we treat CLAIMFOR and
CLAIMAGAINST as equivalent to CLAIM and eval-
uate them as in the previous studies. As shown in
Table 1, the ratio of words in the nonargumentative
span to the total words is 28.09%. It is worth noting
that a component does not have multiple parents.
AbstRCT is obtained from Randomized Con-
trolled Trials (RCT) from the MEDLINE for vari-
ous diseases, such as neoplasm, glaucoma, hep-
atitis, diabetes, and hypertension. It features
three component labels C = {MAJORCLAIM,
CLAIM, EVIDENCE} and three relation labels R =
{SUPPORT, ATTACK, PARTIAL-ATTACK}. As in-
dicated in Table 1, this dataset contains a significant
proportion of nonargumentative spans. Words in
the nonargumentative spans account for 49.30% of
the total word count.
CDCP is annotated with components and relations
for comments from citizens. It provides five com-
ponent labels C = {FACT, TESTIMONY, VALUE,
POLICY, REFERENCE} and two relation labels
R = {REASONS, EVIDENCE}. As shown in Ta-
ble 1, the CDCP does not contain any nonargumen-
tative spans. Furthermore, we observed that CDCP
contains a greater number of components that de-
pend on multiple other components than the other
two datasets.

4.2 Fine-tuning T5 with QLoRA
In previous studies, TANL performed fine-tuning
on the T5-Base by updating all parameters, a
process known as full fine-tuning. However, in
this study, we aim to explore the effects of ad-
ditional parameters. To this end, we employ
QLoRA (Dettmers et al., 2023) tuning to reduce
GPU memory during the training of large parame-
ter models such as T5-XL (3B) and T5-XXL (11B).
QLoRA is an adaptor that quantizes the model and
applies Low-Rank Adapters (LoRA) (Hu et al.,
2022) to it, helping reduce the number of parame-
ters to be trained while maintaining performance
levels comparable to full fine-tuning.

4.3 Settings
For the AAEC, we follow the train/dev/test split
suggested by Eger et al. (2017). The number of
essays for each dataset is 286, 36, and 80, while
the number of paragraphs is 1587, 199, and 449,
respectively. For the AbstRCT, we used the neo-
plasm test set and adopted the split provided in
the original paper (Park and Cardie, 2018), using

300 for training, 50 for dev, and 100 for testing.
Following (Niculae et al., 2017), we preserved 150
comments as a test set from the 731 comments
within the CDCP. For the CDCP, 15% of training
data were extracted as a dev set.

We examined T5 (Raffel et al., 2020) and FLAN-
T5 (Wei et al., 2022) as pretrained encoder-decoder
models used within the TANL framework. Our
experiments were conducted with four different
parameter models: Base (220M), Large (770M),
XL (3B), and XXL (11B). In each experimental
setting, we report the average scores from three
runs using different seeds.

4.4 Compared Models

We compared our method with the following mod-
els, including the state-of-the-art model:

• ILP (Stab and Gurevych, 2017): A feature-
based method that employs Integer Linear Pro-
gramming (ILP) to parse each subtask in a
pipelined fashion.

• BLCC (Eger et al., 2017): A method that
treats Argument Mining (AM) as a sequence
tagging problem.

• LSTM-ER (Eger et al., 2017): An end-to-end
relation extraction model that uses LSTM-
ER (Miwa and Bansal, 2016), which com-
bines tree structure with sequential LSTM
models.

• BiPAM-syn (Huang et al., 2021): A model
that employs BERT as a language model for
end-to-end dependency parsing, incorporating
biaffine operations and syntactic information.

• BART-CPM (Bao et al., 2022): An encoder-
decoder model similar to ours, employing
BART (Lewis et al., 2020) as the language
model and the Constrained Pointer Mecha-
nism (CPM).

• Single Task (ST) model (Morio et al., 2022):
A state-of-the-art model in AM, employing a
biaffine neural approach akin to BiPAM-syn,
yet using Longformer (Beltagy et al., 2020) as
the language model.
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Essay Paragraph

Params Component Relation Component Relation

ILP (Stab and Gurevych, 2017) - - - 62.61 34.74
BLCC (Eger et al., 2017) - 63.23 34.82 66.69 39.83
LSTM-ER (Eger et al., 2017) - 66.21 29.56 70.83 45.52
BiPAM-syn (Ye and Teufel, 2021) 110M - - 73.5 46.4
BART-CPM (Bao et al., 2022) 139M - - 75.94 50.08
ST Model (Morio et al., 2022) 149M 76.55 54.66 76.48 59.55

T5-Base 220M 73.75 49.69 74.85 57.16
T5-Large 770M 75.65 51.17 75.55 57.47
T5-3B 3B 77.95 55.95 77.43 59.53
T5-11B 11B 79.48 57.06 77.17 59.02

FLAN T5-Base 220M 75.17 51.99 75.55 58.51
FLAN T5-Large 770M 77.75 56.06 76.93 58.57
FLAN T5-XL 3B 78.51 56.80 77.89 60.94
FLAN T5-XXL 11B 80.15 61.19 78.40 61.87

Table 4: Evaluation results at both the essay and paragraph levels obtained from AAEC. “Params” indicates the
model parameters of the pretrained language model used by each comparison model. Bold indicates the highest F1
score for each task.

C R

ST Model (Morio et al., 2022) 64.16 38.38

FLAN T5-Base 68.76 38.31
FLAN T5-Large 71.11 44.47
FLAN T5-XL 71.27 45.80
FLAN T5-XXL 72.86 47.66

Table 5: Evaluation results for Component-F1 (C) and
Relation-F1 (R) in AbstRCT. Bold denotes the highest
F1 score for each task.

C R

BART-CPM (Bao et al., 2022) 57.72 16.57
ST Model (Morio et al., 2022) 68.90 31.94

FLAN T5-Base 66.80 23.19
FLAN T5-Large 68.94 28.42
FLAN T5-XL 72.12 31.01
FLAN T5-XXL 72.68 33.96

Table 6: Evaluation results for Component-F1 (C) and
Relation-F1 (R) in CDCP. Bold denotes the highest F1
score for each task.

4.5 Evaluation Measures

Our methods were evaluated using the Component-
F1 score and the Relation-F1 score4, which are
considered the de-facto standard evaluation metrics
in the field (Stab and Gurevych, 2017; Eger et al.,
2017; Ye and Teufel, 2021; Morio et al., 2022;
Bao et al., 2022). Unlike AAEC, many studies
have evaluated the component classification and
the relation classification tasks of AbstRCT and

4For the AAEC evaluation, we used the scripts of Eger
et al. (2017).

CDCP given an oracle span (Kuribayashi et al.,
2019; Morio et al., 2020; Mayer et al., 2020). For
the evaluation of AbstRCT and CDCP, we bench-
marked our scores against those from prior research
that also measured Component-F1 and Relation-F1
scores in an end-to-end fashion.

4.6 Implementation Details

We trained the model using a batch size of 32 for
AAEC at the paragraph level, and a batch size
of 8 for AAEC at the essay level, as well as for
AbstRCT and CDCP. We set the maximum token
length to 512, for AAEC at the paragraph level, and
1,024 for the other datasets. The learning rate for
both the Base and Large models was set at 0.0005,
while a learning rate of 0.0002 was used for the
XL (3B) and XXL (11B) models. All training took
place on a single A100 (80GB) GPU over 10,000
steps, with checkpoints every 200 steps.

Typically, encoder-decoder models may not ac-
curately replicate the input text, resulting in iden-
tified text spans that differ from those in the orig-
inal text. To mitigate this issue, TANL uses the
Needleman-Wunsch alignment algorithm (Needle-
man and Wunsch, 1970) to establish alignment be-
tween the output and input text spans. This process
determines the position of words in the input text
within the output text, an approach that we also
adopted.

Following the method of Bao et al. (2022), we
performed inference using the development set
with the fine-tuned model, selecting the best check-
point based on the average scores of Component-F1
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AAEC (Essay) AAEC (Paragraph) AbstRCT

Output Format Model Component Relation Component Relation Component Relation

w/ nonargumentative span

FLAN-T5 Base 74.99 50.87 74.97 57.54 65.30 34.55
FLAN T5-Large 77.76 55.62 76.53 59.09 69.47 39.66
FLAN T5-XL 78.73 57.21 77.17 61.03 73.13 42.39
FLAN T5-XXL 80.59 60.37 79.06 62.38 72.78 47.11

w/o nonargumentative span

FLAN-T5 Base 75.17 51.99 75.55 58.51 68.76 38.31
FLAN T5-Large 77.75 56.06 76.93 58.57 71.11 41.49
FLAN T5-XL 78.51 56.80 77.89 60.94 71.27 45.80
FLAN T5-XXL 80.15 61.19 78.40 61.87 72.86 47.66

Table 7: Comparison of Component-F1 and Relation-F1 scores with and without nonargumentative span output for
essay-level and paragraph-level tasks in AAEC and AbstRCT.

Full Dataset Multiple Parents

Output Format Model Component Relation Component Relation

repeated representation

FLAN-T5 Base 66.94 22.40 60.12 22.64
FLAN T5-Large 66.80 23.19 64.15 27.43
FLAN T5-XL 72.12 31.01 68.67 32.81
FLAN T5-XXL 72.68 33.96 69.97 35.26

serial representation

FLAN-T5 Base 67.11 23.64 63.17 23.81
FLAN T5-Large 67.57 30.36 65.18 33.93
FLAN T5-XL 70.86 32.98 66.95 33.66
FLAN T5-XXL 71.34 34.96 68.53 40.14

Table 8: Comparison of Component-F1 (C) and Relation-F1 (R) with different representations in CDCP. Full
dataset shows results using all CDCP data, while Multiple Parent shows results using only data with multiple
parents.

FLAN T5-Base FLAN T5-Large FLAN T5-XL FLAN T5-XXL
0

1000

2000

3000

4000

5000

Ti
m

e 
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)

w/o non-argumentative span
w/ non-argumentative span

Figure 2: Comparison of inference time with and with-
out nonargumentative spans in AbstRCT. We set the
batch size to 2 for all models during inference and mea-
sured the time required to complete the process on the
entire test dataset.

and Relation-F1. For training with QLoRA, we ap-
plied 4-bit quantization to the model and set the
training hyperparameters as r = 16 and α = 32.
In addition, we trained the model by integrating the
adapter into all linear layers. Further details of our
implementation can be found in Appendix A.

5 Results and Discussion

5.1 Main Results

Table 4 shows the results obtained from the AAEC.
The results suggest that an increase in parameters
tends to yield significant performance gains. Al-
though our models do not outperform state-of-the-
art models when employing base or Large mod-
els, their performance is notably enhanced using
models with billion-scale parameters. Our model
with 3B parameters (T5-XL and FLAN-T5-XL)
achieved F1 scores comparable to current state-of-
the-art models, while those with 11B parameters
exceeded the existing top F1 scores. Specifically,
our FLAN T5-XXL model yielded Component-F1
scores of 80.15 at the essay level and 78.40 at the
paragraph level, and Relation-F1 scores of 61.19
and 61.87, respectively.

Despite the larger parameter count, our straight-
forward model architecture using QLoRA proves
practical. The table also reveals that FLAN T5 out-
performs T5, indicating that instruction-tuning on
various tasks using FLAN (Wei et al., 2022) has a
positive impact on the AM task.

We also present the results obtained from Ab-
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stRCT and CDCP in Table 5 and Table 6, respec-
tively. For AbstRCT, our FLAN T5-XXL achieved
state-of-the-art performance with a Component-
F1 score of 72.86 and Relation-F1 score of 47.66.
Similarly, the CDCP results also demonstrate state-
of-the-art performance, with Component-F1 and
Relation-F1 scores of 72.68 and 33.96, respectively.
Our model significantly outperforms existing mod-
els in both datasets, reinforcing the effectiveness
of our approach: text-to-text generation with the
TANL framework.

5.2 Difficulties of Hyperparameter Tuning
Our method offers an advantage over previous
methods owing to the simplicity of our model. Pre-
vious methods have individual hyperparameters for
subtasks, including span identification, component
classification, and relation classification. Morio
et al. (2022) employed Optuna (Akiba et al., 2019)
to determine the optimal hyperparameters. How-
ever, hyperparameter tuning can become challeng-
ing owing to the interdependence of the three sub-
tasks. This complexity becomes more pronounced
when using large models, potentially complicating
the training process.

By contrast, as our method relies solely on the
learning rate as its hyperparameter, it avoids the
difficulties associated with hyperparameter tuning
that are inherent in previous methods. This simplic-
ity is particularly advantageous when employing
large-scale language models.

5.3 Eliminating Nonargumentative Spans
Our model does not output irrelevant text spans
that cannot be classified as arguments. To assess
the impact of this elimination, we conducted evalu-
ations of the model without eliminating the follow-
ing three tasks5: AAEC at the essay level, AAEC
at the paragraph level, and AbstRCT.

Table 7 shows the results. Across all three tasks,
it is evident that the performance is not degraded
by the eliminations. Furthermore, inference time
can be reduced by eliminating irrelevant spans, an
effect that is particularly pronounced in AbstRCT
owing to its high count of nonargumentative spans.
Figure 2 illustrates the run time of the inference
on AbstRCT. The figure clearly shows the effec-
tiveness of the eliminations. Our method reduces
the inference time by approximately 30% for all
models: Base, Large, XL, and XXL.

5We excluded CDCP from this evaluation as it does not
contain irrelevant text spans.

5.4 Comparison of Component
Representations with Multiple Parents

Table 8 presents a comparison of two different rep-
resentations, repeated and serial, across the com-
plete test dataset from the CDCP (Full Dataset).
The table also includes the Component-F1 and
Relation-F1 scores, calculated only for components
with multiple parents (Multiple Parents). The data
demonstrates that there is no significant difference
in performance between the two representations in
the component classification. However, in relation
classification, the serial representation consistently
outperforms the other models across all models.
The results suggest that the repeated representa-
tion may not be optimal for tasks requiring the
extraction of long-term relationships, such as re-
lation classification. This could be attributed to
the model’s difficulty in capturing the full scope of
relationships in the text, as the repeated represen-
tation breaks down one-to-many relationships into
several separate one-to-one relations.

5.5 Performance Improvement with
Increasing Model Parameters

In the AAEC task at the essay-level task, FLAN
T5-XXL showed a significant improvement in
Relation-F1 performance compared to FLAN T5-
XL (Table 4). The gain is surprisingly around 4.4
points. To investigate the results in more detail, we
discuss the F1 scores for each Component and Rela-
tion label. Figure 3 shows the results. For the com-
ponent label, we observed a significant improve-
ment in CLAIM (66.12 vs. 71.57) compared to MA-
JORCLAIM (79.34 vs. 82.96) and PREMISE (82.87
vs. 83.01). When focusing on relation labels, we
found the largest improvement is seen in the MA-
JORCLAIM-CLAIM relation (45.33 vs.57.14). Ac-
cording to the AAEC annotation rules, PREMISE

to CLAIM and PREMISE to PREMISE are classified
as relations within a paragraph, while CLAIM to
MAJORCLAIM can be a relation spanning differ-
ent paragraphs. Therefore, these results imply that
FLAN T5-XXL can capture a longer dependency
between arguments. The substantial contribution of
a large number of parameters to the improvement
of distant dependency detection has a significant
impact on the argument mining research commu-
nity.

Table 9 shows example outputs for gold, FLAN
T5-XL, and FLAN T5-XXL. In the table, FLAN
T5-XL incorrectly predicts “the advertising ex-
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Figure 3: Comparison of F1 score output by label for the Component and Relation tasks.

Gold [ the advertising expenses lead to a higher product price and some of them express fake information ,
creating information asymmetry between consumers and companies | claim against ] [ its merits still
outweigh these downsides | premise | attack = the advertising expenses lead to a higher product price
and some of them express fake information , creating information asymmetry between consumers and
companies ]

FLAN T5-XL [ the advertising expenses lead to a higher product price and some of them express fake information ,
creating information asymmetry between consumers and companies | premise | support = advertisements
have no downsides ] [ its merits still outweigh these downsides | premise | attack = the advertising expenses
lead to a higher product price and some of them express fake information , creating information asymmetry
between consumers and companies ]

FLAN T5-XXL [ the advertising expenses lead to a higher product price and some of them express fake information ,
creating information asymmetry between consumers and companies | claim against ] [ its merits still
outweigh these downsides | premise | attack = the advertising expenses lead to a higher product price
and some of them express fake information , creating information asymmetry between consumers and
companies ]

Table 9: Example of output text from FLAN T5-XL and FLAN T5-XXL.

penses lead to a higher product price and some of
them express fake information , creating informa-
tion asymmetry between consumers and companies”
to PREMISE and depend on “advertisements has
no downsides”. On the other hand, FLAN T5-XXL
correctly predicts that it is a CLAIM with AGAINST

relation to MAJORCLAIM.

6 Conclusion

In this paper, we introduced a simple yet strong ap-
proach for argument mining (AM) using the TANL
framework for text-to-text generation. To simplify
and streamline annotations, we eliminated irrele-
vant text spans from the reference texts. Exper-
imental results obtained from AAEC, AbstRCT,
and CDCP demonstrated that our approach outper-
formed the current state-of-the-art method on these
datasets. Our research also indicated the efficacy of
employing the TANL framework to predict docu-
ment structures at the document level. Furthermore,
we found that removing irrelevant text spans de-
creased the inference time by approximately 30%
on AbstRCT.

Limitations

Although our method achieves state-of-the-art
Component-F1 and Relation-F1 scores across mul-
tiple datasets, its inference time poses a significant
hurdle for practical implementation. Inference time
strongly relies on the length of the input text. Al-
though eliminating irrelevant spans can help reduce
this time, our approach still necessitates longer in-
ference time compared to previous methods.

Even though QLoRA reduces memory require-
ments during training, these large parameter mod-
els still require GPUs with a substantial memory
capacity, such as the A100 (80GB).

Finally, we note that we only experimented with
the TANL framework on encoder-decoder models
such as T5 and FLAN T5. Further research is nec-
essary to verify whether our proposed method is
compatible decoder-based Large Language mod-
els (LLMs) such as GPT-4 (OpenAI, 2023) and
LLAMA2 (Touvron et al., 2023)6.

6As a preliminary experiment, we performed few-shot
learning using GPT-4 turbo, however, the results were not
satisfactory. Further details are provided in appendix B.
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AAEC (Paragraph) AAEC (Essay)

Batch size 32 8
Max length 512 1024
Step 10,000
Dropout 0.1
Adam beta1 0.9
Adam beta2 0.998

Table 10: Hyperparameters for AAEC.

AbstRCT CDCP

Batch size 8 8
Max length 1024 1024
Step 10,000
Dropout 0.1
Adam beta1 0.9
Adam beta2 0.998

Table 11: Hyperparameters for AbstRCT and CDCP.

A Implementation Details

Our code implementation is based on TANL7 and
QLoRA8 scripts. We used the T59 and FLAN T510

models available on Hugging Face.
Table 10 and Table 11 detail the hyperparameters

for fine-tuning. We tuned the hyperparameters us-
ing the AAEC at the essay level. The learning rates
for Base, Large, XL (3B), and XXL (11B) mod-
els in both T5 and FLAN T5 were set at 0.0005,
0.0005, 0.0002, and 0.0002, respectively. These
were determined through experimenting with all
models, adjusting in increments of 0.0001 from
0.0001 to 0.0005. It was observed that models
with larger parameter sizes, such as XL (3B) and
XXL (11B), showed improved performance with
the lower learning rates. However, we confirmed
that it was also possible to conduct training using
the default learning rate of 0.0005, as suggested
in the original TANL paper. Across all tasks, the
Adam optimizer was employed. For QLoRA fine-
tuning, we applied the same LoRA hyperparame-
ters for all tasks, shown in Table 12.

B Decoder-based Large Language Models

Table 13 shows the outcomes from experiments
using 3-shot, 5-shot, 10-shot, and 20-shot learn-

7https://github.com/amazon-science/
tanl

8https://github.com/artidoro/qlora
9https://huggingface.co/google-t5

10https://huggingface.co/google/
flan-t5-base

r 16
lora alpha 32
lora dropout 0.05
bias none
task type SEQ_2_SEQ_LM
target modules q, v, k, o,

wo, wi_0, wi_1
load_in_4bit True
bnb_4bit_quant_type nf4
bnb_4bit_use_double_quant True
bnb_4bit_compute_dtype torch.bfloat16

Table 12: Hyperparameters for fine-tuning with
QeLoRA.

Component Rrelation

FLAN T5-Base 75.17 51.99
FLAN T5-Large 77.75 56.06
FLAN T5-XL 78.51 56.80
FLAN T5-XXL 80.15 61.19

GPT4-turbo 3-shot 48.99 24.78
GPT4-turbo 5-shot 51.37 26.43
GPT4-turbo 10-shot 52.79 26.76
GPT4-turbo 20-shot 55.51 28.38

Table 13: Evaluation results of the few-shot learning
using GPT-4-turbo. Bold denotes the highest F1 score
for each task.

ing with GPT-4-turbo11. The Component-F1 and
Relation-F1 scores for 3-shot learning were 48.99
and 24.78, respectively, while 20-shot learning im-
proved to 55.51 and 28.38, respectively. These
scores are notably lower than those achieved with
the fine-tuned FLAN T5 model. Although fine-
tuning large language models (LLMs) is a promis-
ing direction for future research, finding the most
effective prompts for such fine-tuning is still a chal-
lenge. Consequently, our study did not extensively
investigate the application of LLMs in Argument
Mining (AM). Nonetheless, we believe that the text-
to-text framework could be effectively integrated
with decoders for AM tasks.

11Specifically, we used the gpt-4-1106-preview ver-
sion of the OpenAI API.
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