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Abstract

In-context learning with Large Language
Models (LLMs) has emerged as a promising
avenue of research in Dialog State Tracking
(DST). However, the best-performing in-
context learning methods involve retrieving
and adding similar examples to the prompt,
requiring access to labeled training data.
Procuring such training data for a wide
range of domains and applications is
time-consuming, expensive, and, at times,
infeasible. While zero-shot learning requires
no training data, it significantly lags behind
the few-shot setup. Thus, ‘Can we efficiently
generate synthetic data for any dialogue
schema to enable few-shot prompting?’
Addressing this question, we propose
SynthDST, a data generation framework
tailored for DST, utilizing LLMs. Our
approach only requires the dialogue schema
and a few hand-crafted dialogue templates to
synthesize natural, coherent, and free-flowing
dialogues with DST annotations. Few-shot
learning using data from SynthDST results in
4 − 5% improvement in Joint Goal Accuracy
over the zero-shot baseline on MultiWOZ
2.1 and 2.4. Remarkably, our few-shot
learning approach recovers nearly 98% of the
performance compared to the few-shot setup
using human-annotated training data1.

1 Introduction

Dialogue State Tracking (DST) is an integral task
in task-oriented dialogue systems that predicts the
user intentions for each turn by mapping them
to predefined slot-value pairs (Henderson, 2015).
DST systems capture important information
essential to model the downstream dialogue policy
and help generate actionable responses (Jacqmin
et al., 2022). Prior literature has typically framed

∗Work done during internship at Apple Inc.
1Our synthetic data and code can be accessed at

https://github.com/apple/ml-synthdst.

Can we schedule the taxi to depart
at 03:15?

When do you want to book a taxi, and is
there anything else I can help you with?

Accumulated Dialog States:
    taxi-departure = Ely
    taxi-dest = Ugly Duckling

Turn Dialog States:
    taxi-leaveat= 03:15

Location is not a priority, it could be a
hotel or guest house, either way is fine.

What is your location preference ?

Accumulated Dialog States:
    hotel-stars = 4
    hotel-internet = yes

Turn Dialog States:
    hotel-area = dontcare
    hotet-type = dontcare

Figure 1: One of these is a dialog generated by
SynthDST. Each dialog contains conversation history
(as accumulated dialog states), system turn, user turn,
and current turn’s dialog states. Can you guess which
dialog is synthetically generated by SynthDST?2.

DST as either a multi-class classification task
(Henderson et al., 2014; Mrkšić et al., 2017; Wu
et al., 2020; Chen et al., 2020) or a sequence-to-
sequence learning task (Wu et al., 2019; Kim et al.,
2020; Hosseini-Asl et al., 2020; Lee et al., 2021;
Shin et al., 2022). With the rise of Large Language
Models (LLMs), various techniques have been
proposed to harness their emergent capabilities
for dialogue state tracking (Hu et al., 2022; Chen
et al., 2023a; Heck et al., 2023; King and Flanigan,
2023; Yang et al., 2023).

Most approaches for DST necessitate access
to gold-standard human-annotated data for
supervised fine-tuning (Wu et al., 2019; Shin
et al., 2022) or retrieval-based in-context learning
(Hu et al., 2022; King and Flanigan, 2023). This
comes with four main drawbacks. First, curating
fine-grained utterance-level annotated dialogue
data in a Wizard-of-Oz / human-to-human
conversation setup (e.g., MultiWOZ) is both
time-consuming and expensive (Budzianowski
et al., 2018). Second, many DST benchmarks
contain incorrect annotations (Ye et al., 2022),
which can hinder learning and may introduce

2The right example is synthetically generated.
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spurious biases (Qian et al., 2021). Third, nearly
all DST datasets are confined to a limited number
of domains. Training on these datasets limits the
models’ ability to generalize to unseen domains,
thereby hampering their suitability for real-world
deployment (Dingliwal et al., 2021). Fourth,
real-world applications may need to regularly
add new domains or modify existing schemas.
However, iterating on data collections may pose a
significant challenge (Jacqmin et al., 2022).

While zero-shot prompting of LLMs using
only the dialogue schema provides a data-less
approach for DST, it under-performs compared
to the retrieval-based few-shot prompting that
adds semantically similar training examples in
the prompt (Hu et al., 2022; King and Flanigan,
2023). Given these challenges, one may wonder:
‘How can we leverage LLMs’ in-context learning
capabilities when we do not have access to
annotated training data?’ Or conversely, ‘Can we
efficiently generate synthetic data for any dialogue
schema to enable few shot prompting?’ In this
work, we aim to answer this.

We introduce SynthDST, an LLM-based
approach for generating dialogues with dialog
state annotations. SynthDST takes a dialogue
schema as input and outputs four objects: the
conversation state, the next system response, the
next user response, and the updated conversation
state. For this, it uses predefined intents and intent
transitions (Table 1), along with hand-crafted
templates (Tables 2, 3). The pipeline is detailed
in Figure 2, and an example can be seen in Figure
1. It first programmatically generates raw data for
the four output objects. Then, it transforms the raw
intents into sentences with templates and further
paraphrases them into natural language using
LLMs. We evaluate SynthDST using the IC-
DST framework (Hu et al., 2022) on MultiWOZ
2.1 (Eric et al., 2020) and 2.4 (Ye et al., 2022).
Our results show a 4 − 5% improvement over the
zero-shot baseline on both datasets. Moreover,
few-shot learning with SynthDST data achieves
approximately 98% and 95% of the performance
when using training data for MultiWOZ 2.1 and
2.4, respectively. In summary, our contributions
are two-fold:

• We propose SynthDST, a scalable domain
agnostic framework for generating synthetic
dialogue data with dialog state annotations.

• We empirically demonstrate that retrieval-

based few-shot prompting with SynthDST’s
synthetic data surpasses both the zero-shot
and random few-shot learning baselines.
Moreover, it reaches close to the few-
shot prompting performance with human-
annotated training data.

2 Related Work

2.1 Synthetic Data Generation for Dialog

The advent of large language models has brought
about a significant transformation in synthetic data
generation. LAD (Mehri et al., 2022) generates
linguistically diverse synthetic dialogues by
imposing structural constraints on prompts for
intent prediction, slot filling, and next action
prediction. RSODD (Bae et al., 2022) adopts a
human-in-the-loop approach to craft role-specific
open-domain dialogues. Specifically, it takes role
specification and examples designed by dialogue
developers to generate artificial conversations,
followed by human editing. On similar lines, Chen
et al. (2023b) introduced PLACES, a framework
utilizing topic information, background context,
and expert-written conversations as in-context
examples for synthetic dialogue generation.
Synergy (Peng et al., 2021) adopts a different
approach by modifying simulated dialogue
sketches, each comprising multi-turn dialogue
actions and belief states. A natural language
generation module transforms these actions into
natural language. Lastly, DIALOGIC (Li et al.,
2022) presents a controllable dialogue simulation
method that generates DST-annotated dialogues
using a seed corpus.

In summary, the NLP community has shown
a growing interest in synthetic data generation
for dialogue applications. However, frameworks
like RSODD, PLACES, and Synergy demand a
level of human supervision and lack slot-value
annotations, rendering them unsuitable for DST.
While DIALOGIC generates synthetic data with
dialog state annotations, it has limited coverage
of dialogue acts, needs human intervention
for annotation correction, and necessitates a
seed corpus. Addressing these challenges,
SynthDST provides more control over the
generated dialogues by grounding them in
dialogue states. Moreover, SynthDST does not
require human intervention in filtering or editing
the synthetic data, facilitating greater scalability.
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Figure 2: Overall pipeline of SynthDST for synthetic dialog generation

2.2 Zero and Few-Shot Learning for DST

Significant research is dedicated to dialogue state
tracking with in-context learning. Lin et al. (2021)
proposed a zero-shot cross domain DST method
by prompting the T5 model (Raffel et al., 2020)
with slot descriptions. Madotto et al. (2021)
assessed different language models for DST
through prompt-based few-shot learning. Other
approaches, such as UnifiedSKG (Xie et al., 2022)
and InstructDial (Gupta et al., 2022), introduce
multi-tasked and instruction-tuned variants of T5
and BART, which exhibit strong zero-shot DST
performance. IC-DST (Hu et al., 2022) frames
DST as a text-to-SQL problem using the codex
version of GPT-3. RefPyDST framework (King
and Flanigan, 2023) formulates DST as a Python
programming task, retrieves more diverse in-
context examples, and introduces a novel re-
weighting method during decoding. Heck et al.
(2023) provide empirical evidence that ChatGPT
can yield competitive results in DST without
any complex prompting. More recently, a dual
prompting strategy was proposed by Yang et al.
(2023), decomposing DST into slot and value
generation tasks. Compared to the above research,
our work complements the zero-shot prompting
techniques to harness the capabilities of LLMs
without collecting human-annotated data.

3 Methodology

Figure 2 outlines the SynthDST’s data generation
pipeline. It utilizes just the dialogue schema and
a set of handcrafted templates to generate
fluent dialogues with dialog state annotations.
Specifically, each dialog generated using
SynthDST comprises a quartet of dialogue
history, system turn, user turn, and the current
turn’s dialog states. SynthDST employs a
three-step approach for generating dialogue data.

We explain each step below.

3.1 Dialogue Structure Synthesis

Abstract Dialogue Model. The effectiveness of
SynthDST in generating meaningful dialogues
relies on its strategic selection of system and user
dialogue acts. A dialogue act, represented by
intent and its associated slot-value pairs, indicates
the specific communicative action of a user and
the system (Core and Allen, 1997; Traum, 1999;
Budzianowski et al., 2018). Selecting valid
dialogue acts for each system and user turn is non-
trivial, as random pairing may yield incoherent
and illogical dialogues. To address this issue, we
adopt an approach similar to that of Campagna
et al. (2020) by creating an abstract dialogue
model. We define it as a set of system-user
dialogue acts along with their valid transitions.
Table 1 depicts the system-user intents and their
valid transitions used in the abstract dialogue
model. Our meticulously curated list of system-
user intent transitions is independent of any
dialogue domains and datasets, following a natural
dialogue progression. Hence, it proffers greater
generalizability and scalability.

Synthesizing Dialogue Structure from Abstract
Dialogue Model. For synthesizing a sample, we
begin by selecting a system-user intent pair from
Table 1. Following previous works (Campagna
et al., 2020; Hu et al., 2022), we represented
dialogue history as the accumulated dialogue
state. The dialogue history is constructed by
randomly selecting slot-value pairs from the
dialogue schema3 following the chosen system
intent. The system and user dialogue acts are
sampled based on the dialogue history and the
selected system-user intent. Lastly, we sample

3Dialogue schema presents a structured representation of
the valid slots and values across different domains
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System Intent User Intent
start inform
inform inform, update, reqmore, confirm, book
nooffer update, recheck, end
select pick, update, reqmore
recommend select, update, reqmore
request inform
booking-request inform
booking-inform book, nobook, update, reqmore, inform
offerbooked new_domain, confirm, end
booking-book new_domain, confirm, end
booking-nobook new_domain, recheck, end

Table 1: Coherent system-user intents. For each system
intent, we define the list of user intents that can indicate
a natural next turn flow.

dialogue Act Template
recommend (d, s, v) I would suggest the <d> with <s> <v>
offerbooked (d, s, v) Booked <d> for <v> <s>
request (d, s, v) What is your preferred <d> <v> ?

Table 2: Selected system template responses

the current belief state values, considering the
dialogue history and the user dialogue act. This
approach guarantees the generation of coherent
and contextually appropriate dialogue structure.

3.2 Template Response Generation

Prompting LLMs to generate free-flowing
dialogues from the raw conversation structure
offers limited control over its characteristics.
As highlighted by Li et al. (2022) and Chen
et al. (2023b), unconstrained generation based
solely on the dialogue history or topic can
produce erroneous dialogues, often necessitating
human review and correction. On the other
hand, prompting an LLM to modify a skeletal
dialogue offers better control. Thus, drawing
inspiration from Rastogi et al. (2020) and Kale
and Rastogi (2020), we adopt the template-guided
approach that enables fine-grained control over
dialogue content. While Kale and Rastogi (2020)
primarily offer templates for system response
generation, their method entails crafting separate
templates for each domain, dialogue act, and
slot triplet. This results in more than 200
templates, demanding extensive human effort.
Furthermore, these templates are not domain- and
slot-agnostic, demanding effort with each new
domain and schema modification. Building upon
their methodology, we introduce domain-agnostic
templates for both system and user responses.

Given a quartet of domain, dialogue act,

dialogue Act Template
inform (d, s, v) The <d> <s> should be <v>
nobook (d, s, v) No, don’t book the <d> for <v> <s>
reqmore (d, s, v) What is the <d>’s <s> ?

Table 3: Selected user template responses

slot, and value, respectively, we map it to a
template that depends only on the dialogue act.
Each template contains designated placeholder
tokens for domain, slots, and values, which are
substituted during template generation. This
guarantees that the generated dialogues are
grounded in the provided belief states. We utilize
templates for just 22 dialogue acts (11 each
for system and user), thus considerably reducing
human efforts. We generate between 2 and 4
templates per dialogue act to encourage diversity.
Also, our templates are domain-agnostic and can
be scaled to newer domains without additional
effort. Tables 2 and 3 illustrate some of our system
and user templates, respectively.

3.3 LLM-based Template Modification

While the templates offer natural language
descriptions for both system and user responses,
they lack linguistic and conversational variations.
Additionally, as these templates are designed to
be domain and slot-value agnostic, they may
contain certain grammatical and fluency errors.
As a result, transforming these template-based
responses into more naturalistic and free-flowing
language can lead to contextually appropriate
dialogues. Following previous research efforts
in synthetic data generation (Mehri et al., 2022;
Xiang et al., 2022; Li et al., 2022; Chen et al.,
2023b), we employ GPT-3.5 (Brown et al., 2020)
for converting the template responses to free-
flowing dialogues. For this, we explore three
distinct prompting strategies, detailed as follows.

We initially experimented with ‘dialogue-level
prompting’, instructing the LLM to modify the
entire two-turn dialogue. This approach led to a
hallucination of slot-value pairs and the generation
of disfluent dialogues as the LLM often merged
or interchanged information between user and
system utterances. We also encountered instances
where one of the system-user responses was
skipped, generating a single utterance. We then
explore a ‘multi-step prompting’ approach, which
employs a sequential prompting process. First, we
prompt the LLM to refine the system template and
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then modify the user template independently by
providing the modified system response. While
this addresses the issue of skipped utterances, it
still suffers from information blending between
system and user responses, resulting in incorrect
slot-value annotations and dialogues.

To overcome these drawbacks, we opt for
‘utterance-level prompting’. In this method, we
refine the system and user template independently.
This approach results in succinct responses
strongly anchored in the template structure and
consistent with the slot values. Importantly, it
avoids the issue of information merging between
system and user turns. We use this as our final
prompting strategy. The prompt used is as follows:

Following is a template <user/system>
response for a conversation between a
<domain> chatbot and a user. Paraphrase the
template by making it more fluent, engaging,
polite, and coherent. Also, correct grammatical
mistakes. Reorder the sentences if necessary.
Strictly generate the response in the form of a
JSON object {‘<user/system>_paraphrased’:
”} with correct formatting (including curly
brackets). Do not return anything else apart
from the JSON object.
‘<user/system>_template’: ‘<template>’

While the utterance modification using the
above prompting scheme results in naturalistic
conversations, we find that their stylistic diversity
remains limited. Thus, to make the dataset
more diverse, we use ‘paraphrase prompting’,
to generate different paraphrased dialogue
variants. Similar to utterance-level prompting,
we independently paraphrase both system and
user responses to create the final dialogue.
Our selection of prompts for paraphrasing is
randomized from the following set:

Rephrase the sentences while retaining the
original meaning.
Use synonyms or related words to express the
sentences with the same meaning.
Use conversational language and paraphrase
the following sentences.
Generate a crisp and to the point single
sentence from the given sentences using
conversational language.

4 Experimental Setup

4.1 Synthetic Data Generation

Using SynthDST, we create two types of
synthetic corpora. In line with prior DST
works (Wu et al., 2019; Hu et al., 2022),
we generate data equivalent to 1%, 5%, and
10% of the training data size, ensuring a fair
comparison with regard to number of samples in
the retrieval bank. Each set contains 1) 50%
of conversations featuring new slot-value pairs,
2) 15% of conversations with no new belief
states introduced 3) 10% each of conversation
starters and terminators, 4) 10% of conversations
updating existing slots with new values, and
5) 5% involving the repetition or deletion of
prior slot-value information. This ensures that
the data bank follows a realistic distribution
of conversations while encompassing diverse
dialogue flows. Moreover, such careful data
curation is known to stabilize ICL performance
(Chang and Jia, 2023). Additionally, we
generate sampling invariant versions of synthetic
datasets, denoted as uniqueall and uniqueall5x.
The uniqueall dataset includes all valid unique
dialogue flows, whileuniqueall5x includes five
instances of each unique dialogue flow. This
results in a dataset of about 7k and 25k dialogues,
respectively. Detailed information regarding these
datasets can be found in Appendix A.1.

4.2 In-Context Learning Model

Our experiments are based on the IC-DST
framework introduced by Hu et al. (2022). It
reformulates DST as a text-to-SQL problem, using
a tabular description of the ontology followed
by relevant in-context examples in the LLM
prompt. The IC-DST framework leverages the
text-davinci-codex version (Chen et al., 2021) of
OpenAI’s GPT-3 model (Brown et al., 2020). It
uses the cumulative dialogue state to represent
conversation history. This design choice enhances
efficiency, incorporates more in-context examples,
and performs effectively in the presence of
domain shifts. Additionally, IC-DST introduces a
novel similarity score to retrieve better in-context
examples. We encourage readers to refer to Hu
et al. (2022) for a comprehensive understanding
of the IC-DST framework.

We introduce specific modifications to the IC-
DST framework, reducing its complexities and
making it suitable for current versions of GPT
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Percentage Method MultiWoZ 2.1

Attraction Hotel Restaurant Taxi Train JGAD JGAA

− Zero Shot 71.80.0 45.30.2 63.10.8 72.70.6 61.50.8 62.90.3 39.90.3
Few Shotrandom 74.40.2 48.82.9 60.95.3 74.00.7 60.32.1 63.71.9 40.32.4

− Few Shotuniqueall 72.00.4 51.21.8 65.30.7 75.50.7 69.01.0 66.60.3 45.30.5
Few Shotuniqueall5x 72.30.6 51.60.7 65.91.3 74.61.0 69.00.6 66.70.1 45.00.1

1%
Few ShotSynthDST 72.60.4 51.90.4 66.90.6 75.10.1 68.71.6 67.10.3 45.80.3
Few Shottrain 73.90.4 52.40.6 67.31.0 76.60.5 66.00.9 67.20.3 45.00.4

5%
Few ShotSynthDST 71.00.9 52.11.3 65.91.5 76.30.5 68.40.3 66.70.6 44.90.8
Few Shottrain 74.31.0 54.20.7 69.01.6 78.61.1 66.70.9 68.60.8 46.21.1

10%
Few Shot†SynthDST 71.20.9 51.50.6 67.21.5 76.30.4 69.00.3 67.10.2 45.40.6
Few Shottrain 74.20.2 53.80.4 69.11.3 78.31.5 66.40.9 68.30.5 46.10.8

100% Few Shot†train 74.00.1 51.90.3 69.00.4 79.60.4 70.40.8 69.00.0 46.00.1

∆SynthDST†−zeroshot ↓ 0.6 ↑ 6.2 ↑ 4.1 ↑ 3.5 ↑ 7.5 ↑ 4.2 ↑ 5.5

∆SynthDST†−random ↓ 3.2 ↑ 2.7 ↑ 6.3 ↑ 2.3 ↑ 8.7 ↑ 3.4 ↑ 5.1

∆SynthDST†/train† 96.2 99.2 97.4 95.8 98.0 97.4 98.7

Percentage Method MultiWoZ 2.4

Attraction Hotel Restaurant Taxi Train JGAD JGAA

− Zero Shot 78.20.2 52.10.1 67.20.7 72.60.5 66.10.1 67.20.2 45.60.3
Few Shotrandom 81.30.6 51.64.3 63.26.1 73.60.4 63.22.5 66.61.9 44.22.6

− Few Shotuniqueall 79.10.8 56.81.5 66.91.4 76.40.4 73.20.4 70.50.6 50.41.0
Few Shotuniqueall5x 78.70.2 57.40.9 67.60.5 74.80.1 73.80.8 70.40.2 50.40.4

1%
Few ShotSynthDST 79.40.5 57.20.8 69.20.3 76.20.4 72.51.6 70.90.5 51.01.1
Few Shottrain 81.40.3 58.82.4 72.12.3 77.10.2 70.22.2 71.90.5 52.11.0

5%
Few ShotSynthDST 79.11.4 56.81.1 69.81.6 77.10.9 72.42.0 71.11.2 50.41.8
Few Shottrain 81.30.6 60.00.4 74.50.9 78.50.6 72.41.9 73.40.5 54.21.0

10%
Few Shot†SynthDST 77.90.5 57.60.3 69.90.5 77.10.6 73.20.8 71.10.2 50.90.3
Few Shottrain 82.10.9 60.60.8 75.00.8 79.10.9 71.31.2 73.60.3 53.80.9

100% Few Shot†train 84.00.4 60.00.4 75.90.4 81.30.2 74.70.4 75.20.1 55.20.2

∆SynthDST†−zeroshot ↓ 0.3 ↑ 5.5 ↑ 2.7 ↑ 4.5 ↑ 7.1 ↑ 3.9 ↑ 5.3

∆SynthDST†−random ↓ 3.4 ↑ 6.0 ↑ 6.7 ↑ 3.5 ↑ 10.1 ↑ 4.5 ↑ 6.7

∆SynthDST†/train† 92.7 96.0 92.1 94.8 98.0 94.5 92.2

Table 4: Comparison of per-domain Joint Goal Accuracy (JGAD) and all-domain Joint Goal Accuracy (JGAA) on
MultiWoZ 2.1 and 2.4 using zero-shot, random few-shot, and retrieval-based few shot prompting with different
percentages of synthetic and training data.

models. Firstly, due to the deprecation of the text-
davinci-codex, we experiment with gpt-3.5-turbo,
a newer chat model that exhibits similar coding
capabilities. Secondly, the IC-DST framework
uses explicit fine-tuning of the retriever on the
training data. This process needs compute
resources and time and presupposes access to
training data. Consequently, we have adopted
an off-the-shelf solution in the form of Sentence-
BERT (Reimers and Gurevych, 2019), specifically
the all-mpnet-base-v2 model (Song et al., 2020).
We keep the rest of the formulations unchanged.

4.3 Dataset

MultiWOZ 2.1 (Eric et al., 2020) is a multi-
domain human-to-human dialogue dataset that
contains over 10K dialogues across 8 domains.
This is the updated version of the original
MultiWOZ 2.0 dataset (Budzianowski et al.,
2018). MultiWOZ 2.1 is a widely used benchmark
for DST and in dialogue systems research.

MultiWOZ 2.4 (Ye et al., 2022) builds on top
of the 2.1 version and makes substantial changes
to the validation and test sets. MultiWOZ 2.4 can
be viewed as a cleaner version of MultiWOZ 2.1
that better reflects model performance.

4.4 Evaluation Metrics

We employ the conventional Joint Goal Accuracy
(JGA) as our evaluation metric. This metric
considers a prediction correct when all slots-
values match the ground truth. We report
the All-Domain Joint Goal Accuracy (JGAA)
for the overall performance and the Per-domain
Joint Goal Accuracy (JGAD) for domain-level
performance (Wu et al., 2019; Hu et al., 2022).

5 Results and Discussion

Table 4 presents our results for MultiWOZ 2.1 and
2.4. The zero-shot setting is the only baseline
that does not rely on any human-annotated data,
similar to our approach. We also report on
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Method Attraction Hotel Restaurant Taxi Train JGAD JGAA

Few ShotT 73.30.7 49.70.2 63.61.4 75.90.5 66.70.6 65.80.3 43.80.2
Few ShotLLM 72.60.4 51.90.4 66.90.6 75.10.1 68.71.6 67.10.3 45.80.3

Table 5: Ablation study of SynthDST. Few ShotT
and Few ShotLLM refer to template and LLM-modified
data, respectively.

a random setting, where we randomly add 2
examples per domain (resulting in 10 examples)
from the training data to form a static set of
in-context examples. Additionally, we assess
the performance of synthetic and training data at
different percentages as explained in section 4.1.
For all setups, the average performance over 3 runs
is reported.

Synthetic Data Consistently Beats Zero-Shot.
Few-shot prompting using data generated from
SynthDST and the zero-shot setups illustrate
scenarios where no training data is used. This
is particularly relevant to practical settings where
obtaining human-labeled data can be prohibitively
expensive in terms of cost and human effort. From
table 4, observe that few-shot using data from
SynthDST leads to substantial gains over zero-
shot. Specifically, we observe about 4% and 5%
improvements for JGAD and JGAA, respectively,
across both the datasets. Moreover, it gives
notably high gains on the two worst performing
domains, about 6% on hotel and 7% on train.
In summary, synthetic data may provide a good
solution when no training data is available.

Retrieval-Based ICL with Synthetic Data
Outperforms ICL with Random Training
Examples. In some scenarios, ML practitioners
may have access to a limited number of in-domain
examples. Therefore, using a few static examples
for few-shot learning is a relevant baseline.
Table 4 reveals that utilizing randomly selected
in-domain examples leads to similar or worse
performance than the zero-shot setting. Notably,
the performance drops significantly on restaurant
and train domains. This observation aligns with
previous findings (Liu et al., 2022), highlighting
the high variance in results and emphasizing that
random example selection is not an effective
choice for ICL. SynthDST offers improvements
of approximately 5− 6% on the JGAD and JGAA

for both MultiWOZ versions across most domains.
Interestingly, we notice substantial gains in the
attraction domain. We conjecture that these gains
can be attributed to the distribution in the test split.

We discuss more on this in Appendix A.2.

SynthDST Competes Effectively with Training
Data. Table 4 reports the performance on
different percentage splits of training data. The
results indicate that SynthDST consistently
recovers over 95% and 92% of the training data
performance on MultiWOZ 2.1 and 2.4 across all
domains. Surprisingly, it even outperforms the 1%
training data setup in MultiWOZ 2.1. Also, there
are improvements of 1 − 3% on the train domain
for both versions. Moreover, it significantly
reduces the performance gap, particularly in
the hotel domain, which exhibited the poorest
performance in the zero-shot setting.

Quality Trumps Quantity in Synthetic Data.
In Section 4.1, we emphasize the importance
of meticulously curating the ICL data pool for
improved few-shot learning. From Table 4
it becomes evident that few-shot learning with
uniqueall and uniqueall5x data almost never
surpasses the performance of the carefully curated
data. Despite uniqueall and uniqueall5x being
approximately 14x and 47x times larger than the
1% data subset, respectively, it is clear that having
a substantial representation of relevant examples
is superior to having an equal representation of all
examples. Moreover, less relevant examples can
introduce noise and adversely affect predictions
if the proportions of labels appearing in context
differ greatly from the test instance (Zhao et al.,
2021). Nevertheless, we still maintain a consistent
improvement of over 5% compared to the zero-
shot and random settings, underscoring the
effectiveness of our synthetic data.

Template Data or LLM Modified Data? Table
5 presents an ablation study conducted on
the 1% split of MultiWoZ 2.1. We observe
that relying solely on template data yields
improved performance in the attraction domain
but significantly lower results in the hotel,
restaurant, and train domains, resulting in an
overall decrease in performance. Transitioning
from templates to more naturalistic conversations
leads to an approximate 2% improvement on
JGAD and JGAA. There is also a noticeable
improvement in the restaurant, hotel, and train
domain. Comparing these findings with Table 4,
we observe that relying solely on template data
results in an improvement of nearly 4% in JGAA.
Therefore, even without LLMs, SynthDST offers
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Figure 3: Box plot of Human evaluation scores.

significant gains over the zero-shot setting.

Synthetic Data Helps Unveil Annotation Bias.
Inconsistent annotation has been a pervasive
issue in DST datasets (Zang et al., 2020;
Han et al., 2021; Ye et al., 2022). While
MultiWoZ 2.4 presents a much cleaner version,
our study uncovers a distinct concern unanswered
previously: incongruities related to domain
ontology. More precisely, our examination has
revealed that the current annotations treat parking
and internet slots labeled as ‘yes’ as synonymous
with ‘free.’ However, these are two separate
slot values in the schema and convey distinct
meanings. To illustrate, when parking slots
are marked as ’yes,’ it generally indicates the
availability of parking. Nevertheless, it does not
necessarily imply that the parking is free; users
might still be required to pay for parking despite
the availability of slots.

6 Dataset Quality Analysis

Is the data generated by SynthDST of
Good Quality? As SynthDST is a human-
involvement-free synthetic data generation
approach (except for template definition),
assessing its quality is crucial. Consequently,
we conducted a human evaluation on 200
dialogues from our 1% dataset split. Four
evaluators, experienced in dialogue systems
research, evaluate the data. Given the generated
samples containing the dialogue history, average
system utterance, average user utterance, and
new dialogue state, the evaluators assessed the
dialogues on four dimensions, namely, Grammar,
Coherence, Naturalness, and Annotations. The
annotations are rated from 1-3, whereas the others
are graded on a 1-5 scale. The detailed scales are
given in Appendix A.3.

In Figure 3, we present the results of our
human evaluation. The majority of the dataset
demonstrates high scores for Grammar, indicating
grammatical correctness and minimal mistakes.
For Coherency, both the mean and median
scores exceed 4, signifying that the dialogues are
mostly coherent and logically structured. While
Naturalness exhibits slightly more variability, the
mean, and median still surpass 4, indicating that
most dialogues maintain a natural conversational
flow resembling real-world conversations. Lastly,
the Annotations scale attains a median of 3
and a mean > 2.5, suggesting that most of the
annotations are correct.

Is SynthDST More Cost-Effective than
Human Annotation? Creating the MultiWOZ
dataset involved 1,249 workers and incurred
a cost of approximately $30, 000, excluding
post-processing expenses (Budzianowski
et al., 2018; Li et al., 2022). In contrast,
SynthDST significantly reduces both cost and
time requirements. Specifically, SynthDST
utilizes a total of 4 OpenAI API calls for each
sample, 1 for modifying the system template
into an utterance, 1 for modifying the user
template into an utterance, then 1 for further
paraphrasing the system utterance, and lastly for
paraphrasing the user utterance. Table 6 presents
the details of input-output tokens utilization and
the total cost for each prompting step across
different data splits. We see that SynthDST
can generate an entire MultiWOZ-sized dataset
(≈ 55k dialogues) in just about $40. Moreover,
generating 1% equivalent data requires less than
$1 while maintaining the DST performance. Thus,
SynthDST presents a cost-effective method to
collect DST data.

7 Conclusion and Future Work

In this work, we present SynthDST, a synthetic
data generation framework that leverages the
dialogue schema to create coherent dialogues
with DST annotations using a template-guided
LLM-based approach. This framework enables
the use of in-context learning for DST without
human-annotated training data. Performance with
SynthDST reaches close to the performance with
training data on dialogue state tracking. This
opens the possibility of supporting new domains
without needing cumbersome and expensive
training data collection. Moreover, it also reduces
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Percentage
Utterance Modification Utterance Paraphrasing Cost

. Avg sys. Avg sys. Avg user Avg user Avg sys. Avg sys. Avg user Avg user (USD)
inp. tok. out. tok. inp. tok. out. tok. inp. tok. out. tok. inp. tok. out. tok.

1% (≈ 549 data) 120.46 28.93 114.02 25.63 41.09 30.15 37.98 26.90 $0.38
5% (≈ 2748 data) 119.54 27.95 114.27 25.78 40.23 29.52 37.83 26.46 $1.88
10% (≈ 5495 data) 119.95 28.23 114.14 25.91 40.37 29.41 38.06 26.54 $3.78

Table 6: Cost Analysis of SynthDST in USD. Leveraging OpenAI’s GPT-3.5-turbo, the expense is $0.0010 per
1000 input tokens and $0.0020 per 1000 output tokens. With these cost projections, generating a synthetic dataset
equivalent in size to MultiWoZ (≈ 55k examples) using SynthDST will cost less than $40!

some annotation bias from these datasets.
Numerous potential avenues for future research

emerge from our current work. While we
experiment only with the MultiWOZ datasets,
SynthDST can readily be extended to other
corpora. While SynthDST predominantly relies
on the close-sourced OpenAI GPT-3 model, it
would be interesting to see how it performs
with open-sourced LLMs. We encourage further
research that validates its performance across
diverse domains and models. Moreover, our
approach does not incorporate safeguards to detect
hallucinations in LLM-generated data, which is a
direction for future investigations.

8 Limitations

We designed SynthDST as a domain-agnostic
framework to enable scalability across different
domains. However, this domain-agnostic
approach comes with a trade-off – it struggles
to capture inter-slot dependencies. For instance,
when the slot "attraction-type" contains "sports,"
it should ideally retrieve sports-related attractions
for the "attraction-name" slot. Unfortunately,
the current framework cannot accomplish this
without compromising its domain-agnostic
nature. Furthermore, SynthDST lacks a post-
hoc human correction module, resulting in the
retention of such potentially erroneous examples
in the dataset. Nevertheless, such examples are
few and far between, as indicated by the high
human evaluation scores. Thus, it’s important
to emphasize that despite these challenges,
SynthDST continues to deliver commendable
performance.

9 Ethical Consideration

This work uses LLMs for synthetic data
generation. It makes an effort to ensure grounded
and consistent data is generated by the LLM,

however there can still be hallucinations and/or
inconsistencies in the predictions. It is highly
recommended to implement further guardrails to
use such data synthesis approaches in real world
scenarios.
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A Appendix

A.1 Synthetic Data Generation

Table 7 contains the domain distribution of the
different splits of SynthDST. For the 1%, 5%,
and 10% percentage data, we uniformly sample
each domain data according to the sampling
scheme explained in Section 4.1. For the
synthetic1 and synthetic5 datasets, we observe
an uneven distribution of domains. This disparity
arises due to our emphasis on acquiring unique
system-user dialogue act pairs. Since each
domain has a distinct number of dialogue acts, the
distribution becomes skewed.

Data Attraction Hotel Restaurant Taxi Train Total

1% 106 111 116 105 111 549
5% 547 553 553 548 547 2748
10% 1093 1112 1109 1086 1095 5495
synthetic1 526 2968 1843 795 1536 7668
synthetic5 2142 9223 6146 2856 5422 25789

Table 7: Synthetic data distribution across domain.

A.2 Extended Discussion

Impact of Test Distribution on the Results.
Figure 4 depicts the coarse and fine-grained
distribution of the different domains in the
MultiWOZ test set. The coarse-grained
distribution suggests a relatively balanced
representation of all domains, except for the taxi
domain, which is less prominent. However, when
examining the fine-grained distribution, a different
picture emerges. Since MultiWOZ comprises
multiple domains within a single dialogue,
some domains overlap. In this fine-grained
analysis, it becomes evident that the attraction
domain, when considered in isolation, is the
most underrepresented sub-category. However, it
frequently appears in tandem with other domains
such as train and restaurant. Therefore, we
hypothesize that an increase in the performance
of train and restaurant results in a decrease in
attraction. This hypothesis is substantiated by
the results presented in Table 4. Specifically,
the scores for the attraction domain demonstrate
an increase, while thetrain and restaurant
domains experience a decrease in performance (as
evidenced by the Few shotrandom). Similarly, the
opposite is observed for Few Shotsynthetic.

Impact of Off-The-Shelf Retriever. Unlike
other ICL approaches, we refrain from fine-

tuning the retriever to mimic a no-training
data scenario. As illustrated by the results
in Table 4, the performance demonstrates little
correlation with the expansion of the retrieval
pool. Furthermore, there are instances where
the performance actually decreases, notably in
the 1% → 5% setup for synthetic data and
the 5% → 10% setup for training data across
both datasets. We postulate that this might be
attributed to off-the-shelf retrievers occasionally
retrieving irrelevant examples since they lack
awareness of the semantics of the end-task data.
In summary, our results attest that we can achieve
good performance with a small data set with off-
the-shelf retrievers.

A.3 Human Evaluation

Metric Scale

Grammar

1 = Highly Incoherent or Unintelligible
2 = Poorly Constructed and Difficult to Understand
3 = Moderately Fluent, but Some Awkwardness
4 = Mostly Fluent and Easily Understandable
5 = Extremely Fluent and Natural

Coherence

1 = Responses Lack Logical Flow and Are Highly Disjointed
2 = Poor Logical Flow, and Responses Often Do Not Connect
3 = Responses Have Some Logical Flow but Lack Consistency
4 = Logical Flow Is Mostly Maintained with Few Disruptions
5 = Highly Coherent and Smooth Logical Flow

Naturalness

1 = Very Robotic and Unnatural, Clearly Generated
2 = Lack of Natural Language Patterns, Not Believable
3 = Moderately Natural, but Still Exhibits Robot-Like Phrasing
4 = Fairly Natural and Believable in a Conversational Context
5 = Extremely Natural and Difficult to Distinguish from Human Speech

Annotations

1 = Completely Incorrect
2 = Partially correct, covering most of the slot value pairs
3 = Exactly correct, covering all the possible slot value pairs

Table 8: Human Evaluation Scale.
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Figure 4: Domain distribution for MultiWoZ test data.
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