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Abstract

Multilingual Machine Translation (MMT) ben-
efits from knowledge transfer across different
language pairs. However, improvements in one-
to-many translation compared to many-to-one
translation are only marginal and sometimes
even negligible. This performance discrepancy
raises the question of to what extent positive
transfer plays a role on the target-side for one-
to-many MT. In this paper, we conduct a large-
scale study that varies the auxiliary target-side
languages along two dimensions, i.e., linguistic
similarity and corpus size, to show the dynamic
impact of knowledge transfer on the main lan-
guage pairs. We show that linguistically similar
auxiliary target languages exhibit strong ability
to transfer positive knowledge. With an increas-
ing size of similar target languages, the positive
transfer is further enhanced to benefit the main
language pairs. Meanwhile, we find distant aux-
iliary target languages can also unexpectedly
benefit main language pairs, even with minimal
positive transfer ability. Apart from transfer,
we show distant auxiliary target languages can
act as a regularizer to benefit translation per-
formance by enhancing the generalization and
model inference calibration.

1 Introduction

Multilingual Machine Translation (MMT) enables
a single model to translate among multiple lan-
guage pairs by joint training (Dong et al., 2015;
Johnson et al., 2017). The improvements in transla-
tion quality, especially for low-resource languages,
are generally attributed to transfer learning (Zoph
et al., 2016; Lakew et al., 2018; Kocmi and Bojar,
2018; Stap et al., 2023). However, MMT suffers
from a performance gap where the gains for one-
to-many translation are not as substantial as for
many-to-one translation (Dabre et al., 2020; Tang
et al., 2020; Yang et al., 2021; Chiang et al., 2021;
Chowdhery et al., 2022). Empirical studies (John-
son et al., 2017; Aharoni et al., 2019) also show

little to no benefit for one-to-many translation com-
pared to their bilingual baselines, leading to the
hypothesis that positive transfer does not occur on
the target-side (Arivazhagan et al., 2019).

The challenge of knowledge transfer for one-to-
many translation is attributed to the inherent charac-
teristics of translating into distinct target languages.
The necessity for target language-specific repre-
sentations in the translation process hinders knowl-
edge transfer as transfer learning prefers language-
invariant representations (Kudugunta et al., 2019).
On the other hand, Arivazhagan et al. (2019) and
Aharoni et al. (2019) list the increasing amounts of
source language data and regularization induced by
multiple target languages as possible reasons for
the observed benefits in massively MMT scenarios.

Nevertheless, the extent to which positive knowl-
edge transfer occurs on the target-side still remains
unclear. Furthermore, a comprehensive analysis of
the interplay between different factors, i.e., knowl-
edge transfer, source data size, and regularization,
for one-to-many translation is lacking. This hinders
the optimization of MMT performance.

To understand the impact of knowledge transfer,
we conduct comprehensive controlled experiments
with varying target languages along two dimen-
sions, i.e., linguistic similarity and corpus size. We
select a set of bilingual out-of-English translation
tasks, e.g., English into German, as main language
pairs. Subsequently, we add different auxiliary tar-
get language pairs to each main language pair, con-
sidering variations in auxiliary language families,
written scripts, data sizes, and the number of target
languages. Our experimental results show a con-
sistent positive correlation between the improve-
ments and their translation task relatedness, i.e.,
increasing the amounts of similar target languages
encourages more positive knowledge transfer for
the main language pair than distant ones. These
findings confirm the existence of knowledge trans-
fer on the target-side and also clearly show factors
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that influence target-side transfer, i.e., target data
size, number of translation tasks, and linguistic
similarity. The performance differences induced by
various target languages also indicate their varying
transfer ability.

Apart from knowledge transfer, we find distant
auxiliary target languages can also yield substantial
improvements, even with minimal transfer ability.
Instead of transferring similar linguistic knowledge,
we show that distant auxiliary target languages ex-
hibit strong regularization abilities improving trans-
lation performance.To understand why language
regularization plays a role, we show it benefits
translation performance by reducing generalization
errors and improving inference calibration. With
introducing distant auxiliary target languages, the
translation model is implicitly calibrated so that
the confidences of its predictions are more aligned
with the accuracies of its predictions.

In this paper, we show the interplay between
knowledge transfer and regularization which is vi-
sualized in Figure 1. We observe that languages
that are similar to the target language, in this ex-
ample Belarusian, tend to benefit the target lan-
guage by mostly transferring knowledge and only
act as a regularizer to a very limited extent. The in-
verse holds for distant auxiliary languages. Overall,
our paper provides a more comprehensive under-
standing of one-to-many translation, from the per-
spectives of target-side transfer and regularization.
First, we show how positive knowledge transfer
occurs on the target-side, by varying the linguis-
tic similarity and data size of the auxiliary target
language. Second, we point out the importance of
regularization in one-to-many translation, by show-
ing its effectiveness on generalization ability and
inference confidence calibration.

2 Background

In this section, we discuss some background on
transfer learning and regularization in MMT.

2.1 Transfer Learning

Transfer learning is defined as improving a learner
for a given task by leveraging information from a
related task (Weiss et al., 2016). An example is
seen in MMT, where training models on multiple
language pairs benefits resource-poor languages
by leveraging shared linguistic information and
parameters from other languages (Zoph et al., 2016;
Murthy et al., 2019).

Transfer

Regularization

Language Family:
Slavic

Written Script:
Cyrillic

Bulgarian,
Russian,
Ukrainian Language Family:

Slavic
Written Script:

Latin
Polish, Czech,

Slovak
Language Family:

Germanic
Written Script:

Latin
German, Dutch,

Swedish

Figure 1: The interplay between knowledge transfer and
regularization. For one example of main target language Be-
larusian (language family: Slavic, written script: Cyrillic)
the level of knowledge transfer and regularization induced by
different auxiliary target languages in MMT.

However, for one-to-many machine translation,
gains are much more pronounced for many-to-one
than for one-to-many translation. This performance
discrepancy is caused by the complexities of target-
side transfer. Aharoni et al. (2019) empirically mea-
sure the difficulty of target-side transfer by show-
ing the marginal benefits, even for low-resource
language pairs, for large-scale one-to-many trans-
lation. Dabre et al. (2020) suggest that the reason
behind this challenge is mainly due to its character-
istics of representations on the decoder side, where
each target language has an independent output
distribution and the decoder representations are
more sensitive to the target languages (Kudugunta
et al., 2019). Wang et al. (2018) further supports
this claim by keeping target language-specific pa-
rameters to improve one-to-many translation. This
increases uncertainties on the effectiveness of trans-
fer learning on the target-side, which in turn prefers
language-invariant representations.

Despite prior work (Gao et al., 2020; Shaham
et al., 2022) indicating that linguistic similarity
matters for encouraging positive target-side trans-
fer, their findings are limited to scenarios where
knowledge is transferred from high-resource to low-
resource. Fernandes et al. (2023) conversely shows
that no impact of linguistic similarity on the trans-
lation performance for translating into two high-
resource target languages, with an example of trans-
lating English into {French, Chinese} and English
into {French, German}.

In summary, these studies show an inconsistent
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view towards target-side transfer, particularly con-
cerning the issue whether target-side transfer exists
and what factors influence it. This disagreement
indicates the importance of exploring target-side
transfer in one-to-many MT and the impact of dif-
ferent factors, e.g., linguistic similarity and target
data size.

2.2 Regularization
The multilingual training regime is known as a
source of regularization, improving the generaliza-
tion abilities of the models (Neubig and Hu, 2018;
Aharoni et al., 2019; Dabre et al., 2020). Aharoni
et al. (2019) support this claim by showing that
adding out-of-English translation tasks can lead to
better results, as it prevents the model to overfit on
the target side.

However, the effects of language regulariza-
tion induced by multiple target tasks are under-
explored, compared to other regularization tech-
niques, such as dropout (Srivastava et al., 2014) and
label smoothing (Szegedy et al., 2015). Dropout
randomly selects activations to be set to zero during
training. This randomness introduced by dropout
encourages the network to learn robust and gener-
alized representations (Liang et al., 2021). Another
common regularization technique, label smoothing,
regularizes the model by penalizing the output con-
fidence. It has also been shown that these changes
in output confidence introduced by label smooth-
ing could implicitly enhance machine translation
model calibration (Müller et al., 2019), thereby im-
proving translation performance. In line with this,
we aim to investigate language regularization in
one-to-many translation to understand when and
why it is effective.

3 Experimental Setting

Model. We follow the setup of the Transformer
base model (Vaswani et al., 2017). More details
on model hyperparameters can be found in Ap-
pendix B.

Data. We choose three main language pairs
(LPs) in different language families and written
scripts: English-into-German (En→De), English-
into-Russian (En→Ru), and English-into-Spanish
(En→Es). The training data for the main lan-
guage pairs En→De, En→Ru, and En→Es are
from WMT13, WMT14, and WMT22, respectively.
We randomly sample 100K and 1M sentence pairs
from each language pair respectively to mimic

ISO Lang. Family Script

De German Germanic Latin
Nl Dutch Germanic Latin
Et Estonia Uralic Latin
Ru Russian Slavic Cyrillic
Zh Mandarin Chinese Chinese
Es Spanish Romance Latin
Pt Portuguese Romance Latin
Nl Dutch Germanic Latin
Ru Russian Slavic Cyrillic
Zh Mandarin Chinese Chinese
Ru Russian Slavic Cyrillic
Uk Ukrainian Slavic Cyrillic
Cs Czech Slavic Latin
De German Germanic Latin
Zh Mandarin Chinese Chinese
Si Sinhala Indo-Aryan Sinhala
Hi Hindi Indo-Aryan Devanagari
Ur Urdu Indo-Aryan Arabic
De German Germanic Latin
Zh Mandarin Chinese Chinese
Be Belarusian Slavic Cyrillic
Ru Russian Slavic Cyrillic
Pl Polish Slavic Latin
De German Germanic Latin
Zh Mandarin Chinese Chinese

Table 1: Linguistic information for the main and auxiliary
target languages. Bold designates the main target languages:
De, Es, Ru, Si, and Be.

low- and medium-resource settings1. We also
choose two real world low- and medium-resource
language pairs: English-into-Belarusian (En→Be)
and English-into-Sinhala (En→Si) from the OPUS
repository.2 For different controlled experiments,
we cover 20 auxiliary target language pairs to train
together with the main translation tasks. We ran-
domly sample the auxiliary covered language pairs
from CCMatrix. The detailed statistics of the main
and auxiliary language pairs can be found in Ap-
pendix C.

Training and Evaluation. We use the
Fairseq (Ott et al., 2019) toolkit to train
transformer models. All models are trained with
the Adam optimizer (Kingma and Ba, 2017) for
up to 100K steps, with a learning rate of 5e-4
and an inverse square root scheduler. A dropout
rate of 0.3 and label smoothing of 0.2 are used.
Each model is trained on one NVIDIA A6000
GPU with a batch size of 25K tokens. We choose
the best checkpoint according to the average
validation loss of all language pairs. The data

1Using high-resource LPs to mimic low/med-resource LPs
helps compare the transfer and regularization levels induced
from the same and other target languages.

2https://opus.nlpl.eu
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En→De (Baseline: 7.4)
α% en→de en→nl en→et en→ru en→zh

10% 8.50.4 7.90.7 8.20.6 8.60.5 8.90.8

50% 10.20.3 10.30.6 10.50.6 10.90.3 11.50.4

100% 11.60.4 11.30.4 10.90.2 11.00.4 12.10.2

500% 15.90.3 14.00.2 13.70.3 13.40.2 13.50.3

1000% 19.90.1 16.20.2 15.30.1 14.10.2 14.20.1

En→De (Baseline: 20.0)
α% en→de en→nl en→et en→ru en→zh

1% 20.00.4 20.20.4 20.50.2 20.70.3 20.80.5

10% 20.30.2 21.00.3 20.70.4 21.20.6 21.80.6

50% 22.10.4 21.60.5 21.30.1 21.20.2 21.60.2

100% 23.40.2 22.20.2 21.20.2 21.00.2 21.20.2

200% 24.50.1 22.20.0 20.20.0 20.00.0 20.70.0

En→Ru (Baseline: 11.9)
α% en→ru en→uk en→cs en→de en→zh

10% 12.00.4 11.80.6 11.60.6 11.70.2 12.00.4

50% 12.80.3 13.00.5 12.20.2 12.40.3 12.60.1

100% 14.00.2 13.30.3 12.60.1 12.70.2 12.80.4

500% 15.70.2 14.70.2 14.20.1 14.40.2 14.60.1

1000% 18.60.3 15.40.1 14.70.2 14.60.2 14.30.2

En→Ru (Baseline: 18.4)
α% en→ru en→uk en→cs en→de en→zh

1% 18.10.3 18.60.5 18.70.8 18.70.5 18.90.2

10% 18.60.5 18.90.2 19.10.1 18.90.2 19.10.3

50% 19.50.2 19.30.3 18.80.1 18.40.2 18.70.1

100% 20.10.1 19.50.2 19.10.1 18.60.2 18.20.1

200% 22.40.1 20.50.0 18.50.0 17.20.0 17.10.0

En→Es (Baseline: 16.9)
α% en→es en→pt en→nl en→ru en→zh

10% 17.10.2 17.00.4 17.30.6 17.20.3 17.60.8

50% 19.00.2 18.10.3 18.50.6 19.00.2 19.50.3

100% 20.90.4 19.10.3 19.40.3 19.10.3 21.00.2

500% 27.10.3 23.20.2 21.50.3 22.80.3 23.00.2

1000% 29.40.2 25.20.4 23.20.1 22.40.3 22.20.1

En→Es (Baseline: 28.6)
α% en→es en→pt en→nl en→ru en→zh

1% 28.60.3 28.60.1 28.70.2 28.80.2 28.70.5

10% 29.40.2 29.00.3 29.10.2 29.30.4 29.20.3

50% 29.90.4 29.20.5 29.40.2 29.40.2 29.40.1

100% 30.50.3 29.50.3 29.20.1 29.00.3 29.20.4

200% 31.80.2 29.60.0 28.90.0 28.30.0 28.00.0

Table 2: BLEU scores (variance in subscript) for the three main tasks: En→De, En→Es, and En→Ru in low-resource 100K
(left) and medium-resource 1M (right) settings when training with different auxiliary language pairs. α% represents the auxiliary
training data size. For low-resource setting, α% ranges from 10% to 1000% of the proportion of the low-resource setting size.
For the medium-resource setting, α% ranges from 1% to 200% of the proportion of the medium-resource setting size. The color
block represents the extent of positive transfer, with darker shades indicating a stronger positive transfer effect.

is tokenized with the SentencePiece tool (Kudo
and Richardson, 2018) and we build a shared
vocabulary of 32K tokens. We add language ID
tokens to the vocabulary and prepend the language
ID token to each source and target sequence
to indicate the target language (Johnson et al.,
2017). For evaluation, we employ beam search
decoding with a beam size of 5. BLEU scores
are computed using detokenized case-sensitive
SacreBLEU3 (Post, 2018).

4 Target-Side Transfer

In this section, we aim to estimate empirically
whether target-side transfer occurs in MMT. To
achieve this, we select three main language pairs,
mimicking a low-resource direction: En→De,
En→Es, En→Ru and two main real-world low-
resource pairs: En→Be and En→Si. We train each
main language pair with different auxiliary target
languages to investigate the target-side transfer in
multilingual machine translation for influencing
main language pairs. We include variations in the
auxiliary target language pairs, with changes in lin-

3nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1

guistic similarity, data size, and the total number of
target tasks.

4.1 Changes in Target Language

Here, we introduce different auxiliary target lan-
guages with variations in linguistic similarity and
data size. The varying auxiliary target data size
represents the true distribution of varied data in
multilingual machine translation.

4.1.1 Setup
For each main language pair (En→X), we train it
with an auxiliary language pair (En→Y) that dif-
fers in language family and written script. Table 1
presents the linguistic information about the main
and auxiliary target languages. For the auxiliary
target data, which is trained jointly with the main
low-resource language pair, we vary its data size
with a proportion from 10% to 1000% of the main
low-resource language pair. For the auxiliary tar-
get data, trained jointly with the medium-resource
setting, we vary its data size with a proportion
from 1% to 200% of the main language pair. To
mitigate the variance in the quality of sampled aux-
iliary target language pairs, we run the experiment
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En→Be (Baseline: 5.0)
α% en→ru en→pl en→de en→zh

10% 5.30.2 5.10.1 4.20.3 4.30.3

50% 6.60.1 4.70.3 5.40.3 5.80.2

100% 8.30.1 5.40.1 6.20.2 7.00.2

500% 13.00.3 9.90.3 10.00.4 11.00.2

1000% 13.00.1 9.40.3 9.30.2 10.00.3

En→Si (Baseline: 22.6)
α% en→hi en→ur en→de en→zh

1% 22.80.2 23.20.1 22.40.3 22.90.4

10% 23.20.2 22.40.1 23.90.3 24.00.3

50% 23.30.2 21.80.1 23.50.4 23.70.3

100% 23.90.3 21.60.2 23.10.2 23.40.1

200% 23.60.0 21.00.0 22.50.0 22.40.0

Table 3: BLEU scores for the real-world low-resource
English→Belarusian (67K) and medium-resource
English→Sinhala (970K) from OPUS dataset.

with three different randomly sampled sets.4 Ta-
ble 2 and Table 3 show the averaged results of main
mimic and real-world low- and medium-resource
translation tasks when training with different target
languages, along with the corresponding variance.

4.1.2 Discussion
First, we show positive knowledge transfer occurs
on the target-side, which benefits low- and medium-
resource language pairs. This positive target-side
transfer is highly correlated with translation task re-
latedness, i.e., linguistic similarity. Specifically, for
low- and medium-resource settings, see Table 2, in-
creasing the amounts of similar target languages im-
proves positive knowledge transfer for the main lan-
guage pairs, i.e., 9 BLEU points boost for the low-
resource En→De task when training with 1000%
En→Nl. However, training with the same amounts
of a distant target task cannot achieve similar im-
provements, such as En→Zh. This also holds for
the real-world low-resource En→Be task, shown in
Table 3. Increasing the size of a similar translation
task, En→Ru induces more positive knowledge
transfer than other language pairs. Furthermore,
the varying performance for the main tasks when
training with different target-side languages shows
that increasing the amount of English source data
(Arivazhagan et al., 2019) cannot be entirely con-
firmed as the sole reason for the improvements.

Second, we demonstrate that negative transfer
also exists with increasing amounts of target data.
For medium-resource settings, increasing the size

4We use one random sample set for high-resource (2M)
auxiliary data due to computational constraints.

of distant auxiliary languages gradually shows the
negative transfer for medium-resource main lan-
guage pairs. Training with 200% of English to Chi-
nese data leads to approximately 1.5 BLEU points
drop for medium-resource English to Russian. This
still correlates with linguistic similarity where dis-
tant data results in more performance drops than
similar ones. In line with Wang et al. (2019), the
divergence between joint distributions of tasks is
the root of the negative transfer.

Third, we find that the gains for low- or medium-
resource tasks in one-to-many translation cannot be
fully attributed to transfer learning. Distant target
languages which exhibit minimal positive trans-
fer ability can also greatly improve the translation
performance of the main language pairs. This be-
comes more evident when using small amounts
of distant auxiliary languages. In Table 2 (right),
joint training with 10% distant language pairs can
even lead to better translation performance for all
main language tasks than using 10% of similar data.
10% of En→Zh data can even lead to an improve-
ment of about 2 BLEU points for the En→De task
in a medium-resource setting. In the real-world
medium-resource En→Si task, training with 10%
of distant data En→De or En→Zh can outperform
the maximum positive transfer induced by 200% of
similar language En→Hi. The gains resulting from
the small size of distant auxiliary data show the role
of language regularization, discussed in Section 5.
By joint training with auxiliary low-resource target
tasks, uncertainties are increased for the model to
prevent over-fitting on the main tasks. Moreover,
the unexpected benefits from distant auxiliary data
on multilingual machine translation also encour-
ages future work to exploit the role of distant data
in other cross-lingual tasks.

4.2 Changes in Task Number

To further validate the previous findings, we expand
the scenario from training with a single target task
to incorporating multiple tasks. We control the
total amount of auxiliary training data to ensure a
fair comparison.

4.2.1 Setup

We train the main translation task En→De for dif-
ferent resource levels with an increasing number
of auxiliary target language pairs from two groups
(Table 5 in Appendix A): (1) Similar group: the
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(a) Data size: 50% (b) Data size: 1000%

(c) Data size: 10% (d) Data size: 200%

(e) Data size: 10% (f) Data size: 200%

Figure 2: Translation quality for En→De for a low-resource
100K (above), medium-resource 1M (middle) and high-
resource 4.5M (below) language pair when training with dif-
ferent auxiliary task numbers and different linguistic groups.
Data size represents the total amount of auxiliary target train-
ing data.

Germanic5 language family with Latin scripts; (2)
Distant group: the Slavic language family with
Cyrillic scripts. The number of target language
pairs is set as 1, 4, 8. The auxiliary target data size
is evenly distributed among all target languages
and controlled at 50% and 1000% for low-resource,
and 10% and 200% for medium- and high-resource.
Figure 2 shows the impact of task number when
training with auxiliary tasks from different linguis-
tic groups.

4.2.2 Discussion
We show that increasing the task number has little
impact on target-side knowledge transfer, since our
findings are similar for two tasks, see Section 4.1:
(1) Positive transfer highly correlates with linguis-

5Due to data scarcity, we pick two target languages from
the Romance language family, Galician, and Spanish. Ro-
mance and Germanic language families are close.

tic similarity when the auxiliary data size is large;
(2) small distant auxiliary target data can also bene-
fit the low- and medium-resource main tasks, which
is attributed to regularization. Interestingly, for the
medium-resource settings, increasing the auxiliary
target task number from the large-size distant lin-
guistic group (200%) can mitigate negative transfer
to some extent. One possible explanation for this
is that the negative training signal from one distant
language pair becomes weaker when increasing the
task number in controlled data size setting. This re-
sult also corroborates similar findings, where Sha-
ham et al. (2022) find more than one unrelated
language helps the translation task with less data.

In summary, Section 4 shows how target-side
transfer occurs in one-to-many translation. Based
on the empirical findings on main language pairs,
we show that target-side transfer can transfer pos-
itive knowledge. Linguistic similarity and target
data size mutually play a role in it. Meanwhile, we
show that the increase in source data cannot be the
sole reason for improving one-to-many translation
due to the close correlation between translation per-
formance and target data. Furthermore, we find
that a small amount of distant auxiliary target lan-
guages can also improve translation performance.
These gains cannot be fully attributed to target-side
transfer, and we indicate another important factor,
i.e., regularization, which is discussed in the next
section.

5 Language Regularization

The previous section shows low- and medium-
resource translation tasks benefit from language
regularization. In this section, we aim to further
investigate the effectiveness of language regulariza-
tion in one-to-many MT from two angles: general-
ization ability (Section 5.1) and model calibration
(Section 5.2). In the end, we provide a simple but
effective way to improve machine translation per-
formance with the help of language regularization
(Section 5.3).

5.1 Reducing Generalization Errors

Reducing generalization errors is one of the ben-
efits of regularization, which can be reflected by
measuring the inconsistency between training and
validation performance. Here, we show the reg-
ularization effects for one-to-many translation by
comparing their learning curves for the training and
validation losses.
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(a) En→De in Low-resource (100K)

(b) En→De in Medium-resource (1M)

Figure 3: Loss curves for En→De translation tasks under
low-resource 100K (a) and medium-resource 1M settings (b),
with varying target linguistic groups (similar and distant) and
varying auxiliary target data sizes.

5.1.1 Setup
Different target languages have various levels of
regularization effects. We vary the target data lin-
guistic similarity and data size to investigate its im-
pact on generalization ability. As we have shown
in Section 4.1, low- and medium-resource main
language pairs benefit from regularization. Thus,
we choose the multilingual models trained on low-
and medium-resource En→De tasks with two lin-
guistic groups shown in Section 4.2. For the low-
resource En→De setting (100K), we select the aux-
iliary target data size to be 50% and 1000% of
the low-resource size. For the medium-resource
En→De setting (1M), we select the target data size
to be 10% and 200% of the medium-resource size.
Figure 3 shows the learning curves En→De under
different multilingual training settings.

5.1.2 Discussion
First, regularization induced by the small size of
auxiliary target tasks can reduce the generalization
errors in one-to-many translation. Figure 3a shows
that the baseline bilingual low-resource En→De
model has a large gap between training and val-
idation loss during training. This indicates that
low-resource models can easily overfit and can-
not generalize well to unseen data. When training

(a) En→De in Low-resource (100K)

(b) En→De in Medium-resource (1M)

Figure 4: Confidence histograms for En→De translation tasks
under low-resource (100K) (a) and mid-resource (1M) settings
(b), with varying target linguistic groups (similar and distant)
and total target data sizes.

with other target data, the generalization ability for
the En→De task is improved at different levels.
Surprisingly, 50% of distant auxiliary data can re-
duce the validation loss for the main low-resource
En→De task. This observation aligns with our
finding in Section 4.2 that distant auxiliary target
languages benefit the main task performance. It
confirms our hypothesis that regularization plays a
crucial role by improving generalization ability.

Second, regularization effects from the large size
of auxiliary target tasks can only reduce generaliza-
tion errors for low-resource language pairs. Increas-
ing the auxiliary target data size (+1000%) leads
to better generalization ability for low-resource
En→De, and the linguistically similar group shows
slightly better effectiveness than the distant ones.
This difference shows that positive target-side trans-
fer also helps for better generalization ability since
they exhibit a strong and transferable training sig-
nal for the main low-resource task. The same holds
for the medium-resource En→De setting, see Fig-
ure 3b. However, when training with a large target
data size (+200%), a distant linguistic group cannot
further reduce generalization errors. This reflects
that the role of regularization is not always positive,
heavily depending on the target linguistic similarity
level and the data size.
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(a) InfECE=22.6 (b) InfECE=19.7 (c) InfECE=19.4 (d) InfECE=18.1 (e) InfECE=16.5

(f) InfECE=15.6 (g) InfECE=14.5 (h) InfECE=14.3 (i) InfECE=17.0 (j) InfECE=14.7

Figure 5: Reliability diagrams with inference calibration errors (InfECE) on the En→De test set in the low-resource (above) and
medium-resource setting (below).

5.2 Improving Inference Calibration
Another benefit of regularization is to increase the
model’s uncertainty by penalizing output confi-
dence, e.g., label smoothing. This regularization
technique improves model calibration by making
the confidence of its predictions more accurate for
true accuracy (Müller et al., 2019). Wang et al.
(2020) emphasizes the importance of calibrating
confidence during inference for MT and regulariza-
tion is a key factor. Motivated by these findings, we
aim to investigate whether regularization induced
by different target tasks has a similar impact on
both output confidence and inference calibration.

In general, model calibration is measured by the
expected calibration error (ECE) which calculates
the difference in expectation between confidence
and accuracy. As shown in Equation 5.2, ECE di-
vides predictions into M bins {B1, ..., BM} based
on their confidence and calculates a weighted aver-
age of the bin’s accuracy/confidence difference.6

ECE =
M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (1)

In MT, the prediction target token is ŷ =
argmaxy∈V P (y) and the confidence is P (ŷ). The
accuracy denotes whether the prediction ŷ is cor-
rect. However, calculating the prediction accu-
racy during inference is challenging because it re-
quires building complex alignments between gen-
erated tokens and the ground truth. Wang et al.

6N is the number of prediction samples and |Bm| is the
number of samples in the m-th bin

(2020) propose using the Translation Error Rate
metric (Snover et al., 2006) to determine the accu-
racy by measuring the number of edits to change
a model output into the ground truth. We use their
method to analyze inference calibration.

5.2.1 Setup
We examine the impact of regularization effects in-
duced by different target data on the model’s output
confidence and inference calibration for the main
En→De tasks. We calculate the output confidence
histograms and inference calibration errors for the
En→De test set with the same settings as for the
multilingual models in Section 5.1.1. We plot the
output confidence histograms in Figure 4 where the
x-axis represents the output confidence scores and
the y-axis represents the percentage of the number
of tokens with those scores. In addition, we plot the
reliability diagrams in Figure 5 to visualize the rep-
resentations of model calibration where the x-axis
is the average weighted confidence and the y-axis
is the average weighted accuracy.

5.2.2 Discussion
First, regularization from the small size of auxil-
iary target tasks improves inference calibration by
penalizing output confidence. For example, the
main low-resource En→De translation task shows
an over-confidence issue for its bilingual baseline
model, see Figure 5a. The model seriously suf-
fers from miscalibration, where the average gaps
between confidence and accuracy are large (con-
fidence > accuracy). Training with different tar-
get tasks could alleviate this issue at various lev-
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Main Task Auxiliary Task BLEU △

En→De
En→De 28.4 -0.2
En→Nl 28.3 -0.3
En→Zh 29.0 +0.6

Table 4: The main task of En→De BLEU scores with using
larger model by adding 10% auxiliary tasks; △ represents the
BLEU changes with the En→De baseline.

els. The small size of distant auxiliary target tasks
can lead to better inference calibration. This reg-
ularization effect is achieved by penalizing over-
confidence output (> 0.9) to enhance the model
inference calibration, as shown in Figure 4a. These
findings also align well with the medium-resource
setting (1M). The relatively small size of auxiliary
target tasks (10%) benefits inference calibration
from penalizing over-confident output, as shown in
Figure 4b.

Second, regularization in the large-size auxil-
iary target tasks improves inference calibration
by improving translation accuracy. Unlike in the
small data (50%) scenario, which penalizes over-
confident output probabilities to benefit the task,
training with a large size of auxiliary target lan-
guage pairs mainly helps the low-resource En→De
task improve translation accuracy to benefit infer-
ence calibration. Since similar language pairs share
similar lexical and word order knowledge with the
low-resource En→De task, they improve accuracy
more effectively.

5.3 Regularization Effect in Larger Models

Sections 5.1 and 5.2 show that utilizing small dis-
tant auxiliary data can prevent overfitting trans-
lation models by regularization, particularly for
low- and medium-resource language pairs. To fur-
ther verify the impact of language regularization
at a larger scale, we increase the model size from
Transformer-Base (93M parameters) to Big (274M
parameters) and utilize 10% of different auxiliary
data to train with a high-resource En→De (4.5M)
translation task7. Table 4 shows that 10% of dis-
tant auxiliary data En→Zh can help improve the
bilingual baseline while adding the same target lan-
guages or similar ones cannot. This finding further
shows the effectiveness of language regularization
for optimizing machine translation performance.

7https://www.statmt.org/wmt14

6 Conclusion

In this work, we disentangle the roles of knowl-
edge transfer and language regularization in one-
to-many MMT. In contrast to previously held as-
sumptions, we show that target-side knowledge
transfer does play an important role in one-to-many
MMT, influenced by several dominant factors: aux-
iliary target data size, linguistic similarity, and the
number of auxiliary target tasks. This finding also
shows that the increased amount of source data
does not explain all transfer. Future work can
leverage this information to encourage different
language pairs to have similar word representations
to achieve maximum positive transfer. Surprisingly,
we find that using a small amount of linguistically
distant auxiliary target data acts as an effective reg-
ularizer resulting in translation performance gains.
This form of language regularization shows its ef-
fectiveness by benefiting generalization ability and
inference calibration. Our findings on language
regularization provide a simple but effective way
to boost the translation performance of real-world
low- and medium-resource language pairs, espe-
cially when similar target languages are not avail-
able. Future work can further explore the optimiza-
tion of multilingual training by leveraging distant
auxiliary data.

Limitations

We acknowledge several limitations in our work.
To directly understand the impact of knowledge
transfer, source data, and regularization in one-to-
many translation, we only observe the performance
changes for one selected main language pair. Al-
though translation results for auxiliary language
pairs are provided in Appendix D, further analy-
sis of the dynamic performance trade-off between
main and auxiliary language pairs is worthwhile to
explore. Another limitation of our work is about
the MMT setting, where we only work in one-to-
many MT, while future work should extend it to
many-to-many settings and explore the impact of
adding multiple source languages.
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A Language Choices

Table 5 shows two linguistic groups trained with
the main language pair.

ISO Lang. Family Script

Af Afrikaans Germanic Latin
Da Danish Germanic Latin
Nl Dutch Germanic Latin
Is Icelandic Germanic Latin
No Norwegian Germanic Latin
Sv Swedish Germanic Latin
Gl Galician Romance Latin
Es Spanish Romance Latin

ISO Lang. Family Script

Bg Bulgarian Slavic Cyrillic
Cs Czech Slavic Cyrillic
Mk Macedonian Slavic Cyrillic
Pl Polish Slavic Cyrillic
Sr Serbian Slavic Cyrillic
Sk Slovak Slavic Cyrillic
Sl Slovenian Slavic Cyrillic
Uk Ukrainia Slavic Cyrillic

Table 5: Two groups of auxiliary target languages.

B Model Parameters

We follow the setup of the Transformer-base and
Transformer-big models (Vaswani et al., 2017). For
each model, the number of layers in the encoder
and in the decoder is N = 6. For Transformer-
base, we employ h = 8 parallel attention layers
or heads. The dimensionality of input and out-
put is dmodel = 512, and the inner layer of feed-
forward networks has dimensionality dff = 2048.
For Transformer-big, we employ h = 16 parallel
attention layers or heads. The dimensionality of
input and output is dmodel = 1024, and the inner
layer of feed-forward networks has dimensionality
dff = 4096.

C Dataset Statistics

The data statistics of mimic and real-world main
language pairs are shown in Table 6 and Table 7.
The data statistics of joint training target language
pairs are shown in Table 8.

Language ISO Dataset Source Validation Set Test Set

German De WMT14 WMT14 WMT14
Spanish Es WMT13 WMT13 WMT13
Russian Ru WMT22 WMT22 WMT22

Table 6: The data statistics of main low- and medium-resource
language pairs. For each language, we display the ISO code,
language name, sampled training dataset source, validation
set, and test set. Sampled training low-resource dataset size:
100K, sampled training medium-resource dataset size: 1M.

D Additional Results

Here, we show all auxiliary language BLEU scores
in Table 9 and 10.

Language ISO Dataset Source Validation Set Test Set

Sinhala Si OPUS OPUS OPUS
Belarusian Be OPUS OPUS OPUS

Table 7: The data statistics of real-world main low- and
medium-resource language pairs. For each language, we dis-
play the ISO code, language name, sampled training dataset
source, validation set, and test set. Training size for En-Si:
979109, for En-Be: 67312.

Language ISO Dataset Source Validation/Test Set

Estonia Et CCMatrix CCMatrix
Chinese Zh CCMatrix CCMatrix

Portuguese Pt CCMatrix CCMatrix
Ukrainian Uk CCMatrix CCMatrix

Czech Cs CCMatrix CCMatrix
Dutch Nl CCMatrix CCMatrix

Afrikaans Af CCMatrix CCMatrix
Danish Da CCMatrix CCMatrix

Icelandic Is CCMatrix CCMatrix
Norwegian No CCMatrix CCMatrix

Swedish Sw CCMatrix CCMatrix
Galician Gl CCMatrix CCMatrix

Bulgarian Bg CCMatrix CCMatrix
Macedonian Mk CCMatrix CCMatrix

Polish Pl CCMatrix CCMatrix
Serbian Sr CCMatrix CCMatrix
Slovak Sk CCMatrix CCMatrix

Slovenian Sl CCMatrix CCMatrix

Table 8: The data statistics of auxiliary training target lan-
guage pairs. For each language, we display the ISO code,
language name, sampled training dataset source, and valida-
tion set. The validation and test sets from CCMatrix, are
randomly sampled from the CCMatrix corpus, each contain-
ing 2000 samples.

1839



En→De
α% en→nl en→et en→ru en→zh

10% 8.90.2 6.20.7 6.00.6 5.50.5
50% 11.90.2 11.20.3 10.20.3 9.80.3

100% 20.30.2 11.90.4 13.70.2 12.30.4
500% 23.70.3 14.30.1 17.60.3 15.60.2

1000% 26.40.2 15.30.5 18.50.1 16.70.3

En→Ru
α% en→uk en→cs en→de en→zh

10% 8.80.6 7.60.6 7.80.2 5.00.2
50% 15.00.5 12.20.2 10.20.3 9.30.1

100% 18.30.3 12.60.1 11.00.2 12.50.4
500% 22.70.2 14.20.1 16.80.2 15.10.1

1000% 23.40.1 14.70.2 18.90.2 16.20.2

En→Es
α% en→pt en→nl en→ru en→zh

10% 9.20.4 8.60.6 6.20.3 5.10.8
50% 12.30.3 11.30.6 10.00.2 9.20.3

100% 20.50.3 15.20.3 11.50.3 12.50.2
500% 23.20.2 18.20.3 16.50.3 15.60.2

1000% 26.20.4 19.60.1 18.60.3 16.40.1

Table 9: BLEU scores for the auxiliary language pairs
in a low-resource setting (100K) when training with main
language pairs: En→De, En→Es, and En→Ru. α% =
10, 50, 100, 500, 1000 represents the proportion of the low-
resource setting size.

En→De
α% en→nl en→et en→ru en→zh

1% 12.60.2 7.00.7 7.00.6 6.70.5
10% 22.70.2 12.30.3 12.70.3 13.50.3
50% 25.50.2 16.00.4 17.80.2 16.70.4

100% 28.40.3 16.50.1 18.20.3 16.50.2
200% 29.40.0 15.00.0 18.10.0 16.40.0

En→Ru
α% en→uk en→cs en→de en→zh

1% 13.80.6 8.20.6 7.00.2 5.80.2
10% 18.00.5 11.20.2 12.50.3 12.30.1
50% 20.30.3 12.60.1 16.00.2 16.50.4

100% 23.70.2 15.20.1 17.80.2 16.10.1
200% 26.40.0 16.70.0 19.90.0 16.20.0

En→Es
α% en→pt en→nl en→ru en→zh

1% 12.20.4 10.60.6 7.20.3 6.10.8
10% 19.30.3 12.30.6 13.00.2 14.20.3
50% 22.50.3 19.20.3 17.50.3 16.50.2

100% 27.20.2 20.20.3 18.50.3 16.60.2
200% 28.20.0 20.20.0 18.60.0 16.00.0

Table 10: BLEU scores for the auxiliary language pairs
in a mid-resource setting (1M) when training with main
language pairs: En→De, En→Es, and En→Ru. α% =
1, 10, 50, 100, 200 represents the proportion of the medium-
resource setting size.
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