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Abstract

Entity typing is the task of assigning seman-
tic types to the entities that are mentioned in a
text. In the case of fine-grained entity typing
(FET), a large set of candidate type labels is
considered. Since obtaining sufficient amounts
of manual annotations is then prohibitively ex-
pensive, FET models are typically trained using
distant supervision. In this paper, we propose
to improve on this process by pre-training an
entity encoder such that embeddings of core-
ferring entities are more similar to each other
than to the embeddings of other entities. The
main problem with this strategy, which helps
to explain why it has not previously been con-
sidered, is that predicted coreference links are
often too noisy. We show that this problem can
be addressed by using a simple trick: we only
consider coreference links that are predicted
by two different off-the-shelf systems. With
this prudent use of coreference links, our pre-
training strategy allows us to improve the state-
of-the-art in benchmarks on fine-grained entity
typing, as well as traditional entity extraction.

1 Introduction

Entity typing is a fundamental task in Natural Lan-
guage Processing (NLP), with important applica-
tions to entity linking (Onoe and Durrett, 2020) and
relation extraction (Peng et al., 2020; Zhong and
Chen, 2021), among others. In recent years, the
main focus has been on fine-grained entity typing
(Ling and Weld, 2012; Gillick et al., 2014), where
around 100 different entity types are considered,
or even ultra-fine entity typing (Choi et al., 2018),
where around 10000 types are considered. A key
challenge then consists in compiling enough train-
ing data. This is particularly problematic because
the distribution of entity types is highly skewed,
with many types occurring only rarely in text. The
main strategy thus far has been to create automati-
cally labelled training sets. For instance, Ling and
Weld (2012) relied on the fact that entity mentions

in Wikipedia are linked to the article of the cor-
responding entity, which is in turn linked to Free-
base (Bollacker et al., 2008). Entity mentions in
Wikipedia can thus be linked to their Freebase types
without any manual effort. However, these distantly
supervised training sets are still highly skewed. As
a result, models trained on such datasets may con-
centrate more on learning to recognise the most
prevalent entity types than on deriving meaning-
ful entity representations (i.e. embeddings which
accurately capture semantic types of entities).

For this reason, we propose to first train a
general-purpose entity encoder, which maps en-
tity mentions to meaningful embeddings, indepen-
dent of a particular label set. We can then train
an entity type classifier in the usual way, using the
embeddings from our encoder as input. Our ap-
proach relies on a supervision signal that has thus
far remained largely unexplored for entity typing:
coreference chains. In particular, we train an entity
encoder with contrastive learning to represent co-
referring entity mentions close to each other in the
embedding space. While conceptually straightfor-
ward, this training signal forces the entity encoder
to identify subtle cues in the context of an entity
mention, to characterise the entity at a level which
is sufficiently fine-grained to distinguish it from
other entities. Our strategy only need access to an
off-the-shelf coreference resolution system. This
means that we can train the entity encoder on dif-
ferent genres of text and generate as much training
data as is needed.

Figure 1 illustrates the three main steps of our
approach. In the first step, an off-the-shelf corefer-
ence resolution system is applied to a large collec-
tion of stories. Second, we use contrastive learning
to train an entity encoder, which maps mentions
from the same coreference chain to similar vectors,
while mentions from different chains are mapped
to dissimilar vectors. In the third step, to learn a
fine-grained entity typing model, we simply train a
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Figure 1: Illustration of our proposed strategy. In the first step, an off-the-shelf coreference resolution method is
used to identify coreference chains in stories. In the second step, we use contrastive learning to train an encoder
which maps mentions from the same coreference chain to similar vectors. In the third step, we use standard training
data to learn a linear classifier for each considered entity type.

linear classifier in the resulting embedding space
for each considered entity type.

An important challenge in implementing the pro-
posed strategy is that coreference resolution sys-
tems are still far from perfect. Whenever two men-
tions are erroneously assumed to be referring to
the same entity, the entity encoder is trained on a
noisy signal, which has a detrimental impact on the
overall performance of the method. In our exper-
iments, we found that the success of our strategy
indeed strongly depends on the quality of the coref-
erence resolution system that is used. In fact, our
best results are obtained by using two different sys-
tems, and only keeping coreference links that are
predicted by both. When adopting this strategy, our
model outperforms the current state-of-the-art in
three entity typing benchmarks.

2 Related Work

Entity Typing The standard approach to entity
typing is to use a fine-tuned Language Model (LM)
of the BERT family (Devlin et al., 2019) to obtain
embeddings of entity mentions (Zhong and Chen,
2021; Ye et al., 2022) and then train a standard
classifier on top of these embeddings. Some al-
ternative strategies have also been explored. For
instance, Li et al. (2022a) cast the problem of en-
tity typing as a natural language inference (NLI)
problem. The main drawback of the NLI approach
is that it requires individual testing for every entity
type, making it highly inefficient for fine-grained

entity typing. Large Language Models (LLMs) are
similarly impractical to use in most application set-
tings. Even when disregarding efficiency concerns,
the impact of LLMs on the task of entity typing has
thus far been limited (Han et al., 2023). The most
successful approaches use a form of multi-task fine-
tuning to adapt LLMs to information extraction
tasks, but they still fail to consistently outperform
BERT (Wang et al., 2023).

Fine-grained Entity Typing Most work on fine-
grained entity typing uses distant supervision of
some kind. As already mentioned in the introduc-
tion, one strategy is to rely on Wikipedia links
in combination with an external knowledge base
(Ling and Weld, 2012). A common problem with
distantly supervised datasets is that they can be
noisy: the fact that an entity has a particular type
does not necessarily imply that this information
is expressed in a given sentence mentioning that
entity. To address this issue, several authors have
proposed strategies for denoising distantly super-
vised datasets for entity typing (Ren et al., 2016;
Onoe and Durrett, 2019; Pan et al., 2022). Given
that two sentences referring to the same entity may
emphasise different elements, a similar problem
can also arise in our case. For example, we might
have a sentence referring to Ben Affleck as an actor
and another referring to him as a director. As the
embedding of an entity mention should capture the
semantic type that is represented in the relevant
sentence context, using such sentence pairs will
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confuse the model. We may anticipate that such in-
stances will be rare, however, as we only take into
account co-referring entity mentions that originate
from the same story. Another possible source of
noise comes from mistakes that are made by the
coreference resolution system. This effect will be
analysed in Section 4.

Pre-training Entity Encoders Previous work
has already explored a number of pre-training
strategies for learning entity representations. First,
methods such as SpanBERT (Joshi et al., 2020)
focus on learning better representations of text
spans. Within this class of methods, strategies
that rely on InfoNCE have also been considered
(Wang et al., 2020). While our method also uses In-
foNCE, the training signal is fundamentally differ-
ent: the aforementioned methods focus on learning
span representations, using tasks such as recon-
structing the correct order of tokens in shuffled
text spans. Such models have not proven superior
to the standard BERT model for entity typing. In
our experiments, we also found that modelling text
spans is not essential for entity typing, as our best
configuration simply uses the embedding of the
head token of an entity span (see Section 4.2). An-
other line of work, which includes models such as
ERNIE (Zhang et al., 2019), KnowBERT (Peters
et al., 2019), LUKE (Yamada et al., 2020), KE-
PLER (Wang et al., 2021c) and K-Adapter (Wang
et al., 2021a), improve LMs by modelling entities
as separate tokens and leveraging information from
knowledge graphs. The main focus of these models
is to improve the amount of factual knowledge that
is captured, rather than on learning the representa-
tions of (possibly) previously unseen entities.

Our approach also has some similarities with
the matching-the-blanks model for relation extrac-
tion (Baldini Soares et al., 2019). The idea of
this model is to learn a label-independent relation
encoder, similar to how we are learning a label-
independent entity encoder. In their case, the super-
vision signal comes from the idea that sentences
mentioning the same pair of entities are likely to
express the same relationship, hence the relation
embeddings obtained from such sentences should
be similar. Building on this approach, a number
of authors have recently used InfoNCE to encode
similar ideas (Han et al., 2021; Wan et al., 2022;
Wang et al., 2022). Varkel and Globerson (2020)
use a contrastive loss to pre-train a mention encoder
for coreference resolution based on two heuristics:

(i) if the same name appears multiple times in a
document, the corresponding embeddings should
be similar and (ii) the mention encoder should be
able to reconstruct masked pronouns. The useful-
ness of contrastive learning for pre-training BERT
encoders has also been observed more generally,
for instance for learning sentence, phrase and word
embeddings (Gao et al., 2021; Liu et al., 2021a,b;
Wang et al., 2021b; Li et al., 2022b).

Leveraging Coreference Chains To the best of
our knowledge, the idea of pre-training an entity en-
coder based on coreference chains has not yet been
considered. However, a number of authors have
proposed multi-task learning frameworks in which
coreference resolution and entity typing are jointly
learned, along with other tasks such as relation and
event extraction (Luan et al., 2018; Wadden et al.,
2019). Surprisingly, perhaps, such approaches have
failed to outperform simpler entity typing (and re-
lation extraction) models (Zhong and Chen, 2021).

3 Our Approach

In Section 3.1, we first discuss the basic entity typ-
ing model that we rely on in this paper. Section 3.2
subsequently describes our proposed pre-training
strategy based on coreference chains.

3.1 Entity Typing
Let us assume that we are given a sentence in which
some entity mentions are highlighted, e.g.:

[Alice] was unsure what was wrong with [the
patient in front of her].

Our aim is to assign (possibly fine-grained) seman-
tic types to these entity mentions. For instance,
using the FIGER (Ling and Weld, 2012) taxonomy,
the first mention should be assigned the types Per-
son and Doctor, while the second mention should
be assigned Person. To make such predictions, a
given entity mention e in sentence s is first mapped
to an embedding Enc(s, e) ∈ Rn using an encoder.
For the experiments in our paper, this encoder takes
the form of a language model from the BERT fam-
ily (Devlin et al., 2019). Specifically, we use the
final-layer embedding of the head word of the given
entity span as the representation of the mentioned
entity. For instance, for the second mention in the
aforementioned example, the patient in front of her,
we use the embedding of the head word, patient, as
the representation of the entity span. This is moti-
vated by the fact that the head word is most likely to
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reflect the semantic type of the entity (Choi et al.,
2018). We find the head word using the SpaCy
dependency parser1.

We pre-train the entity encoder Enc based on
coreference chains, as will be explained in Section
3.2. For each entity type t, we learn a vector at ∈
Rn and bias term bt ∈ R. The probability that the
mention m should be assigned the type t is then
estimated as:

P (t|s, e) = σ(at · Enc(s, e) + bt) (1)

with σ the sigmoid function. This entity type clas-
sifier is trained using binary cross-entropy on a
standard labelled training set. The encoder Enc is
optionally also fine-tuned during this step. When
using the classifier for entity typing, we assign all
labels whose predicted probability is above 0.5.

3.2 Pre-training the Entity Encoder

To pre-train the entity encoder Enc, we start from
a collection of stories (e.g. news stories). Using
off-the-shelf coreference resolution systems, we
identify mentions within each story that are likely
to refer to the same entity. Let us write (s, e) to
denote an entity mention e appearing in sentence
s. Then we consider the following self-supervision
signal: if (s1, e1) and (s2, e2) are co-referring men-
tions, then the contextualised representations of e1
and e2 should be close to each other in the embed-
ding space. In particular, we use a contrastive loss
to encode that the representations of the tokens ap-
pearing in e1 and e2 should be more similar to each
other than to the tokens appearing in the mentions
of other entities.

Each mini-batch is constructed from a small set
of stories {S1, ..., Sk}. Let us write Xi for the set
of entity mentions (s, e) in story Si that belong to
some coreference chain. To alleviate the impact of
noisy coreference links, we adopt two strategies:

• We only include coreference links that are pre-
dicted by two separate coreference resolution
systems. This reduces the number of spurious
links that are considered.

• As negative examples, we only consider entity
mentions from different stories. This prevents
us from using entity mentions that refer to the
same entity, but were missed by the corefer-
ence resolution system.

1https://spacy.io/api/dependencyparser

Let us write Ti for the set of tokens of the mentions
in Xi. For a given token t, we write Enc(t) for
its contextualised representation. We write T =
T1 ∪ ... ∪ Tk and T−i = T \ Ti. For a given token
t, we write Ct for the set of tokens that are part of
the same coreference chain. The encoder is trained
using InfoNCE (van den Oord et al., 2018):

k∑

i=1

∑

t∈Ti

∑

t′∈Ct

log
exp

(
cos(Enc(t),Enc(t′))

τ

)

∑
t′′ exp

(
cos(Enc(t),Enc(t′′))

τ

)

(2)

where t′′ in the denominator ranges over T−i ∪ {t}.
The token pairs in the numerator correspond to
positive examples, i.e. tokens whose embeddings
should be similar, while the denominator ranges
over both positive and negative examples. The
temperature τ > 0 is a hyper-parameter, which
controls how hard the separation between positive
and negative examples should be.

Given a mention (s, e), the model can often infer
the semantic type of the entity based on the mention
span itself. To encourage the model to learn to
identify cues in the sentence context, we sometimes
mask the entity during training, following existing
work on relation extraction (Baldini Soares et al.,
2019; Peng et al., 2020). Specifically, for each
input (s, e) ∈ X , with 15% probability we replace
the head of the entity span by the [MASK] token.
Note that, unlike previous work, we only mask the
head word of the phrase.

Finally, following Baldini Soares et al. (2019),
we also use the Masked Language Modelling ob-
jective during training, to prevent catastrophic for-
getting. Our overall loss thus becomes:

L = Lentity + LMLM

where Lentity is the loss function defined in (2) and
LMLM is the masked language modelling objective
from BERT (Devlin et al., 2019).

4 Experimental Analysis

In this section, we evaluate the performance of our
proposed strategy on (fine-grained) entity typing.2

Experimental Setup In all our experiments, we
initialise the entity encoder with a pre-trained lan-
guage model. We consider bert-base-uncased3,

2Our implementation and pre-trained models are available
at https://github.com/fmtumbuka/EACL_EnCore

3https://huggingface.co/docs/transformers/
model_doc/bert
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Dataset # Types Train Dev. Test

ACE 2005 7 26.5K 6.4K 5.5K
OntoNotes 89 3.4M 8K 2K
FIGER 113 2M 1K 0.5K

Table 1: Overview of the considered benchmarks, show-
ing the number of entity types, and the number of entity
mentions in the training, development and test sets.

albert-xxlarge-v14 and roberta-large5 for
this purpose, as these are commonly used for entity
typing. We use the Gigaword corpus6 as the collec-
tion of stories. This corpus consists of around 4 mil-
lion news stories from four different sources. We
use two state-of-the-art coreference resolution sys-
tems: the Explosion AI system Coreferee v1.3.17

and the AllenNLP coreference model8. As ex-
plained in Section 3.2, we only keep coreference
links that are predicted by both of these systems.
Once the encoder has been pre-trained, we train an
entity type classifier on the standard training set for
each benchmark. We report results for two differ-
ent variants of this process: one where the entity
encoder is fine-tuned while training the entity type
classifiers and one where the encoder is frozen. We
will refer to these variants as EnCore and EnCore-
frozen, respectively. We train all of the models for
25 epochs with the AdamW optimizer (Loshchilov
and Hutter, 2019) and save the checkpoint with the
best result on the validation set. The temperature τ
in the contrastive loss was set to 0.05.

Benchmarks Our central hypothesis is that the
proposed pre-training task makes it possible to
learn finer-grained entity representations. As such,
we focus on fine-grained entity typing as our main
evaluation task. We use the OntoNotes (Gillick
et al., 2014) and FIGER (Ling and Weld, 2012)
benchmarks. OntoNotes is based on the news sto-
ries from the OntoNotes 5.0 corpus9. We use the
entity annotations that were introduced by Gillick
et al. (2014), considering a total of 89 different
entity types (i.e. 88 types + other). They also in-
troduced a distantly supervised training set, con-
sisting of 133K automatically labelled news stories.

4https://huggingface.co/docs/transformers/
model_doc/albert

5https://huggingface.co/docs/transformers/
model_doc/roberta

6https://catalog.ldc.upenn.edu/LDC2003T05
7https://github.com/explosion/coreferee
8https://demo.allennlp.org/

coreference-resolution
9https://catalog.ldc.upenn.edu/LDC2013T19

FIGER considers a total of 113 types (i.e. 112 types
+ other). The test set consists of sentences from
a student newspaper from the University of Wash-
ington, two local newspapers, and two specialised
magazines (on photography and veterinary). Along
with this test set, they also provided automatically
labelled Wikipedia articles for training. For fine-
grained entity typing, we report the results in terms
of macro and micro-averaged F1, following the
convention for these benchmarks.

We also experiment on standard entity typing,
using the ACE 2005 corpus10, which covers the fol-
lowing text genres: broadcast conversation, broad-
cast news, newsgroups, telephone conversations
and weblogs. It differentiates between 7 entity
types. For this benchmark, the entity spans are not
provided. We thus need to identify entity mentions
in addition to predicting the corresponding types.
We treat the problem of identifying entity span as
a sequence labelling problem. We follow the strat-
egy from Hohenecker et al. (2020), but start from
our pre-trained entity encoder rather than a stan-
dard LM. We summarise this strategy in Appendix
A. We use the standard training/development/test
splits that were introduced by Li and Ji (2014). Fol-
lowing standard practice, we report the results in
terms of micro-averaged F1. We take individual
sentences as input. Existing work on this bench-
mark jointly evaluates span detection and entity
typing, i.e. a prediction is only correct if both the
span and the predicted type are correct. We will
refer to this as the strict evaluation setting, follow-
ing Bekoulis et al. (2018). We also consider the
lenient setting from, where a prediction is scored
as correct as soon as the type is correct and the
predicted span overlaps with the gold span.

Table 1 summarises the main characteristics of
the considered datasets.

Baselines We report results for a number of sim-
plified variants of our main model. First, we con-
sider a variant which uses the same strategy for
training the entity type classifier as our full model,
but without pre-training the entity encoder on the
Gigagword corpus. This variant is referred to as
the base model. Second, we investigate a setup
in which the entity encoder is pre-trained on Gi-
gaword, but only using the masked language mod-
elling (MLM) objective. This setting, which we
refer to as MLM-only, allows us to analyse to what
extent improvements over the base model are due

10https://catalog.ldc.upenn.edu/LDC2006T06
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to the continued training of the language model.
For reference, we also compare our models with

the published results of state-of-the-art models. For
fine-grained entity typing, we consider the follow-
ing baselines: DSAM (Hu et al., 2021) is an LSTM-
based model, which we include as a competitive
baseline; Box4Types (Onoe et al., 2021) uses hy-
perboxes to represent mentions and types, to take
advantage of the hierarchical structure of the label
space; PICOT (Zuo et al., 2022) uses a contrastive
learning strategy based on the given type hierarchy;
Relational Inductive Bias (RIB) (Li et al., 2021)
uses a graph neural network to model correlations
between the different labels. Entity mentions are
encoded using a transformer layer on top of pre-
trained ELMo (Peters et al., 2018) embeddings;
LITE (Li et al., 2022a) assigns entity types by fine-
tuning a pre-trained Natural Language Inference
model; SEPREM (Xu et al., 2021) improves on
the standard RoBERTa model by exploiting syn-
tax during both pre-training and fine-tuning, and
then using a standard entity typing model on top of
their pre-trained model; MLMET (Dai et al., 2021)
extends the standard distantly supervised training
data, using the BERT masked language model for
generating weak labels; DenoiseFET (Pan et al.,
2022) uses a denoising strategy to improve the qual-
ity of the standard distantly supervised training set,
and furthermore exploits prior knowledge about the
labels, which is extracted from the parameters of
the decoder of the pre-trained BERT model; PKL
(Li et al., 2023) improves on DenoiseFET by incor-
porating pre-trained label embeddings.

For ACE 2005, we consider the following base-
lines: DyGIE++ (Wadden et al., 2019) uses multi-
task learning to jointly train their system for coref-
erence resolution, entity typing, relation extrac-
tion and event extraction; TableSeq (Wang and Lu,
2020) jointly trains a sequence encoder for entity
extraction and a table encoder for relation extrac-
tion; UniRe (Wang et al., 2021d) also uses a table
based representation, which is shared for entity
and relation extraction; PURE (Zhong and Chen,
2021) uses BERT-based models to get contextu-
alised representations of mention spans, which are
fed through a feedforward network to predict en-
tity types; PL-Marker (Ye et al., 2022) builds on
PURE by introducing a novel span representation.

4.1 Results
Table 2 summarises the results for fine-grained en-
tity typing. As can be seen, EnCore outperforms

the base and MLM-only models by a large mar-
gin, which clearly shows the effectiveness of the
proposed pre-training task. Remarkably, EnCore-
frozen performs only slightly worse. The best
results are obtained with roberta-large. Our
model furthermore outperforms the baselines on
both OntoNotes and FIGER, except that RIB
achieves a slightly higher micro-averaged F1 on
FIGER. It should be noted that several of the base-
lines introduce techniques that are orthogonal to
our contribution in this paper, e.g. denoising the
distantly supervised training sets (DenoiseFET),
incorporating prior knowledge about the type la-
bels (PKL) and exploiting label correlations (RIB),
which would likely bring further benefits when
combined with our pre-training strategy.

Table 3 summarises the results for standard en-
tity typing (ACE 2005). We can again see that En-
Core consistently outperforms the MLM-baseline,
which in turn consistently outperforms the base
model. Comparing the different encoders, the
best results for our full model are obtained with
albert-xxlarge-v1, which is consistent with
what was found in previous work (Zhong and Chen,
2021; Ye et al., 2022). Finally, we can see that our
full model outperforms all baselines.

4.2 Analysis
We now analyse the performance of our method
in more detail. For this analysis, we will focus on
ACE 2005 under the lenient setting and OntoNotes.
Throughout this section, unless mentioned other-
wise, we use bert-base-uncased for the encoder.

Encoding Entity Spans We represent entities
using the embedding of the head word. In Table
4 we compare this approach with the following
alternatives:

MASK We replace the entity mention by a single
MASK token and use the final-layer encoding
of this token as the embedding of the entity.

Prompt Given a mention (s, e), we append the
phrase “The type of e is [MASK].” The final-
layer encoding of the MASK-token is then
used as the mention embedding.

Masked triple This strategy is similar to Prompt
but instead of appending a sentence, we ap-
pend the phrase “<e, hasType, [MASK]>”.

Special tokens: full span We add the special to-
kens <m> and </m> around the entire entity
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Model LM OntoNotes FIGER

macro micro macro micro

DSAM LSTM 83.1 78.2 83.3 81.5
Box4Types BL 77.3 70.9 79.4 75.0
PICOT BL 78.7 72.1 84.7 79.6
RIB ELMo 84.5 79.2 87.7 84.4
LITE RL 86.4 80.9 86.7 83.3
SEPREM RL - - 86.1 82.1
MLMET BBc 85.4 80.4 - -
DenoiseFET BB 87.2 81.4 86.2 82.8
DenoiseFET RL 87.6 81.8 86.7 83.0
PKL BB 87.7 81.9 86.8 82.9
PKL RL 87.9 82.3 87.1 83.1

BB 76.9 72.9 78.6 76.1
Base model ALB 77.9 74.8 80.2 77.4

RL 82.8 80.1 82.3 79.5

BB 81.6 78.7 80.2 77.9
MLM-only ALB 82.7 79.8 81.5 79.6

RL 85.4 81.4 85.8 82.1

BB 87.3 80.6 87.1 82.2
EnCore-frozen ALB 87.9 81.9 87.7 82.9

RL 88.3 82.7 87.8 83.6

BB 87.6 81.9 87.3 82.9
EnCore ALB 88.7 82.9 87.9 83.8

RL 88.9 83.4 88.4 84.1

Table 2: Results for fine-grained entity typing, in terms
of macro-F1 and micro-F1 (%). BB stands for bert-base-
uncased, BBc stands for bert-base-cased, BL stands for
bert-large-uncased, ALB stands for albert-xxlarge
and RL stands for roberta-large DenoiseFET results
are taken from (Li et al., 2023); all other baseline results
are taken from the original papers.

span. We take the final-layer encoding of the
<m> token as the embedding of the entity.

Special tokens: head In this variant, we add the
special tokens <m> and </m> around the
head word of the entity span.

Head word This is the method adopted in our
main experiments. In this case, we simply
use the embedding of the head word of the
entity mention, without using special tokens.

In all cases, we use the entity typing model that
was described in 3.1. Note that we do not consider
ACE 2005 for this analysis, as the entity spans have
to be predicted by the model for this dataset, which
means that aforementioned alternatives cannot be
used. For this analysis, we train the entity encoder
on the training data of the considered benchmark,
without using our coreference based pre-training
strategy. The results in Table 4 show that using the
embedding of the head word clearly outperforms
the considered alternatives. Another interesting ob-

Strict Lenient

BB ALB RL BB ALB RL

DyGIE++⋄ 88.6 - - - - -
UniRe⋄ 88.8 90.2 - - - -
PURE⋄ 90.1 90.9 - - - -
PL-Marker⋄ 89.8 91.1 - - - -

PURE 88.7 89.7 - - - -
TableSeq - 89.4 88.9 - - -

Base model 86.8 87.1 86.9 90.3 90.8 90.6
MLM-only 87.1 87.8 87.5 90.7 91.2 90.9
EnCore-frozen 89.9 90.5 90.1 91.8 92.3 92.0
EnCore 90.8 91.9 91.0 92.4 93.1 92.6

Table 3: Results for entity typing on ACE 2005, in
terms of micro-F1 (%). BB stands for bert-base-uncased,
ALB stands for albert-xxlarge and RL stands for
roberta-large. Configurations with ⋄ rely on cross-
sentence context and are thus not directly comparable
with our method.

Strategy OntoNotes

macro micro

MASK 70.7 66.8
Prompt 72.1 68.7
Masked triple 72.8 69.4
Special tokens: full span 75.2 70.8
Special tokens: head 76.1 71.3

Head word 76.9 72.9

Table 4: Comparison of different strategies for encoding
entity spans (using bert-base-uncased).

servation is that encapsulating the head of the entity
mention performs slightly better than encapsulat-
ing the entire entity span, whereas it is the latter
variant that is normally used in the literature. It is
also notable, and somewhat surprising, that Masked
triple outperforms Prompt.

Pre-training Strategies In Table 5 we compare
four strategies for pre-training the entity encoder
based on coreference chains. In particular, we anal-
yse the effect of two aspects:

• When training our model, the negative exam-
ples for the contrastive loss (Section 3.2) are
always selected from other stories. Here we
analyse the impact of choosing these negative
examples from the same story instead.

• During training, in 15% of the cases, we mask
the head of the entity span. Here we consider
two other possibilities: (i) never masking the
entity span and (ii) masking the entire span.
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Neg. samples Masking ACE05 OntoNotes

micro macro micro

Same story None 83.9 82.1 74.9
Same story Entire span 84.7 82.9 75.3
Different stories Entire span 88.8 86.2 78.9

Different stories Head 91.8 87.3 80.6

Table 5: Comparison of different strategies for pre-
training the entity encoder (using bert-base-uncased).

Coreference Systems ACE05 OntoNotes

micro macro micro

Explosion AI 86.4 83.4 79.4
AllenNLP 90.7 86.8 80.1
Explosion AI + AllenNLP 91.8 87.3 80.6

Table 6: Comparison of different coreference resolution
strategies (using bert-base-uncased).

Choosing the negative examples from the same
story has a number of implications. First, it may
mean that false negatives are included (i.e. corefer-
ence links that were missed by the system). Second,
it means that the overall number of negative exam-
ples becomes smaller, since they have to come from
a single story. However, these downsides may be
offset by the fact that negative examples from the
same story may be harder to discriminate from the
positive examples, since the story context is the
same, and using harder negatives is typically ben-
eficial for contrastive learning. For this analysis
we use EnCore-frozen. As can be seen in Table 5,
choosing negative examples from the same story
overall has a clearly detrimental impact. We also
find that masking is important, where masking only
the head of the entity span leads to the best results.
This masking strategy has not yet been used in the
literature, to the best of our knowledge.

Coreference Resolution In Table 6 we analyse
the importance of using only high-quality corefer-
ence links. In particular, we compare three con-
figurations: (i) using all links predicted by the Ex-
plosion AI system; (ii) using all links predicted
by the AllenNLP system; and (iii) using only the
links that are predicted by both systems. For this
analysis, we use EnCore-frozen. As can be seen,
the AllenNLP system overall performs better than
the Explosion AI system. However, the best results
are obtained by combining both systems.

Model One Label Two Labels Three labels

macro micro macro micro macro micro

MLM-only 79.8 75.6 53.0 50.9 39.1 38.4
EnCore 82.7 78.7 59.8 58.5 44.6 43.6

Table 7: Comparison of the MLM-only and EnCore
models (using roberta-large) on partitions of the
OntoNotes test set.

Performance on Fine and Coarse Labels In
Table 7 we compare our full model with the MLM-
only variant on different partitions of the OntoNotes
test set. We specifically compare EnCore and
MLM-only on those examples with one-level la-
bels (5.3K); two-level labels (3.0K); and three-
level labels (0.6K). Examples with one-level la-
bels only require the model to determine the top-
level entity type (e.g /organisation). Exam-
ples with two-level labels call for more precise
finer-grained differentiations (e.g. /organisation
and /organisation/company). Examples with
three-level labels call for even more precision
(e.g. /organisation, /organisation/company
and /organization/company/broadcast). En-
Core performs better than MLM-only in every sce-
nario, as can be observed, with the difference be-
ing least pronounced in the case of single-level
labels. This supports the idea that our pre-training
technique is particularly useful for learning finer-
grained entity types. A more detailed breakdown
of the results, which is provided in the appendix,
shows that EnCore consistenly outperforms MLM-
only on all labels, both for OntoNotes and FIGER.

5 Conclusion

We have proposed a strategy which uses corefer-
ence chains to pre-train an entity encoder. Our
strategy relies on the natural idea that coreferring
entity mentions should be represented using similar
vectors. Using a contrastive loss for implementing
this intuition, we found that the resulting encoders
are highly suitable for (fine-grained) entity typing.
In our analysis, we found that restricting our strat-
egy to high-quality coreference links was important
for its success. We also found that focusing on the
head of the entity span, rather than the span itself,
was beneficial, both when it comes to representing
the entity span and when it comes to masking enti-
ties during training (where only masking the head
was found to be most helpful).
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6 Limitations

Our model is pre-trained on individual sentences.
This means that during testing, we cannot exploit
cross-sentence context. Prior work has found such
cross-sentence context to be helpful for bench-
marks such as ACE2005, so it would be of interest
to extend our model along these lines. Furthermore,
we have not yet applied our model to ultra-fine en-
tity typing, as this task requires us to cope with
labels for which we have no, or only very few train-
ing examples. This would require combining our
entity encoder with entity typing models that can
exploit label embeddings, such as UNIST (Huang
et al., 2022), which we have left as an avenue for
future work.
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nen, and Ivan Vulić. 2021b. MirrorWiC: On elicit-
ing word-in-context representations from pretrained
language models. In Proceedings of the 25th Confer-
ence on Computational Natural Language Learning,
pages 562–574, Online. Association for Computa-
tional Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Belgium.
Association for Computational Linguistics.

Yasumasa Onoe, Michael Boratko, Andrew McCallum,
and Greg Durrett. 2021. Modeling fine-grained entity
types with box embeddings. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2051–2064, Online. As-
sociation for Computational Linguistics.

Yasumasa Onoe and Greg Durrett. 2019. Learning to
denoise distantly-labeled data for entity typing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2407–2417,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Yasumasa Onoe and Greg Durrett. 2020. Interpretable
entity representations through large-scale typing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 612–624, Online. As-
sociation for Computational Linguistics.

Weiran Pan, Wei Wei, and Feida Zhu. 2022. Automatic
noisy label correction for fine-grained entity typing.
In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23-29 July 2022, pages 4317–4323.
ijcai.org.

Hao Peng, Tianyu Gao, Xu Han, Yankai Lin, Peng Li,
Zhiyuan Liu, Maosong Sun, and Jie Zhou. 2020.
Learning from Context or Names? An Empirical
Study on Neural Relation Extraction. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3661–3672, Online. Association for Computational
Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),

1777

https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00479
https://doi.org/10.1162/tacl_a_00479
https://doi.org/10.18653/v1/2022.acl-long.426
https://doi.org/10.18653/v1/2022.acl-long.426
https://doi.org/10.24963/ijcai.2021/529
https://doi.org/10.24963/ijcai.2021/529
https://doi.org/10.24963/ijcai.2021/529
https://doi.org/10.48550/arXiv.2305.12802
https://doi.org/10.48550/arXiv.2305.12802
https://doi.org/10.3115/v1/P14-1038
https://doi.org/10.3115/v1/P14-1038
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5152
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5152
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.conll-1.44
https://doi.org/10.18653/v1/2021.conll-1.44
https://doi.org/10.18653/v1/2021.conll-1.44
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/2021.acl-long.160
https://doi.org/10.18653/v1/2021.acl-long.160
https://doi.org/10.18653/v1/N19-1250
https://doi.org/10.18653/v1/N19-1250
https://doi.org/10.18653/v1/2020.findings-emnlp.54
https://doi.org/10.18653/v1/2020.findings-emnlp.54
https://doi.org/10.24963/ijcai.2022/599
https://doi.org/10.24963/ijcai.2022/599
https://doi.org/10.18653/v1/2020.emnlp-main.298
https://doi.org/10.18653/v1/2020.emnlp-main.298
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005


pages 43–54, Hong Kong, China. Association for
Computational Linguistics.

Xiang Ren, Wenqi He, Meng Qu, Clare R. Voss, Heng
Ji, and Jiawei Han. 2016. Label noise reduction in
entity typing by heterogeneous partial-label embed-
ding. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 1825–1834. ACM.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Yuval Varkel and Amir Globerson. 2020. Pre-training
mention representations in coreference models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8534–8540, Online. Association for Computa-
tional Linguistics.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Zhen Wan, Fei Cheng, Qianying Liu, Zhuoyuan Mao,
Haiyue Song, and Sadao Kurohashi. 2022. Relation
extraction with weighted contrastive pre-training on
distant supervision. CoRR, abs/2205.08770.

Jue Wang and Wei Lu. 2020. Two are better than
one: Joint entity and relation extraction with table-
sequence encoders. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1706–1721, Online. As-
sociation for Computational Linguistics.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021a. K-Adapter: Infusing
Knowledge into Pre-Trained Models with Adapters.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1405–1418,
Online. Association for Computational Linguistics.

Shufan Wang, Laure Thompson, and Mohit Iyyer.
2021b. Phrase-BERT: Improved phrase embeddings
from BERT with an application to corpus exploration.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10837–10851, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Shusen Wang, Bosen Zhang, Yajing Xu, Yanan Wu, and
Bo Xiao. 2022. RCL: Relation contrastive learning
for zero-shot relation extraction. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 2456–2468, Seattle, United States. Asso-
ciation for Computational Linguistics.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, Jihua Kang, Jingsheng Yang,
Siyuan Li, and Chunsai Du. 2023. InstructUIE:
Multi-task instruction tuning for unified information
extraction. CoRR, abs/2304.08085.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021c.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Trans-
actions of the Association for Computational Linguis-
tics, 9:176–194.

Yijun Wang, Changzhi Sun, Yuanbin Wu, Junchi Yan,
Peng Gao, and Guotong Xie. 2020. Pre-training en-
tity relation encoder with intra-span and inter-span
information. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1692–1705, Online. Association
for Computational Linguistics.

Yijun Wang, Changzhi Sun, Yuanbin Wu, Hao Zhou,
Lei Li, and Junchi Yan. 2021d. UniRE: A unified
label space for entity relation extraction. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 220–231, Online.
Association for Computational Linguistics.

Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun
Shou, Ming Gong, Wanjun Zhong, Xiaojun Quan,
Daxin Jiang, and Nan Duan. 2021. Syntax-enhanced
pre-trained model. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5412–5422, Online. Association for
Computational Linguistics.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442–6454, On-
line. Association for Computational Linguistics.

Deming Ye, Yankai Lin, Peng Li, and Maosong Sun.
2022. Packed levitated marker for entity and relation
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4904–4917, Dublin,
Ireland. Association for Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
1441–1451, Florence, Italy. Association for Compu-
tational Linguistics.

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In

1778

https://doi.org/10.1145/2939672.2939822
https://doi.org/10.1145/2939672.2939822
https://doi.org/10.1145/2939672.2939822
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://doi.org/10.18653/v1/2020.emnlp-main.687
https://doi.org/10.18653/v1/2020.emnlp-main.687
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.48550/arXiv.2205.08770
https://doi.org/10.48550/arXiv.2205.08770
https://doi.org/10.48550/arXiv.2205.08770
https://doi.org/10.18653/v1/2020.emnlp-main.133
https://doi.org/10.18653/v1/2020.emnlp-main.133
https://doi.org/10.18653/v1/2020.emnlp-main.133
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.emnlp-main.846
https://doi.org/10.18653/v1/2021.emnlp-main.846
https://doi.org/10.18653/v1/2022.findings-naacl.188
https://doi.org/10.18653/v1/2022.findings-naacl.188
https://doi.org/10.48550/arXiv.2304.08085
https://doi.org/10.48550/arXiv.2304.08085
https://doi.org/10.48550/arXiv.2304.08085
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.18653/v1/2020.emnlp-main.132
https://doi.org/10.18653/v1/2020.emnlp-main.132
https://doi.org/10.18653/v1/2020.emnlp-main.132
https://doi.org/10.18653/v1/2021.acl-long.19
https://doi.org/10.18653/v1/2021.acl-long.19
https://doi.org/10.18653/v1/2021.acl-long.420
https://doi.org/10.18653/v1/2021.acl-long.420
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/2021.naacl-main.5
https://doi.org/10.18653/v1/2021.naacl-main.5


Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 50–61, Online. Association for Computational
Linguistics.

Xinyu Zuo, Haijin Liang, Ning Jing, Shuang Zeng,
Zhou Fang, and Yu Luo. 2022. Type-enriched hi-
erarchical contrastive strategy for fine-grained entity
typing. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 2405–
2417, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

A Entity Span Detection

We treat the problem of entity span detection as a
sequence labelling problem, following the strategy
from Hohenecker et al. (2020). Specifically, each
token in the input sentence is then labelled with an
appropriate tag, which could either be one of the
entity types from the considered dataset or a tag
which denotes that the token does not belong to any
entity span. To assign these tags, we again use the
encoder that was pre-trained on coreference chains.
However, rather than looking only at the head word
of a given entity span, we now consider the embed-
ding of every token in the sentence. Specifically,
we train a linear classifier to predict the correct tag
from the contextualised representation of each to-
ken, while optionally also fine-tuning the encoder.
Since most tokens do not belong to any entity span,
the training data will inevitably be highly imbal-
anced. For this reason, during training, we ignore
the majority of tokens that are outside of any en-
tity span. Specifically, following Hohenecker et al.
(2020), we only consider such tokens when they
are immediately preceding or succeeding an entity
span.

B Additional Analysis

Prediction confidence In Table 8, we compare
the confidence of the EnCore and MLM-only mod-
els for the gold label predictions. We observe
that in the first example, EnCore more confidently
predicts the label for delegation as /organization
than MLM-only, which places delegation in the
more generic label class /other with lower confi-
dence. In the second and third case, we observe
that EnCore is more certain to label the currency
terms dollars and RMB with the second-level la-
bel /other/currency than with the more general first
level label /other, whereas MLM-only assigns a
very low confidence to /other/currency. A similar
pattern can also be observed in the last example.

We have observed the same trend throughout the
test set: EnCore consistently makes more confi-
dent predictions than MLM-only. This is especially
evident for the second- and third-level labels.

Breakdown by Label A closer examination of
the model outputs in Figure 2 reveals that EnCore
consistently beats the MLM-only model across all
entity types. The OntoNotes test set, for example,
contains 1130 /person gold labels. MLM-only pre-
dicts only 67.96% of these accurately, compared to
85.49% for EnCore. As an example of a label at
the second level, there are 74 /person/artist gold
labels in the test set; the MLM-only model cor-
rectly predicts 21.62% of these, whereas EnCore
correctly predicts 35.14%. At the third level, there
are 58 /person/artist/author gold labels. The MLM-
only model predicts only 13.79% of them correctly,
while EnCore predicts 25.86% correctly. These pat-
terns are consistently seen over the whole label set.
This is also true for the FIGER test set, as shown
in Figure 3.
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Sentence Gold label MLM-only EnCore

(1) At the beginning of 1993 , six cities such as Zhuhai , Foshan , etc. also organized a delegation to
advertise in the US and Canada for students studying abroad.

/organization 0.26 0.60
/other 0.54 0.15

(2) Last year , its foreign exchange income was up to more than 2.1 billion US dollars, and in the first
half of this year exports again had new growth.

/other 0.63 0.97
/other/currency 0.04 0.98

(3) In 1997 , this plant made over 4,400 tons of Mao - tai ; with sales income exceeding 500 million
yuan RMB , and profit and taxes reaching 370 million RMB , both being the best levels in history.

/other 0.31 0.94
/other/currency 0.02 0.96

(4) In the near future , the Russian Tumen River Region Negotiation Conference will also be held in
Vladivostok.

/location 0.25 0.98
/location/city 0.07 0.73

Table 8: Comparison of the confidence of the MLM-only and EnCore models (with roberta-large) on sample
cases from the OntoNotes test set. The words in bold in the input sentences are the entity spans’ head word. The
MLM-only and EnCore columns indicate the confidence of the MLM-only and EnCore models, respectively.

Figure 2: Comparison of the percentage of correct predictions per gold label by the MLM-only and EnCore models
(with roberta-large) on the OntoNotes test set. The instances of a label that are accurately predicted are expressed
as a percentage of the total number of occurrences of the corresponding gold label.
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Figure 3: Comparison of the percentage of correct predictions per gold label by the MLM-only and EnCore models
(with roberta-large) on the FIGER test set. The instances of a label that are accurately predicted are expressed as
a percentage of the total number of occurrences of the corresponding gold label.
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