pyYTLEX: A Python Library for TimeLine EXtraction

Akul Singh, Jared Hummer, Mustafa Ocal, & Mark Finlayson
Florida International University
Knight Foundation School of Computing and Information Sciences
CASE Building, 11200 S.W. 8th Street, Miami, FLL USA 33199
{asing118, jhumm@@1,mocal,markaf}@fiu.edu

Abstract

pyTLEX is an implementation of the Time-
Line EXtraction algorithm (TLEX; Finlayson
et al., 2021) that enables users to work with
TimeML annotations and perform advanced
temporal analysis, offering a comprehensive
suite of features. TimeML is a standardized
markup language for temporal information in
text. pyTLEX allows users to parse TimeML
annotations, construct TimeML graphs, and ex-
ecute the TLEX algorithm to effect complete
timeline extraction. In contrast to previous im-
plementations (i.e., JTLEX for Java), pyTLEX
sets itself apart with a range of advanced fea-
tures. It introduces a React-based visualization
system, enhancing the exploration of tempo-
ral data and the comprehension of temporal
connections within textual information. Fur-
thermore, pyTLEX incorporates an algorithm
for increasing connectivity in temporal graphs,
which identifies graph disconnectivity and rec-
ommends links based on temporal reasoning,
thus enhancing the coherence of the graph rep-
resentation. Additionally, pyTLEX includes
a built-in validation algorithm, ensuring com-
pliance with TimeML annotation guidelines,
which is essential for maintaining data quality
and reliability. pyTLEX equips researchers and
developers with an extensive toolkit for tem-
poral analysis, and its testing across various
datasets validates its accuracy and reliability.

1 Introduction

Temporal information plays a crucial role in natural
language processing and text analysis. TimeML,
an SGML-based markup language, allows the an-
notation of temporal information in texts, including
events, temporal expressions, links, and temporal
signals (Pustejovsky et al., 2003a) '. TimeML an-
notations can be generated using automatic ana-
lyzers (Verhagen et al., 2005), manual annotation
(Minard et al., 2016), or some combination of the

'SGML is a markup language for defining the structure of
documents in a machine-readable and human-readable format.

27

two. TimeML annotations can be used to build
temporal graphs, where nodes are events and tem-
poral expressions, and edges are temporal relations.
However, they provide only a partial ordering of
events and times. Meanwhile, the global order
(i.e., a timeline) is more useful for various NLP ap-
plications, including question-answering systems
(Radev et al., 2002), text summarization (Mami-
dala and Sanampudi, 2021), and text visualization
(Di Mascio et al., 2010).

To effect the extraction of timelines from
TimeML annotations, we previously developed the
TLEX algorithm, based on Constraint Satisfaction
Problems (CSP), which provides an exact solution
to the problem (in contrast to machine-learning-
based approaches). TLEX converts TimeML anno-
tations into an exact timeline, and in previous work,
we introduced JTLEX, an open-source Java library,
which implemented the TLEX algorithm (Ocal
et al., 2023). jTLEX not only parsed TimeML
annotations but also allowed users to manipulate
TimeML graphs.

Like jJTLEX, pyTLEX also takes a TimeML an-
notated file as input, then (1) parses the annotations
into TimeML objects, (2) builds a TimeML graph,
(3) partitions the TimeML graph into temporally
connected graphs to separate real-life events and
subordinated events, (4) transforms the temporally
connected graphs into point algebra (PA) graphs,
and (5) solves the PA graphs to extract a timeline. If
a timeline cannot be extracted, meaning the graph
is temporally inconsistent, (6) it detects the min-
imum inconsistent subgraph and returns it to the
annotator to fix it. Finally, if the order of events and
times are indeterminant (multiple possible order-
ing), (7) it calculates the temporal indeterminacy.

PyTLEX goes beyond jTLEX and introduces
several new features. It includes a React-based
application for graph and timeline visualization,
making the exploration of temporal data more in-
tuitive and insightful. The library incorporates an

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 27-34
March 17-22, 2024 (©2024 Association for Computational Linguistics

algorithm for automatically increasing connectiv-
ity, which detects graph disconnectivity and auto-
matically suggests temporal links. Additionally,
pyTLEX offers a rule-based system for validating
compliance with the annotation guidelines.

We have tested pyTLEX on the TimeBank cor-
pus (Pustejovsky et al., 2003b), which contains 183
TimeML annotated news articles. In less than 9
minutes on current consumer laptop (3.0 GHz Intel
Core 17-1185G7 with 32GB of RAM), pyTLEX
validated the annotations, extracted timelines, and
visualized them. We release our demonstration
system as well as a screencast video showing its
operation?.

2 Library Overview

2.1 User Input

pyTLEX offers comprehensive processing and
manipulation capabilities for all the data present
within a TimeML annotation. It accommodates
various input sources, allowing the incorporation
of TimeML annotations from a . tml file, a JSON-
style TimeML encoding, or plain text. Users can
also create TimeML annotations manually, adher-
ing to the TimeML annotation guide (Sauri et al.,
2006), or generate annotations automatically us-
ing advanced TimeML annotators like TARSQI
(Verhagen et al., 2005), ClearTK (Bethard, 2013),
CAEVO (Chambers et al., 2014), or CATENA
(Mirza and Tonelli, 2016). It is important to note
that automatic TimeML annotation tools, while ef-
ficient, may introduce limitations such as informa-
tion loss, temporal inconsistencies, and incorrect
annotations (Ocal et al., 2022a). The advantage of
pyTLEX lies in its ability to detect and rectify such
issues, as described in the subsequent sections.

2.2 TimeML Parser

pyTLEX offers a TimeML parser for transforming
TimeML annotations into a collection of TimeML
objects or the raw text. pyTLEX also validates
annotation compliance with the standard.

2.3 Graph Constructor

In a TimeML graph, nodes correspond to events
and times, and edges represent TimeML links, as
illustrated in Figure 1. This graph encapsulates
a wealth of information that can be programmat-
ically queried, including sets of links and nodes,
specific links by their ID, nodes by their ID, and

2https ://cognac.cs.fiu.edu/pytlex/

28

O,

A A
‘MODAL IDENTITY VEVIDENTIAL ENDED
' ' BY

() (1) ®

Figure 1: Visualization of the TimeML graph for
wsj_0555. tml from the TimeBank corpus. SLINKSs are
given in dashed lines. pyTLEX partitions the TimeML
graph into four temporally connected subgraphs.

lists of incoming or outgoing links, among other
properties.

PyTLEX also allows users to programmatically
modify the TimeML graph. Users can introduce
or remove links and nodes within the graph, al-
lowing them to create custom graphs. The graph
implementation can be exported as JSON, which
can later be used for visualization. An example of
a TimeML graph is given in Figure 1.

2.4 Partitioner

There are three types of TimeML links:
<TLINK> and <ALINK> signify tempo-
ral order between events and times, while
<SLINK> conveys modal, counterfactual, or
conditional relationships between two events, as
in the example “Tyler forgot to bring his wallet.”
In this instance, a counterfactual relationship
exists between the events forgot and bring. The
event bring never transpired in the “real world”
described in the text. As detailed in the TLEX
paper, pyTLEX partitions a TimeML graph into
temporally connected subgraphs to identify such
distinctions. The subgraph(s) containing “real
world” events are called the main subgraph(s)
and those connected to the main subgraphs via
subordination links as subordinated subgraphs.

2.5 Transformer

As described in the TLEX algorithm, pyTLEX con-
verts each temporally connected subgraph into a
Point Algebra (PA) graph, where nodes are time
points, and edges are primitive temporal constraints
<, =. For example, if we have two events (A and
B) with A being BEFORE B, this relationship is
translated into a PA graph as A~ < AT < B~ <
BT, with ’-” and ’+ marking the start and end time
points of a node. Figure 2 shows the PA graph
for the TimeML graph in Figure 1. The PA graph
is necessary for the temporal constraint satisfac-
tion problem (TCSP) that is used to generate the

https://cognac.cs.fiu.edu/pytlex/

Figure 2: Visualization of the output of the transforming
temporally connected subgraphs in Figure 1 into the PA
graph after the connectivity increaser added the before
link between 1 and 4.

6+

Figure 3: Visualization of the timeline of the TimeML
graph in Figure 1. Grey regions indicate indeterminate
sections.

timeline, as detailed in Section 2.6.

2.6 Solver

Once each temporally connected subgraph is trans-
formed into a Point Algebra (PA) graph, pyTLEX
uses the Z3 Python library for Constraint Satisfac-
tion Problems (CSP) to assign integers to the time
points within the graph. The timeline is then ob-
tained by sorting these assigned integers. The Z3
Python library is a theorem prover and solver that
is commonly used for solving complex mathemati-
cal and logical problems (De Moura and Bjgrner,
2008). By default, pyTLEX generates the smallest
solution where the first time point is assigned 1 and
each subsequent time point the next lowest integer.

When applied to all the PA graphs, pyTLEX gen-
erates an exact trunk-and-branch timeline structure,
where the trunk corresponds to the main timeline
representing the main subgraph, and branches rep-
resent subordinated timelines associated with the
subordinated subgraphs, as visualized in Figure 3.
Therefore, the main timeline conveys the global or-
der of “real world” events and times, while subordi-
nated branches capture subordinated events. Users
can extract various details from the timeline, such
as its length, the first and last time points, the main
timeline, subordinated branches, the count of sub-
ordinated branches, the number of time points, and
the list of attachment time points where subordi-
nated branches connect to the main timeline.

29

2.7 Inconsistency Detector

As described in the TLEX paper, the annotation
must be consistent for the solver to extract a time-
line. pyTLEX incorporates an inconsistency de-
tection mechanism designed to identify inconsis-
tent cycles in the TimeML graph. In such cases,
pyTLEX identifies the specific links responsible
for the inconsistency, thus enabling users to correct
their annotations.

2.8 Indeterminacy Calculator

In many cases, natural language texts lack suffi-
cient information to establish a unique ordering
of events and times, resulting in multiple possible
global orderings. As illustrated in Figure 2, there
is no information regarding the relative order be-
tween 14 and 3—. PyTLEX employs the TLEX al-
gorithm to quantify temporal indeterminacy within
a timeline. The algorithm explores and compares
the shortest timeline with 100 alternative timelines
(exhaustive computation of all possible timelines
is computationally burdensome). If two adjacent
points in the shortest timeline are not adjacent in
all the other timelines, their order is indeterminate,
and such sections can be marked as depicted in
Figure 3.

2.9 Increasing Connectivity

During TimeML annotation, it’s not uncommon for
annotators to unintentionally overlook the annota-
tion of temporal links. Such omissions can lead to
disconnectivity within the TimeML graph, thereby
disrupting the integrity of the timeline. pyTLEX in-
tegrates an algorithm detailed in (Ocal et al., 2022b)
to address this problem. This algorithm leverages
temporal reasoning to intelligently propose tempo-
ral links between two disconnected subgraphs. In
essence, it undertakes a comparison of the temporal
expressions within these subgraphs and, based on
the evaluation of time values, automatically rec-
ommends the addition of temporal links. This not
only streamlines the timeline generation process
but also ensures the coherence and connectivity of
temporal relationships within the annotated text.
For example, in Figure 1, the TimeML graph is
disconnected. Using the time values of 1 and 4,
pyTLEX can suggest that 1 is BEFORE 4; insert-
ing such a link results in a connected timeline, as
shown in Figure 3.

2.10 Validation

The TimeML annotation guide (Sauri et al., 2006)
establishes a set of rules governing the structure of
TimeML annotations. pyTLEX incorporates these
as a rule-based system that can scrutinize TimeML
annotations and ensure compliance with those de-
fined rules. Our validation system incorporates
the algorithm presented in our prior work (Ocal
et al., 2022b) to assess adherence to Rules 1 to
6. Furthermore, it adopts the algorithm outlined
in (Derczynski and Gaizauskas, 2012) to verify
compliance with Rule 7. Additionally, our system
performs checks to identify instances of repeating
links within the TimeML graph (Rule 8), reinforc-
ing the integrity of the annotation.

2.11 Visualization

To visualize its JISON outputs, pyTLEX provides a
React-based application that allows users to visu-
ally explore the TimeML graph, its partitions, and
the resulting timelines. Additionally, the visualiza-
tion application harnesses the output from the in-
consistency detector to highlight problematic links
within the graph. This visual aid empowers users
to readily identify issues and undertake necessary
corrections. Furthermore, pyTLEX incorporates vi-
sual cues to highlight indeterminate sections of the
timeline, making it a valuable resource for narrative
comprehension and understanding. For pyTLEX
visualization, we have provided the demo video on
the pyTLEX website 3.

3 Use Cases

A user guide and license information can be found
on the pyTLEX website*. Here, we illustrate an
approach for one of the TimeML annotations of
the TimeBank corpus, called wsj_0555. tml. This
file and the rest of the corpus can be obtained from
the LDC website®. The following text, shown in
the example below, is a snippet of the TimeML-
annotated text of wsj_0555.tml. The TimeML
graph corresponding to the snippet text is shown in
Figure 1, where we can see that the nodes of the
graph are either events or times, and the edges are
TimeML relations. Event instance IDs and timeIDs
are given in square brackets (DCT = DOCUMENT
CREATION TIME).

3https://cognac.cs.fiu.edu/pytlex/
4https://cognac.cs.Fiu.edu/pytlex/
5https://catalog.ldc.upenn.edu/LDC20®6T®8

30

[DCT:10/30/89t121]: Waxman Industries Inc.
saidyeia4] holders of $6,542,000 face amount
of its 6 1/4% convertible subordinated deben-
tures, @3[(3145] March 15, 20074[t13], have
elected5[ei46] to convertg|cis7| the debt into
about 683,000 common shares. The conver-
sion price is $9.58 a share. The company
said7[eiss) the holders representgcis9) 52% of
the face amount of the debentures.

Users can read the file and create the TimeML
graph as follows:

timeML_graph Graph(’wsj_0555.tml’);

Users can retrieve any information about the
graph, such as links (all or one by ID), nodes (all or
one by ID), incoming links, outgoing links, JSON
output, number of nodes, number of links, number
of link types, etc. Listing 1 shows the output of
pyTLEX when the user requests the information
about the first link of wsj_0555.tml.

Moreover, users can actively manipulate their
graph by adding or removing nodes and links or
even constructing entirely custom graphs. The fol-
lowing code snippet demonstrates the process of
creating a customized graph and adding two new
nodes along with a link.

n

node1 TimeX (1, "FUTURE_REF",
next wednesday")
node2 = TimeX (2, "FUTURE_REF",
next thursday")
link1 = Link (1, "TLINK",
, hode2)
timeML_nodes
timeML_nodes.
timeML_nodes.
timeML_links.add(link1)
timeML_graph = Graph(timeML_nodes,
timeML_links)

True,

n

True,

"BEFORE”, nodeT

set ()
add(node1l)
add (node2)

After the TimeML graph is created, users can
perform timeline extraction. Accessing the graph’s
partitions can be achieved as follows:

timeML_graph.main_partitions
timeML_graph.subordination_partitions

As can be seen from Figure 1, this TimeML
graph has disconnectivity. PyTLEX can auto-
matically propose a link based on the values of
t12 (10/30/1989) and t10 (03/15/2007) through
the use of the algorithm for increasing connec-
tivity. Consequently, PyTLEX suggests the link
“t12 —BEFORE-> t10” to the user. Users have the
option to incorporate this suggested link, thereby
achieving a fully connected graph and, by exten-
sion, a fully connected timeline:

https://cognac.cs.fiu.edu/pytlex/
https://cognac.cs.fiu.edu/pytlex/
https://catalog.ldc.upenn.edu/LDC2006T08

1 Link: {ID = 1, LinkTag = TLINK, Syntax
= "" Temporal Relation = BEFORE,
Origin = null
2 Related to time - Timex: {tID =
t12, Type = DATE, Value =
1989-10-30 , Mod = null,
Temporal Function = true,
Quantity = null, Frequency =
null}
3 Event Instance - Event Instance:
4 {ID = eiid44, Tense = PAST, Aspect
= NONE, Part of Speech = VERB,
Polarity = POS, Modality = "
null”, Cardinality = "null"”,
Signal = null
5 EVENT: eid = el, class =
REPORTING, stem = say}
6 3

Listing 1: pyTLEX parser output for printing the
information about the first link of the graph.

Main Timeline: { 1
eiid46- = 1 2
eiid46+ = 2 3
eiid48- = 3 4
eiid44- = 3 5
eiid44+ = 4 6
eiid48+ = 4 7

t12- = 5 8
t12+ = 6 9
eiid45- = 6 10
tio- =7 11
eiid45+ = 8 12
t10+ = 8 13

} 14

Attachment Points: {eiid46->eiid47, 15
eiid48->eiid49}

Subordinated Timelines: { 16

[eiid47- = 1, eiid47+ = 2], 17

[eiid48- = 1, eiid48+ = 2]} 18

Listing 2: pyTLEX timeline output for the

wsj_0555. tml file.

partitions = partition_graph(graph)

links graph.links

Connectivity_Increaser.
connect_partitions(partitions,len(
links))

Now that we have the fully connected graph, we
can extract the timeline. Users, can retrieve the
exact trunk-and-branch timeline structure using:

timeML_graph.timeline

The output will be as shown in Listing 2. As
can be seen, pyTLEX returns the main timeline,
subordinated timelines, and the attachment points
for each subordinated timeline.

After extracting the timeline, users can also re-
trieve the indeterminacy score, as well as the inde-
terminant time points. For our example, pyTLEX

31

[Graph Type: Main Graph 1
Nodes Count = 2 2
Links count = 2 3
TLinkType: 2 4
ALinkType: © 5
SLinkType: @ 6
Nodes: 7
eiid2048, t57 8
Links: (From -> To) 9
(t57 BEFORE eiid2048) 10
(eiid2048 BEFORE t57) 11
] 12

Listing 3: pyTLEX inconsistent subgraph output for the
wsj_1011.tml file.

returns 0.125 indeterminacy score, and {t12+,
eiid45-} indeterminant time points after running:

IndeterminacyDetector.solve(g)

Users can validate annotations, for example, by
checking the ALINK replacement rule (Rule 4) and
the orphaned node rule (Rule 7):

filepath r"../pytlex_data/
TimeBankCorpus/wsj_0586.tml"

Sanity_Check.sco_ALINK_rule(filepath)

Sanity_Check.orphaned_node_rule(filepath

)

Since the graph of wsj_0555. tml is consistent,
pyTLEX’s inconsistency detection method yields
an empty set, indicating the absence of temporal
inconsistencies. To elucidate the mechanics of
the inconsistency detection algorithm, we can use
wsj_1011.tml, which is a temporally inconsistent
file from the TimeBank corpus. Following the exe-
cution of the graph construction method, users can
run the generate_inconsistent_subgraphs(g)
function to obtain information about the inconsis-
tent cycle. For this specific file, pyTLEX generates
an output as shown in Listing 3, presenting both
the inconsistent subgraph and relevant subgraph
details.

For pyTLEX visualization, we have provided the
demo video on the pyTLEX website ©.

4 Related Work

As we discussed in Section 1, TimeML is a stan-
dardized temporal markup language. While numer-
ous tools have been created for generating TimeML
annotations, including (Verhagen et al., 2005; Saur{
et al., 2005; Min et al., 2007; Chang and Manning,
2012; Chambers, 2013; Chambers et al., 2014;
Bethard, 2013; Mirza and Tonelli, 2016), there are

6https://cognac.cs.fiu.edu/pytlex/

https://cognac.cs.fiu.edu/pytlex/

only a small number of tools designed to evaluate
TimeML annotations.

Tango, a Java-based TimeML parser tool, can
parse TimeML annotated documents and construct
TimeML graphs (Verhagen et al., 2006). It offers
users the ability to modify the graph and conducts
temporal consistency checks using temporal clo-
sure. Tango was used in the evaluation of the Time-
Bank corpus, although it did not flag any inconsis-
tencies within the TimeBank files. Notably, Tango
employs <TIMEX> values to depict the graph in a
timeline format, where each segment encompasses
a <TIMEX> and the associated events. However, it
does not furnish the global ordering of events.

Similarly, TBOX (Verhagen, 2007) can create
a TimeML graph from TimeML annotations but
eliminates temporal closure links. TBOX presents
each event in this simplified graph as a box and
positions these boxes based on their temporal rela-
tions, arranged according to their temporal order.
This approach presents challenges with temporally
indeterminate annotations.

Boguraev and Ando (2006) evaluated of the ini-
tial version of the TimeBank corpus, denoted as
TimeBank 1.1. They analyzed the distribution of
relations, event classes, Timex types, and TimeML
components. Notably, their findings revealed that
the annotation tool employed in the construction of
TimeBank introduced a consistent shift of a single
character. Additionally, they identified discrepan-
cies in the types of Timex tags or instances of miss-
ing Timex tags associated with the same Timex
signal in TimeBank 1.1. Boguraev et al. (2007)
extended their analysis to TimeBank 1.2, enabling
a comparative assessment. They selected a random
document from both corpora and manually eval-
uated it to ascertain the number of errors in each
version. Their results suggest that TimeBank 1.2
represented a notable improvement over 1.1.

TimeML-strict is a Java-based validation tool for
TimeML (Derczynski et al., 2013). It implements a
range of criteria, including the identification of any
missing document creation time (DCT), the verifica-
tion of non-linguistic content, and the confirmation
that all links reference existing objects.

CAVaT is a Python utility for parsing TimeML
annotations and providing quantitative insights, in-
cluding distributions of TimeML objects (Derczyn-
ski and Gaizauskas, 2012). It offers functionality
to detect self-loops, orphaned nodes, and discon-
nectivity within TimeML graphs. CAVaT excludes

32

<SLINK>s from its analysis, which can result in
subordinated events being erroneously identified
as orphaned objects and subgraphs being marked
as disconnected, despite their connectivity through
<SLINK>s. CAVaT can identify temporal inconsis-
tencies within the graph using closure. When tem-
poral inconsistencies are present, CAVaT returns
the most recently added constraint to the inconsis-
tent cycle, which is important because identifying
the complete inconsistent cycle based on a single
edge can be particularly challenging for annotators,
especially in the context of large graphs.

In addition to these TimeML tools, NLP re-
searchers have used machine learning-based tech-
niques for timeline extraction from TimeML an-
notations (Mani et al.,, 2006; Do et al., 2012;
Kolomiyets et al., 2012; Leeuwenberg and Moens,
2020). These approaches come with specific con-
straints, and none of them address all temporal
links, covering a maximum of 6 out of the 13
types. Additionally, they fail to distinguish be-
tween real-life events and subordinated events, and
they may not effectively handle temporal indeter-
minacy within the annotations.

In contrast to prior work, pyTLEX provides an
open-source implementation of TLEX, a technique
for extracting exact timelines from TimeML anno-
tations. Like its predecessor, jJTLEX, pyTLEX in-
corporates a TimeML parser and a graph construc-
tor. It distinguishes subordinated events from real-
world events, extracts the global order of events and
times in a trunk-and-branch timeline structure, au-
tomatically identifies and rectifies inconsistencies,
and identifies and gauges indeterminacy. However,
pyTLEX has a number of extended capabilities.
It not only detects and resolves disconnectivities
within both graphs and timelines but also integrates
a validation system for TimeML annotations. Addi-
tionally, it offers a visualization system, enhancing
comprehension for users.

5 Conclusion

We present pyTLEX, an open-source Python li-
brary that enables the programmatic extraction of
exact timelines from TimeML-annotated texts via
a standard Python API. PyTLEX provides several
capabilities, including TimeML parsing, graph ex-
traction, timeline generation, inconsistency identi-
fication, temporal indeterminacy assessment, dis-
connectivity detection and resolution, corpus vali-
dation, and advanced visualization capabilities. We

release pyTLEX as an open-source library, freely
available for non-commercial usage’.

References

Steven Bethard. 2013. Cleartk-timeml: A minimalist
approach to tempeval 2013. In Second joint con-
ference on lexical and computational semantics (*
SEM), volume 2: proceedings of the seventh inter-
national workshop on semantic evaluation (SemEval

2013), pages 10-14.

Branimir Boguraev and Rie Kubota Ando. 2006. Anal-
ysis of timebank as a resource for timeml parsing. In
LREC, pages 71-76.

Branimir Boguraev, James Pustejovsky, Rie Ando, and
Marc Verhagen. 2007. Timebank evolution as a com-
munity resource for timeml parsing. Language Re-
sources and Evaluation, 41:91-115.

Nathanael Chambers. 2013. Navytime: Event and time
ordering from raw text. Technical report, NAVAL
ACADEMY ANNAPOLIS MD.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the
Association for Computational Linguistics, 2:273—
284.

Angel X Chang and Christopher D Manning. 2012. Su-
time: A library for recognizing and normalizing time
expressions. In Lrec, volume 3735, page 3740.

Leonardo De Moura and Nikolaj Bjgrner. 2008. Z3:
An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337-340. Springer.

Leon Derczynski and Robert Gaizauskas. 2012.
Analysing temporally annotated corpora with cavat.
arXiv preprint arXiv:1203.5051.

Leon Derczynski, Hector Llorens, and Naushad Uz-
Zaman. 2013. Timeml-strict: clarifying temporal
annotation. arXiv preprint arXiv:1304.7289.

T Di Mascio, R Gennari, I Lang, and P Vittorini.
2010. Visual tools for annotating temporal expres-
sions with timeml: a critical overview. Technical Re-
port KRDB10-5, KRDB Research Centre for Knowl-
edge and Data, Free University of Bozen-Bolzano,
Bolzano, Italy.

Quang Xuan Do, Wei Lu, and Dan Roth. 2012. Joint
inference for event timeline construction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL’12), pages 677-687.

7https ://cognac.cs.fiu.edu/pytlex/

33

Mark A Finlayson, Andres Cremisini, and Mustafa Ocal.
2021. Extracting and aligning timelines. In Com-
putational Analysis of Storylines: Making Sense of
Events, page 87. Cambridge University Press.

Oleksandr Kolomiyets, Steven Bethard, and Marie-
Francine Moens. 2012. Extracting narrative timelines
as temporal dependency structures. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics (ACL’12), pages 88-97.

Artuur Leeuwenberg and Marie-Francine Moens. 2020.
Towards extracting absolute event timelines from en-
glish clinical reports. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 28:2710—
2719.

Kishore Kumar Mamidala and Suresh Kumar Sanam-
pudi. 2021. A novel framework for multi-document
temporal summarization (mdts). Emerging Science
Journal, 5(2):184-190.

Inderjeet Mani, Marc Verhagen, Ben Wellner,
Chong Min Lee, and James Pustejovsky. 2006. Ma-
chine learning of temporal relations. In Proceedings
of the 21st International Conference on Computa-
tional Linguistics and the 44th Annual Meeting of the
Association for Computational Linguistics (ICCL-
ACL’06), pages 753—-760. Sydney, Australia.

Congmin Min, Munirathnam Srikanth, and Abraham
Fowler. 2007. Lcc-te: a hybrid approach to temporal
relation identification in news text. In Proceedings
of the fourth international workshop on semantic
evaluations (SemEval-2007), pages 219-222.

Anne-Lyse Minard, Manuela Speranza, Ruben Urizar,
Begona Altuna, Marieke Van Erp, Anneleen Schoen,
and Chantal Van Son. 2016. Meantime, the news-
reader multilingual event and time corpus. In Pro-
ceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16),
pages 4417-4422.

Paramita Mirza and Sara Tonelli. 2016. Catena: Causal
and temporal relation extraction from natural lan-
guage texts. In Proceedings of COLING 2016, the
26th International Conference on Computational Lin-
guistics: Technical Papers, pages 64—75.

Mustafa Ocal, Adrian Perez, Antonela Radas, and Mark
Finlayson. 2022a. Holistic evaluation of automatic
timeml annotators. In Proceedings of the Language
Resources and Evaluation Conference, pages 1444—
1453, Marseille, France. European Language Re-
sources Association.

Mustafa Ocal, Antonela Radas, Jared Hummer, Karine
Megerdoomian, and Mark Finlayson. 2022b. A com-
prehensive evaluation and correction of the timebank
corpus. In Proceedings of the Language Resources
and Evaluation Conference, pages 2919-2927, Mar-
seille, France. European Language Resources Asso-
ciation.

https://doi.org/10.1162/tacl_a_00182
https://doi.org/10.1162/tacl_a_00182
https://cognac.cs.fiu.edu/pytlex/
https://aclanthology.org/2022.lrec-1.155
https://aclanthology.org/2022.lrec-1.155
https://aclanthology.org/2022.lrec-1.313
https://aclanthology.org/2022.lrec-1.313
https://aclanthology.org/2022.lrec-1.313

Mustafa Ocal, Akul Singh, Jared Hummer, Antonela
Radas, and Mark Finlayson. 2023. jTLEX: a Java
library for TimeLine EXtraction. In Proceedings of
the 17th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 27-34, Dubrovnik, Croatia.
Association for Computational Linguistics.

James Pustejovsky, José Castaio, Robert Ingria, Roser
Sauri, Robert Gaizauskas, Andrea Setzer, and Gra-
ham Katz. 2003a. TimeML.: robust specification of
event and temporal expressions in text. In Fifth In-
ternational Workshop on Computational Semantics
(IWCS-5), pages 1-11.

James Pustejovsky, Patrick Hanks, Roser Sauri, An-
drew See, Rob Gaizauskas, Andrea Setzer, Dragomir
Radev, Beth Sundheim, David Day, Lisa Ferro, and
Marcia Lazo. 2003b. The TimeBank corpus. In Pro-
ceedings of Corpus Linguistics Conference, pages
647-656. Lancaster, UK.

Dragomir Radev, Beth Sundheim, Lisa Ferro, Roser
Sauri, Andy See, and James Pustejovsky. 2002. Us-
ing timeml in question answering.

Roser Sauri, Robert Knippen, Marc Verhagen, and
James Pustejovsky. 2005. Evita: a robust event rec-
ognizer for qa systems. In Proceedings of Human
Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 700-707.

Roser Sauri, Jessica Littman, Robert Gaizauskas,
Andrea Setzer, and James Pustejovsky. 2006.
TimeML annotation guidelines, version 1.2.1.
https://catalog.ldc.upenn.edu/docs/
LDC2006T08/timeml _annguide_1.2.1.pdf.

Marc Verhagen. 2007. Drawing timeml relations with
tbox. In Annotating, extracting and reasoning about
time and events, pages 7-28. Springer.

Marc Verhagen, Robert Knippen, Inderjeet Mani, and
James Pustejovsky. 2006. Annotation of temporal
relations with tango. In LREC, pages 2249-2252.

Marc Verhagen, Inderjeet Mani, Roser Sauri, Jessica
Littman, Robert Knippen, Seok Bae Jang, Anna
Rumshisky, John Phillips, and James Pustejovsky.
2005. Automating temporal annotation with tarsqi.
In ACL, pages 81-84.

34

https://doi.org/10.18653/v1/2023.eacl-demo.4
https://doi.org/10.18653/v1/2023.eacl-demo.4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.8972&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.8972&rep=rep1&type=pdf
https://catalog.ldc.upenn.edu/docs/LDC2006T08/timeml_annguide_1.2.1.pdf
https://catalog.ldc.upenn.edu/docs/LDC2006T08/timeml_annguide_1.2.1.pdf
http://aclweb.org/anthology/P/P05/P05-3021.pdf

