AnnoPlot: Interactive Visualizations of Text Annotations

Elisabeth Fittschen', Daniel Bruehl’, Julia Spahr'
Phuoc Thang Le*, Yuliia Lysa’, Tim Fischer?
Language Technology Group, Department of Informatics, Universitdit Hamburg, Germany
f {firstname.lastname}@studium.uni-hamburg.de,
I {firstname.lastname}@uni-hamburg.de

Abstract

This paper presents AnnoPlot, a web applica-
tion designed to analyze, manage, and visual-
ize annotated text data. Users can configure
projects, upload datasets, and explore their data
through interactive visualization of span anno-
tations with scatter plots, clusters, and statistics.
AnnoPlot supports various transformer models
to compute high-dimensional embeddings of
text annotations and utilizes dimensionality re-
duction algorithms to offer users a novel 2D
view of their datasets. A dynamic approach to
dimensionality reduction allows users to adjust
visualizations in real-time, facilitating category
reorganization and error identification. The
proposed application is open-source, promot-
ing transparency and user control. Especially
suited for the Digital Humanities, AnnoPlot
offers a novel solution to address challenges
in dynamic annotation datasets, empowering
users to enhance data integrity and adapt to
evolving categorizations.

1 Introduction

Within the context of NLP, sequence annotation is
the practice of tagging sections of text with appro-
priate labels. For example, this could involve clas-
sifying the phrase "Finding Nemo" as a "movie" in
the sentence "I love Finding Nemo."

Annotation projects, such as the creation of anno-
tated datasets, face a variety of challenges, one of
which is data quality and validity. As data is added
and use cases evolve, prior category definitions
might be insufficient and need to be updated or re-
organized. As datasets grow and evolve, achieving
a good overview becomes increasingly complex,
which is necessary to revise labeling strategy and
category definition (Payan et al., 2021).

AnnoPlot addresses this issue by offering com-
prehensive two-dimensional views of the provided
dataset without any prior training or classification
model necessary. Such views of span annotations
and category systems enable users to:

* quickly gain an overview of large datasets and

their overarching category structure

* reorganize categories within the dataset

* interactively adjust the visualization to fit the

intended category definition better

* better identify and fix potential erroneous an-

notations

Many of these functionalities are valuable for
applications in NLP and especially for the man-
agement of Named Entity Recognition datasets.
However, they are also of great interest to domains
and disciplines beyond those. In the digital hu-
manities, annotating datasets, building complex
category systems, and the refinement of such are
typical workflows of qualitative, hermeneutic re-
search processes.

AnnoPlot generates two-dimensional represen-
tations akin to systems such as BERTopic (Groo-
tendorst, 2022). First, the span annotations are
encoded with a pre-trained transformer model,
yielding large embeddings, typically of 512 up
to 1024 dimensions. In this work, we use BERT-
based transformer encoders since BERT (Devlin
et al., 2019) embeddings have proven to be very
information-rich, meaning a large variety of data is
encoded in the high-dimension embeddings.

Next, dimensionality reduction techniques are
implemented to generate a two-dimensional repre-
sentation for visualization purposes.

Our proposed tool offers an interactive dimen-
sion reduction algorithm based on the well-known
UMAP (Mclnnes et al., 2020) algorithm and its
parametric neural network implementation (Sain-
burg et al., 2021). The user can remotely train the
small reduction algorithm network to fit annotated
text passages to the categories. In case of further
customization necessity, dots or clusters represent-
ing annotations can be dragged in the interactive
view to inform the model about the desired changes
for the subsequent training iterations. This training
happens in real-time; the user can see updates or

106

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 106-114
March 17-22, 2024 (©2024 Association for Computational Linguistics

stop the process in case of mistakes or overfitting.

AnnoPlot provides a customizable and dynamic
application for the analysis of annotated datasets
that stands apart from expensive commercial solu-
tions like MAXQDA or Galileo. Our application
lets users interactively modify annotations, hier-
archical category systems, and visualizations in
real-time without requiring pre-trained, category-
specific models. By bridging the gap between
advanced data visualization techniques and user-
friendly applications, AnnoPlot makes a notewor-
thy addition to current annotation tools. AnnoPlot
is an open source project; the code can be found in
its github repository' together with a short video
demonstrating its core functions. A live demonstra-
tion of AnnoPlot can be found here?.

2 Related Work

AnnoPlot offers an interactive user interface for
data visualization of annotated texts and classifi-
cation category management. In the context of
category structuring and reorganization, AnnoPlot
can be compared with MAXQDA'’s Creative Cod-
ing feature. MAXQDA?, a qualitative data analysis
software, facilitates the organization and hierarchi-
cal structuring of codes through its Creative Cod-
ing functionality. This process involves generating,
sorting, and organizing codes, defining relation-
ships between them, and creating a hierarchical
structure. However, Creative Coding primarily fo-
cuses on manual categorization and organization
and does not offer any automation. In contrast,
AnnoPlot leverages embedding representations to
offer an initial starting point while offering similar
category management functionality.

Examining general visualization, AnnoPlot’s 2D
visualization of annotated text passages can be con-
trasted with tools like the embedding view func-
tionality of Galileo*. Galileo is a platform that
provides tools and modules to evaluate machine
learning classifiers, including NLP classifiers for
sequence annotation. The Embedding view utilizes
embeddings and a parametric UMAP reduction to
visualize classifier results. However, its primary
focus is on showcasing classifier performance, and
potential areas of uncertainty, rather than facili-
tating dataset analysis or category reorganization.

"https://github.com/uhh-1t/anno-plot
Zhttps://anno-plot.Itdemos.informatik.uni-hamburg.de/
3https://www.maxqda.com/
*“https://www.rungalileo.io/

AnnoPlot, on the other hand, is designed for quick
and interactive analysis of annotated text datasets,
enabling users to gain insights into the overarch-
ing structure and quality of their annotations. The
absence of a classifier in AnnoPlot makes its in-
teractive dimension reduction feature particularly
valuable, allowing for real-time adjustments and
customization based on user input.

In terms of visualization techniques that utilize
a processing pipeline of embedding and dimen-
sionality reduction, AnnoPlot shares similarities
with many applications such as BERTopic (Groo-
tendorst, 2022) and the TensorFlow embedding pro-
jector (Smilkov et al., 2016).

In regards to user interactions, research analy-
sis of interactive dimension reducing tools (Sacha
et al., 2017) identified seven distinct categories
of interactive dimensionality reduction algorithms,
three of which apply to AnnoPlot:

* Annotation & Labeling: the visualization can
leverage user given/changeable annotation
data when fitting visualization to correspond
to categories.

* Parameter Tuning: the user can alter the visu-
alization by tuning UMAP hyperparameters
and choosing which transformer model com-
putes the embeddings.

* Data Manipulation: the user can move data
points in the dynamic view, and get feedback
on how other points move in response.

A notably similar approach to interactive data visu-
alization is taken by Zexplorer (Gonzalez Martinez
et al., 2020) an extension of the bibliography sys-
tem Zotero. Zexplorer maps selected features of
research papers, including a BERT embedding of
the paper’s abstract, to two dimensions utilizing
a neural network approximation of UMAP. Simi-
lar to AnnoPlot it offers interactive training of this
network through draggable data points.

The development of AnnoPlot was motivated by
the absence of interactive features for the visual
analysis of annotations in the most popular (Neves
and Seva, 2019) open-source annotation tools such
as WebAnno (Yimam et al., 2014), brat (Stenetorp
et al., 2012), CATMA (Gius et al., 2023), and IN-
CEpTION (Klie et al., 2018). AnnoPlot combines
contextualized embedding representations of anno-
tations with interactive visualizations for analyzing
annotated datasets and category structuring.

107

https://github.com/uhh-lt/anno-plot#demo
https://anno-plot.ltdemos.informatik.uni-hamburg.de/
https://www.maxqda.com/
https://www.rungalileo.io/

3 System Architecture

The application is designed to visualize annotated
text segments within the provided datasets and fa-
cilitate the modification of existing annotations.
Further, it computes and assigns clusters to text
segments, helping users to identify annotation er-
rors. It allows users to create projects to manage
datasets within it and the flexibility to import data
in standard data formats such as CoNLL (Tjong
Kim Sang and De Meulder, 2003). When export-
ing the data, datasets within a project are merged.
The tool includes a search function to navigate the
dataset and the clusters. Finally, the tool offers
detailed statistics for projects, codes, and clusters.

AnnoPlot offers two views: one dedicated to
presenting annotated text segments and the other
focused on hierarchical category systems. Users
can create, delete, and rename data points in both
views. Furthermore, users can merge categories
and train the existing embeddings further. The
views are rendered using the D3.js library. In gen-
eral, the frontend implementation of the application
is realized through React/Next.js.

The backend was implemented in Python using
FastAPI and PostgreSQL for data storage. The
data processing pipeline to compute 2D representa-
tions of annotated text passages consists of a BERT-
based transformer model, UMAP, and HDBSCAN.
The Hugging Face library is employed to load mod-
els and allows for flexibility in which model to use
in the pipeline.

The hardware requirements for running Anno-
Plot are largely dependent on the embedding model
chosen. For development and testing, we used the
"bert-base" model with a 3080 RTX GPU (10 GB).
The backend uses transformer/BERT-based models
for inference and, at most, trains a small (4 layer)
dynamic umap model. While a GPU is not strictly
required it is highly recommended for UX perfor-
mance. Annoplot is deployed using Docker. Every
System component i.e., the database, frontend, and
backend is deployed in a separate docker container,
which are orchestrated in a docker compose file.

3.1 Visualization of Annotated Text Segments

The Plot View (see Figure 1), visualizes the up-
loaded annotated data. Each dot corresponds to
an annotated text passage, for example, the anno-
tated named entity "Finding Nemo" in the sentence
"My favorite movie is Finding Nemo"; the color
indicates the user-given category, i.e., "Movie".

Figure 1: The Plot View, generated using the static
UMAP dimension reduction. Left is an overview of the
hierarchical category system for filtering the annotations.
A tool-tip shows related information about the hovered
annotation, including the context sentence.

Dots corresponding to similar entities tend to
cluster together. Ideally, this clustering occurs ac-
cording to the pre-defined categories.

User Interaction Overview

Dots are the product of embeddings of correspond-
ing annotations and a reduction function. These
two processes can be customized in the Configura-
tions tab. The user can choose which embedding
model to use by linking to a corresponding Hug-
gingface repository; any BERT or RoBERTa-based
(Zhuang et al., 2021) model is compatible. This
also allows the user to use their own fine-tuned
models. The user can also choose between a static
and dynamic UMAP model to be used for dimen-
sionality reduction, of which the "n components"
hyperparameter can be adjusted.

The main features of this view are the overview
of the dataset and functionalities to revise annota-
tions and category choices. For example, the plot
can indicate that two categories are not clearly sep-
arated or overlap significantly; this might suggest
sub-optimal category choice or inconsistent annota-
tion. Further, the plot can reveal that annotations of
the same category group in different regions; this
might suggest introducing a new (sub-) category.

To the plot’s left is an overview of all categories.
These can be selected and de-selected to filter for
those of current interest. Hovering over dots allows
the user to see the respective entity data. Upon
right-clicking, a context menu allows the user to
re-categorize or delete the corresponding named
entity.

If the dynamic UMAP model was selected, the
user has two more options, as shown in Figure 2.

The user can train the model according to cate-
gories by pressing the train button. This option uses
the annotated data for semi-supervised training of
the dynamic UMAP model. It will be trained for
ten epochs; after each epoch, the model updates,

108

. Arrows

ode: organization-
religion
“S
(3] o .{ °
° S Code: building-
. - %
1 \ o, ® other _
‘ °a- s Segment: Anglican
Church
Segment: Syriac

Orthodox Church

Code: building-

3 B
: 4
:
s
5
3
H
H

Figure 2: The Plot View, generated using the dynamic
UMAP dimension reduction. Arrows have been manu-
ally drawn to denote the desired position for multiple
points. Pressing the "Train Arrows" button will rear-
range the visualization accordingly.

and the dots move to their new positions. The user
can choose to preemptively terminate the training
steps by pressing stop. Training will stop after the
current epoch has finished.

The user can also move data points to a desired
position. When dragging points, an arrow will ap-
pear, following the cursor, indicating the direction
the dot should move. The user can do this for mul-
tiple dots appearing on the right. When the user
is done, clicking the train button will trigger the
model to train for these new dot positions.

When using the dynamic model, the user can
go through all dots not within their intended clus-
ter and either fix their annotation or move them,
thereby fine-tuning the UMAP reduction.

Implementation Details

Dot coordinates are generated in two steps. First,
a context-rich, high-dimensional embedding (de-
pending on the model typically 512-1024) is cre-
ated from the entity data (entity and its surrounding
text). Then, the embeddings of all data points are
reduced to two dimensions using a dimension re-
duction algorithm.

There are dozens of combinations of embedding
models and dimension reduction algorithms. In
this paper, we focus on a BERT-based embedding
model and UMAP-based reduction algorithms.

Embeddings are generated by passing the anno-
tated text passage, e.g. a named entity, and sur-
rounding sentences (limited by the model’s input
size) into a transformer-based encoder. This results
in high dimensional embeddings per input tokens.

Embedding

i

Average embeddings

f f f
(o)@)(s (=)(s)
[I I [I

Transformer encoder

r 1 1 1t 1
o D)o D)o Do)

Figure 3: Visualization of the Embedding process. The
sentences surrounding a span annotation are embedded
by a transformer encoder. Tokens of the annotated entity
are averaged to compute the final entity embedding.

The token embeddings, part of the named entity,
are averaged to create the entity embedding (see
Figure 3). Input token sequences are embedded in
batches to enhance the processing efficiency.

Next, the embeddings of all annotated text seg-
ments within one dataset are passed to UMAP,
which maps the data to two dimensions according
to their structure in high-dimensional space.

In the process described, the 2D representation
of an annotated text passage is created independent
of its category, as the category is not passed to the
embedding model. This results in a deterministic
mapping from an annotation to two dimensions
for a specific annotated dataset. This is a signifi-
cant disadvantage of the proposed process, as such
representation cannot possibly accurately capture
the wide variety of classification schemas possible.
The named entity Finding Nemo in "I love Finding
Nemo" could, for instance, be categorized by type
(Movie/TV series), company (Disney/Pixar), or re-
lease decade (the 2000s/2010s). However, with the
current approach, it would be mapped to the same
2D coordinates, which is not desired.

For this reason, the tool also implements a dy-
namic UMAP solution for dimensionality reduc-
tion. Here, the user can interactively train a para-
metric neural network UMAP (Sainburg et al.,
2021) to fit the user’s category system and inter-
pretation. The network employs a comparatively
modest architecture, consisting of a single input
layer that dynamically adjusts to the input size,
followed by three hidden layers, each comprising
200 neurons, and a final output layer with a size
determined by the number of components (default-
ing to 2). This relatively small model reduces the

109

risk of overfitting and, therefore, of diluting the
knowledge encoded within the embeddings.

There are two options to train the reduction
model. The first option utilizes triplet loss to adjust
the representations to better separate the categories
from each other.

The triplet loss approach operates by selecting
anchors, positives, and negatives to form triplets
for each unique label in the data. The loss func-
tion used here is the TripletMarginLoss, defined
mathematically as

L= Z max (d(a,p) — d(a,n) + margin,0) ,
where d(x,y) represents the distance between two
points and a, p, n denotes the anchor, positive, and
negative samples, respectively. In our case, the
margin was set to 1.0.

The second approach allows for a more direct,
interactive manipulation of the data points. Users
can 'move’ dots, and the model is trained to op-
timize for the new positions of these dots. This
retraining uses Mean Squared Error (MSE) loss,
with the positions of other dots being held in place
using a moving average.

Both training methods utilize the Adam opti-
mizer. The learning rate was set to 2 x 10~ for the
triplet loss method and to 5 x 10~ for the direct
dot movement method.

3.2 Visualization of the Category System

In the Category View (see Figure 4), categories are
visualized in a bubble chart, mirroring the presenta-
tion style of the Plot View. It provides an overview
of all categories within the imported datasets.

location-park

building-other
building-library

art-painting

Bvent-other
product-game

person-other

ductirain | O19aNIZ
product-rain person-scholar

other-currency

Oat
other-chemicalthing

Figure 4: Category View, corresponding to the data seen
in Figure 1. Notably, person, scholar (right two points)
and location, building, library (top three points) cluster
together.

User Interaction Overview

The Category View helps the user reorganize and re-
fine the categories by merging, deleting, and chang-
ing their hierarchical structure.

Like in the Visualization for Annotated Text Seg-
ments (Figure 1), a legend on the left side shows
all possible categories and sub-categories within
a project, allowing the user to search or filter for
specific categories.

The colors and positions of categories are in sync
with the Annotated Text Segments View. The num-
ber and position of annotated text segments within
a category determine the size of the bubble, provid-
ing users with a quick overview of the distribution
of annotations across different categories.

laracter_Name
ur_Name
. r

Quote

B ‘

Figure 5: Visualization of MITMovieCorpus(eng, ger).
Notably, the German categories like "Schauspieler"”, "Di-
rektor" and "Figur Name" are very close to their English
counterparts (Actor, Director, Character Name).

erkunft
B

The user can use these spatial relations to get a
quick insight into their data. In Figure 5, for in-
stance, the categories of two datasets can be seen;
one is part of the MIT Movie Corpus (Liu et al.,
2013) annotated using German labels, the other
using English labels. The categories containing se-
mantically similar data are easily identifiable, often
wholly overlapping. Even without understanding
German, it is straightforward to determine which
categories can be merged.

By right-clicking a category, the category or sub-
category can be renamed, deleted, or merged with
another category. At the bottom of the view, ad-
ditional options allow the creation, removal, or
merging of categories.

Visualizing category positions, sizes, and colors
offers users an intuitive and comprehensive tool for
managing and understanding the structure of their
annotated datasets.

110

Implementation Details

The position and size of categories are calculated
using the underlying annotated text segments and
their position in 2D (see Section 3.1). A category’s
position is the average of all its entities’ positions,
whereas its radius corresponds to its number of
entities, whereas a category’s radius corresponds
to its number of entities.

3.3 Automatic Error Detection

In the annotated text segment view discussed in
Section 3.1, the user is also supported in finding
categorization errors. The identification of anno-
tation errors is achieved through clustering and
outlier detection.

User Interaction Overview

AnnoPlot aids in finding potential annotation errors
through the HDBSCAN (Campello et al., 2013)
clustering algorithm. Similarly to the embedding
and dimensionality reduction functions, this algo-
rithm can also be configured in the Configurations
tab. Here, the user can adjust the "min cluster size",
"metric", and the "cluster selection method."

Segment: Syriac Orthodox Church
Category: building-other

Vicariates (exarchates) in many countries covering six continents .

Sentence: Today , the Syriac Orthodox Church has several Archdioceses and

Figure 6: Error identification. The light blue dots are
a cluster of religious organizations. A user must now
decide if this annotation is correct or incorrect.

The user can choose to show automatically de-
tected errors. All found inconsistent annotations
are marked by a red circle and brought to the fore-
front of the scatter plot, allowing the user to see
otherwise obstructed dots (see Figure 6).

The user can also view the raw cluster algorithm
result when pressing the "show clusters" button.
The result of this can be seen in Figure 7. This can
help to understand the error suggestion and allows
for transparency. Found annotation errors can be
fixed by deleting or re-categorizing annotations that
correspond to the dots. Users using the Dynamic
UMAP model can additionally choose to move the
dot to the category of choice and train the reduction
model.

111

Figure 7: Visualization of calculated clusters as shown
in the Plot View. Each cluster is marked by a distinct
dot outline color.

Implementation Details

The HDBSCAN clustering algorithm is executed
upon each data modification. For every identified
cluster, the predominant category label is computed.
We employ a simple heuristic to detect annotation
errors: A cluster is designated as belonging to a
specific category if over 70% of its data points fall
within that category. Any data points within these
clusters that do not align with the dominant cate-
gory are flagged as errors. These erroneous points
are sent to the frontend and visualized accordingly.

4 Evaluation

To evaluate the effectiveness of error detection and
overall clustering validity, errors were intentionally
introduced to a dataset. The tool was then moni-
tored on its ability to identify these via its ’error
detection’ feature.

Dataset Preparation

The CoNLL-2003 (Sang and Meulder, 2003)
dataset was chosen as a base, it has 23 thousand
annotated segments and four categories "ORG",
"MISC", "LOC" and "PER". Errors were uni-
formly introduced across all categories by selecting
and modifying a proportional subset of segments.
Labels of selected segments were randomly reas-
signed to alternative labels. Datasets with error
rates of 1%, 5%, and 10% were generated.

Methodology

The datasets were uploaded to AnnoPlot and evalu-
ated using both static and dynamic UMAP reduc-
tion. The dynamic UMAP reduction was evalu-
ated for 50 (category) training epochs. The trans-
former model used for embedding was ’bert-base-
uncased’, a model without previous training on this
task or dataset.

Table 1: The results of the error detection evaluation. True positives (TP), false positives (FP), precision (P%), and
recall (R%) are reported for the three different error rates. Both approaches, static UMAP and dynamic UMAP (at
epochs 2, 5, 10, 20, 50) were evaluated. The best precision and recall scores are highlighted.

1% (229 errors) 5% (1163 errors) 10% (2328 errors)
#epochs | TP FP P% R% | TP FP P% R% | TP FP P% R%
static 60 966 | 5.85 | 262 | 284 | 789 | 26.47| 244 | 573 | 682 | 45.66| 24.6
2 188 | 736 | 20.35| 82.1 | 938 | 711 | 56.88| 80.7 | 1779 | 694 | 71.94| 76.4
5 199 | 367 | 35.16| 86.9 | 1020 | 501 | 67.06| 87.7 | 1969 | 445 | 81.57| 84.6
10 195 | 225 | 46.43| 852 | 1039 | 312 | 76.91| 89.3 | 1983 | 244 | 89.04 | 85.2
20 136 | 42 76.40| 594 | 755 | 52 93.56| 64.9 | 1443 | 69 95.44| 62.0
50 42 2 95.45| 18.3 | 201 8 96.17| 17.3 | 491 | 24 95.34| 21.1

0.8

0.6

Precision

0.4

0.z

—— 1% error
5% error
—— 10% error

0 10 20 30 40 50

09 /\/4

08

—— 1% error

5% error
—— 10% error

0.7

0.6

0.5

Recall

0.4

0.3

0.z

Figure 8: Precision (top) and recall (bottom) of the
dynamic UMAP error detection over 50 epochs

Results

Table 1 shows a representative subset of the results.
Notably, the dynamic UMAP approach consistently
reached higher precision and recall scores than
static UMAP. As training progresses, the model
seems to overfit, reducing the total amount of er-
rors detected (see Figure 8). However, precision
increases at the same time, i.e. only "clear" errors
are detected. Optimal F1 scores of 0.705, 0.841,
and 0.881 were attained for the datasets (1%, 5%,
10% error) at iterations 13, 11, and 10, respectively.
It should be noted that the error detection method
only detects points situated within incorrect cate-
gory clusters. Points outside of or on the periphery
of clusters will not be detected.

5 Conclusion & Future Work

In this paper, we presented AnnoPlot, a web appli-
cation that allows users to easily visualize, man-
age, and analyze annotated datasets. The proposed
tool offers an efficient and streamlined solution
for working with span annotations and their cat-
egory system in a novel way on a 2D canvas. It
enables users to upload datasets, add configura-
tions, and manage them as projects, with different
data extracted and presented across separate pages.
The category and plot views are the main features,
displaying categories and annotations clustered to-
gether. Users can perform tasks like merging, delet-
ing, and rearranging annotated text passages di-
rectly within the view. The plot view also enables
the training of dynamic UMAP to optimize the vi-
sualization and identify any errors or outliers in
the clusters. Statistics are available for categories,
clusters, and projects.

This work focused on the visualization, man-
agement, and analysis of annotated text datasets.
However, extending the proposed approach and
interface to support annotated data of other modali-
ties is straightforward. In a future iteration of this
tool, we will support image annotations by switch-
ing the embedding model with appropriate visual
transformers and adapting the software to handle
image datasets. This broadens our tool’s analytical
scope to encompass a large variety of data types.

Further, AnnoPlot will offer more varied dimen-
sionality reduction algorithms, including t-SNE
and Principal Component Analysis.

Finally, it is planned to integrate AnnoPlot into a
more comprehensive open-source annotation soft-
ware as an interactive visual analysis feature.

112

Limitations

The tool, especially the embedding process, relies
on transformer models imported from the Hugging
Face website. The tool is unable to download new
models in case of Hugging Face unavailability.

The embedding process currently relies on large
transformer models with a time complexity of
o(n?), limiting the context data available for the
embedding generation to about 512-1024 tokens.
In our experiments, we limited the context of an
annotated text passage to the surrounding sentences
and did not run into the context limitation of 1024
tokens.

The visualization of annotated text segments is
rendered using D3.js. Currently, up to 10.000 data
points can be rendered reliably. To compensate for
this, AnnoPlot offers filtering by categories to limit
the amount of rendered annotations and allow the
analysis of large annotated datasets.

Ethics Statement

AnnoPlot is designed with ethical considerations in
mind, prioritizing user privacy, transparency, and
control. Several key points highlight the ethical
stance of the software:

1. Open Source and Local Execution: Anno-
Plot is an open-source project, and users have
the option to run it locally. This ensures trans-
parency in the codebase and provides users
with control over their data.

2. No Collection of Private Data: AnnoPlot
respects the confidentiality and integrity of
user data. The tool does not engage in any
unauthorized sharing or transmission of data,
and users maintain complete control over their
datasets.

3. Human in the Loop: AnnoPlot adopts a
human-in-the-loop approach, where users ac-
tively participate in the annotation and correc-
tion process. The tool serves as an assistant to
users, allowing them to visualize and manage
annotated data effectively.

4. Potential for Bias Control: The interactive
nature of AnnoPlot, especially in the dynamic
UMAP training, allows users to identify and
rectify potential biases or errors in categoriza-
tion. This empowers users to ensure fairness
and accuracy in their annotated datasets.

In summary, AnnoPlot is designed to be a re-
sponsible and ethical tool, prioritizing user privacy
and autonomy.

References

Ricardo Campello, Davoud Moulavi, and Joerg Sander.
2013. Density-Based Clustering Based on Hierarchi-
cal Density Estimates. In Pacific-Asia conference on
knowledge discovery and data mining, volume 7819,
pages 160-172, Gold Coast, Australia. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1, pages 4171-4186, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Evelyn Gius, Jan Christoph Meister, Malte Meister,
Marco Petris, Mareike Schumacher, and Dominik
Gerstorfer. 2023. CATMA 7 (Version 7.0). Zenodo.

Alberto Gonzélez Martinez, Billy Troy Wooton, Nurit
Kirshenbaum, Dylan Kobayashi, and Jason Leigh.
2020. Exploring collections of research publications
with human steerable ai. In Practice and Experi-
ence in Advanced Research Computing, PEARC 20,
page 339-348, New York, NY, USA. Association for
Computing Machinery.

Maarten Grootendorst. 2022. BERTopic: Neural topic
modeling with a class-based TF-IDF procedure.
arXiv preprint arXiv:2203.05794.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION Platform: Machine-Assisted
and Knowledge-Oriented Interactive Annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5-9, Santa Fe, New Mexico. Association for
Computational Linguistics.

Jingjing Liu, Panupong Pasupat, Yining Wang, Scott
Cyphers, and Jim Glass. 2013. Query understand-
ing enhanced by hierarchical parsing structures. In
IEEE Workshop on Automatic Speech Recognition
and Understanding, pages 72-77, Olomouc, Czech
Republic. IEEE.

Leland Mclnnes, John Healy, and James Melville. 2020.
UMAP: Uniform Manifold Approximation and Pro-
jection for Dimension Reduction. arXiv preprint
arXiv:1802.03426.

Mariana Neves and Jurica Seva. 2019. An extensive
review of tools for manual annotation of documents.
Briefings in Bioinformatics, 22(1):146-163.

113

https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.1470118
https://doi.org/10.1145/3311790.3396646
https://doi.org/10.1145/3311790.3396646
http://arxiv.org/abs/2203.05794
http://arxiv.org/abs/2203.05794
https://aclanthology.org/C18-2002
https://aclanthology.org/C18-2002
https://doi.org/10.1109/ASRU.2013.6707708
https://doi.org/10.1109/ASRU.2013.6707708
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.1093/bib/bbz130

Justin Payan, Yuval Merhav, He Xie, Satyapriya Kr-
ishna, Anil Ramakrishna, Mukund Sridhar, and
Rahul Gupta. 2021. Towards Realistic Single-Task
Continuous Learning Research for NER. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 3773-3783, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Dominik Sacha, Leishi Zhang, Michael Sedlmair,
John A. Lee, Jaakko Peltonen, Daniel Weiskopf,
Stephen C. North, and Daniel A. Keim. 2017. Vi-
sual Interaction with Dimensionality Reduction: A
Structured Literature Analysis. IEEE Transactions
on Visualization and Computer Graphics, 23(1):241—
250.

Tim Sainburg, Leland Mclnnes, and Timothy Q Gentner.
2021. Parametric UMAP embeddings for represen-
tation and semi-supervised learning. arXiv preprint
arXiv:2009.12981.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: Language-
independent named entity recognition. CoRR,
¢s.CL/0306050.

Daniel Smilkov, Nikhil Thorat, Charles Nicholson,
Emily Reif, Fernanda B. Viégas, and Martin Wat-
tenberg. 2016. Embedding Projector: Interactive Vi-
sualization and Interpretation of Embeddings. arXiv
preprint arXiv:1611.05469.

Pontus Stenetorp, Sampo Pyysalo, Goran Topié,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. brat: a Web-based Tool for NLP-Assisted Text
Annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102—-107, Avignon, France. Association for Compu-
tational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142—-147, Edmonton, Canada. Association for Com-
putational Linguistics.

Seid Muhie Yimam, Chris Biemann, Richard Eckart de
Castilho, and Iryna Gurevych. 2014. Automatic An-
notation Suggestions and Custom Annotation Lay-
ers in WebAnno. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 91-96, Bal-
timore, Maryland. Association for Computational
Linguistics.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A
robustly optimized BERT pre-training approach with
post-training. In Proceedings of the 20th Chinese
National Conference on Computational Linguistics,
pages 1218-1227, Huhhot, China. Chinese Informa-
tion Processing Society of China.

114

https://doi.org/10.18653/v1/2021.findings-emnlp.319
https://doi.org/10.18653/v1/2021.findings-emnlp.319
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
http://arxiv.org/abs/2009.12981
http://arxiv.org/abs/2009.12981
http://arxiv.org/abs/cs/0306050
http://arxiv.org/abs/cs/0306050
http://arxiv.org/abs/1611.05469
http://arxiv.org/abs/1611.05469
https://aclanthology.org/E12-2021
https://aclanthology.org/E12-2021
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.3115/v1/P14-5016
https://doi.org/10.3115/v1/P14-5016
https://doi.org/10.3115/v1/P14-5016
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108

