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Abstract

The Parallel Meaning Bank (PMB) serves as a corpus for semantic processing with a focus on semantic parsing and
text generation. Currently, we witness an excellent performance of neural parsers and generators on the PMB. This
might suggest that such semantic processing tasks have by and large been solved. We argue that this is not the case
and that performance scores from the past on the PMB are inflated by non-optimal data splits and test sets that are
too easy. In response, we introduce several changes. First, instead of the prior random split, we propose a more
systematic splitting approach to improve the reliability of the standard test data. Second, except for the standard test
set, we also propose two challenge sets: one with longer texts including discourse structure, and one that addresses
compositional generalization. We evaluate five neural models for semantic parsing and meaning-to-text generation.
Our results show that model performance declines (in some cases dramatically) on the challenge sets, revealing the

limitations of neural models when confronting such challenges.
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1. Introduction

The Parallel Meaning Bank (PMB, Abzianidze et al.,
2017) is a semantically annotated parallel corpus
for multiple languages. It consists of a large collec-
tion of parallel texts, each accompanied by a for-
mal meaning representation based on a variation
of Discourse Representation Theory (DRT, Kamp
and Reyle, 1993), called Discourse Representa-
tion Structure (DRS). It can be used for corpus-
based studies on formal semantic phenomena, or
to develop and evaluate semantic processing tasks
such as text-to-meaning parsing and meaning-to-
text generation. As a matter of fact, the PMB has
been widely used in semantic parsing (Abzianidze
et al., 2019; van Noord, 2019; van Noord et al.,
2020; Wang et al., 2021b; Poelman et al., 2022),
natural language generation (Wang et al., 2021a,
2023), and semantic tagging (Bjerva et al., 2016;
Abzianidze and Bos, 2017; Abdou et al., 2018; Huo
and de Melo, 2020).

The rapid development of neural models and
their incredible performance seem to make the im-
pression that tasks like semantic parsing are practi-
cally solved. For instance, the state-of-the-art DRS
parser (Wang et al., 2023) achieves a remarkable
score of approximately 95.0 on the English test
set of the PMB and manual analysis reveals that
the parser made very few errors except for words
outside the vocabulary. Are neural models master-
ing semantic parsing (and indeed natural language
generation), even for complex formal meaning rep-
resentations like those present in the PMB? Or is
there something else going on, and does this per-
ception not align with the actual state of affairs?

We carried out a critical examination of the PMB
and revealed three (related) problems: (1) there
is a “data leakage” from the training data to the
development and test splits; (2) the random splits
of the data lead to a non-optimal division; and (3)
the test set is often regarded as “easy” as it contains
a large amount of relatively short sentences. Let
us elaborate on this a bit.

In the current release of the PMB, the data splits
were randomly decided and considered "standard".
However, this random split may result in overlap and
imprecise error estimates (Segaard et al., 2021)
and and cannot adequately represent the distribu-
tion of the dataset. For instance, the sentence “/ like
chocolate ice cream!” is allocated to the training
set, while the very similar sentence “/ like choco-
late ice cream.” is assigned to the test set. Equally
alarmingly, some instances in the development and
test sets mirror those in the training set, potentially
skewing parser evaluations. Consequently, this
may lead to parser evaluation results that are overly
optimistic. We completely agree with Opitz and
Frank (2022) and Groschwitz et al. (2023), who
both argue that "AMR Parsing is far from solved"
hits the nail on the head, and even goes beyond
Abstract Meaning Representation (AMR) and also
applies to DRS. We think the current PMB test set
lacks difficulty, because it puts emphasis on brief
and simplistic sentences with an average length of
less than ten words. The reason for this is that all
instances of the test set have the “gold” annotation
status, obtained via intensive manual correction,
and the longer a document the harder it is to get
an error-free annotation for it.

The aim of this paper is (a) to show that the
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Text: (c) DRS (clause notation):

t1 < now

) b4 commit "v.01" el
commit.v.01(el)

b3 REF x2

Time(el, t1
Them(e(el, )xz) b3 PRESUPPOSITION b4
Agent(el, x1) b3 crime "n.01" x2

crime.n.01(x2)

% commit [13...
% the [20...23]
% the [20...23]
% crime [24...29]
% . [29...30]

(d) DRS (sequence box notation):

19]

I
| EN: Bill did not commit the crime. bl REF x1 % Bill [0...4] male.n.02 Name "Bill" % Bill [0-4] }
I DE: Bill hat das Verbrechen nicht begangen. b1 Name x1 "bill" % Bill [0...4] NEGATION <1 % not [9-12] }
} NL: Bill heeft de misdaad niet begaan. b1 PRESUPPOSITION b2 % Bill [0...4] time.n.08 TPR now % did [5-8] I
} QH:' Egljrqgg%;smmesso il crimine. b1 male "n.02" x1 % Bill [0...4] commit.v.01 Agent -2 Time -1 Theme +1 % commit  [13-19] i
. IR ° 0, N : 0, : -
MBI eicosnor, 2R wddb. w20
{(b) DRS (box notation): b2 time "n.08" t1 % did [5...8] (e) DRS (graph notation) }
} 1 b4 Timeeltl % did [5...8] |
i male.n.02(x1) b2 NEGATION b4 % not [9...12] !
} Name(xL. bill) b4 REF el % commit [13...19] I
! - [x2elts b4 Agent el x1 % commit [13...19] |
! time.n.08(t1) b4 Theme el x2 % commit [13...19] |
| I
! 1
! 1
! 1
| I

Figure 1: (a) An example sentence “Bill did not commit the crime." taken from the PMB in six languages
with its DRS in (b) box notation, (c) clause notation, (d) sequence box notation, and (e) graph notation.

random split indeed leads to an undesired simplifi-
cation of the task, and (b) to demonstrate that the
task of semantic parsing is far from being solved
by providing a new challenging test set.

Inspired by the work of Sggaard et al. (2021),
we design three new test sets: one standard test
set and two challenge sets. The former is imple-
mented by a two-round sorting approach to estab-
lish a more systematic split, ensuring the reliability
and independence of standard development and
test sets. The latter comprises a test set with sub-
stantially longer texts and a test set based on com-
positional recombination. The long-text set is de-
rived by choosing documents with long texts from
the PMB and manually correct the automatically
assigned meaning representation. This set aims
to assess the parser’s performance on long and
multi-sentence texts. The compositional set con-
sists of texts formed by recombining the Combina-
tory Categorical Grammar (CCG, Steedman, 1996)
derivation tree that is provided with the PMB data.
This kind of tree recombination technique has been
empirically validated for semantic data augmenta-
tion by Juvekar et al. (2023). Differently, we employ
this technology for the creation of test sets, with the
intent of assessing the semantic parser model’s
capability in compositional generalization (Furrer
et al., 2020). To our knowledge, we are the first to
utilize CCG to create data for compositional gen-
eralization testing. By empirical analysis of the
performance of neural semantic parsers and gen-
erators based on five different language models,
we show the effect of our newly created systematic
split and challenge sets.

2. Background and Related Work

In this section, we first provide an overview of DRS,
PMB, and CCG, review the works in parsing and
generation, and introduce different data split meth-
ods. Subsequently, we introduce existing tasks and
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corpora related to long text semantic and composi-
tional generalization.

2.1.

DRS is the formal meaning representation in the
PMB, capturing the essence of the text and cover-
ing linguistic phenomena like anaphors and tem-
poral expressions. Unlike many other formalisms
such as Abstract Meaning Representation (AMR,
Banarescu et al., 2013) used for large-scale se-
mantic annotation efforts, DRS covers logical nega-
tion, quantification, and discourse relations, has
complete word sense disambiguation, and offers a
language-neutral meaning representation.

DRS can be represented in multiple formats as
is shown in Figure1. In the box notation, DRS uses
boxes containing discourse referents and condi-
tions. Discourse referents, like x7, serve as mark-
ers for entities introduced in the discourse. Condi-
tions convey information over the referents: to what
concepts they belong and what relations they have
to other referents, expressed by roles or compari-
son operators. Concepts are grounded by WordNet
synsets, such as male.n.02. Thematic roles are
derived from VerbNet (Bonial et al., 2011), for in-
stance Agent. Operators, like <, =, # and ~, are
utilized to formulate comparisons among entities.
Furthermore, conditions can also be complex, serv-
ing to represent logical (negation, —) or rhetorical
relations among different sets of conditions.

The clause notation is converted from box no-
tation to adapt to machine learning models (van
Noord et al., 2018). In the conversion, the label of
the box, wherein the discourse referents and con-
ditions are located, is positioned to precede them.

To simplify DRS, Bos (2023) introduced a
variable-free DRS format called Sequence Box No-
tation (SBN), where the sequencing of terms is
important. The meaning of each word adheres
to an entity-role-index structure, with indices con-
necting entities and roles decorating connection.

Discourse Representation Structure



The discourse relations (such as NEGATION and
ELABORATION) are slightly different, indicating
the beginning of a new context. The subsequent in-
dices, marked with comparison symbols (<,>), link
the newly established context to another context.
SBN can also be interpreted as a directed acyclic
graph, as depicted in Figure 1(e).

2.2. Combinatory Categorical Grammar

CCG is a lexicalised grammar formalism (Steed-
man, 1996) used in the PMB to steer the compo-
sitional semantics. It comprises just a few basic
categories — N (noun), NP (noun phrase), PP
(prepositional phrases) and S (sentence) — from
which function categories can be composed using
the backward slash for combining with phrases to
the left and the forward slash for combining with
phrases to its right. For instance, a typical deter-
miner gets the lexical category NP/N to look for a
noun (N) on its right resulting in a noun phrase (NP).
CCG expressions can be combined with each other
obeying the combinatorial rules, of which there are
just a handful. The most common rules are forward
and backward application:

Forward App. (>):
Backward App. (<) :

X/Y)Y =X (1)
Y (X\YV)=X (2)

In the PMB, each CCG category is paired with a
meaning representation with a semantic type that
mirrors the internal structure of the category. This
makes it a formidable linguistic formalism to imple-
ment compositional semantics.

2.3. The Parallel Meaning Bank

The PMB has evolved through four versions. Origi-
nating from the English-specific Groningen Mean-
ing Bank (GMB, Basile et al., 2012), the PMB ex-
panded it by embracing multiple languages. The
initial version introduced German, Dutch, and ltal-
ian with their gold standard DRS in box format. The
second version added silver and bronze standard
data, which are partially corrected and uncorrected.
Subsequent versions, namely the third and fourth
versions, have witnessed an increased volume of
manually annotated data and a shift from box to
clause notation.

The PMB employs seven layers to process raw
text, with each layer contributing an additional piece
of syntactic/semantic information, building upon
the results from the preceding layer (Abzianidze
et al., 2020). The seven layers encompass tok-
enization, symbolization, word sense disambigua-
tion, co-reference resolution, thematic role labeling,
syntactic analysis and semantic tagging. Manual
corrections are allowed at every layer. The final
layer yields a CCG derivation tree, which is then

utilized as input for the Boxer (Bos, 2015) and is
converted into DRS. Initially tailored for English,
PMB aligns it with other languages using an anno-
tation projection method (Abzianidze et al., 2020).

In the field of semantic-related tasks, PMB has
been widely used. However, it is not without limita-
tions. Haug et al. (2023) emphasizes that a large
portion of PMB data consists of short sentences,
which compromises its ability to accurately repre-
sent real-world data.

2.4. Parsing and Generation with DRS

Semantic parsing with DRS initially employed rule-
based parsers, such as Boxer (Bos, 2008). With
the advent of neural models, the focus shifted
to seq2seq approaches using LSTMs (van Noord
et al., 2019, 2020). However, recent innovations
include tree-based (Liu et al., 2018, 2019; Poelman
et al., 2022) and graph-based techniques (Fancellu
et al., 2019; Fu et al., 2020). In the ongoing explo-
ration of neural networks, parsers have increasingly
embraced transformer-based models like T5 (Raf-
fel et al., 2019), BART (Lewis et al., 2020), and
their variants. A significant breakthrough was DRS-
MLM (Wang et al., 2023), a model that pre-trained
mBART on PMB data and achieved state-of-the-art
results in multiple languages. For meaning-to-text
generation, Wang et al. (2021a) utilized a bi-LSTM
on DRS’s linearized format and found character-
level decoders optimal. The mentioned DRS-MLM
can also be used for DRS-to-text generation in pre-
training steps outperforming other generators.

2.5. Data Split Methods

In most of the standardized datasets (Marcus et al.,
1994; Fares et al., 2018), a consistent test set is typ-
ically maintained to enable comparisons between
models (van der Goot, 2021). Traditionally, this kind
of test set is created by random sampling (Elazar
and Goldberg, 2018; Poerner et al., 2018), as is the
current practice in the PMB. However, as we men-
tioned in the introduction, this random selection will
lead to a data leakage from train to test. Multiple
random split (Gorman and Bedrick, 2019) may be
a fairer approach, but this will make comparison of
models more difficult. To address these problems,
Segaard et al. (2021) advocates for the utilization
of a biased or adversarial split besides the stan-
dard split, aiming to reduce the deviation between
the test set and real-world data. We adopted this
suggestion and developed an unbiased standard
test set along with two biased challenge test sets,
as detailed in Section 3.
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2.6. Semantic Corpora with Long Texts

Few corpora focus on the semantics of long texts,
primarily because of difficult annotations and con-
straints in meaning representation itself (For in-
stance, AMR was initially designed for single sen-
tences). O’Gorman et al. (2018) addressed this
by manually annotating coreference, implicit roles,
and bridging relations to create the multi-sentence
AMR corpus. Other annotated corpora address dis-
course structure and rhetorical structure (Prasad
et al., 2008), but ignore sentence semantics. As
mentioned in Section 2.1, DRS is naturally de-
signed for discourse, eliminating the need for addi-
tional annotation rules when annotating the mean-
ing of long texts. Therefore, our annotation is more
straightforward, as introduced in Section 3.

2.7. Compositional Generalization

Several studies have demonstrated that neural
models tend to memorize patterns observed dur-
ing training, struggling to generalize effectively to
unfamiliar patterns (Lake and Baroni, 2018; Furrer
et al., 2020). The combinationality in language sig-
nificantly exacerbates this struggle. To assess this,
tasks and datasets like the SCAN (Lake and Baroni,
2017) and the COGS (Kim and Linzen, 2020) have
been developed. Kim and Linzen (2020) pointed
out despite excellent standard test performances,
their models reveal gaps in compositional general-
ization ability. This kind of gap led to our creation
of the second challenge test set in Section 3 and
experiments in Section 4.

3. Improving Semantic Evaluation

In this section we outline the methods to create bet-
ter test sets. Besides the standard test set created
with a different data split, we also show how we
built additional challenge test sets. The resulting
data set will be released as PMB 5.0.0".

3.1.

As mentioned in Section 1, the random split method
employed by the PMB requires improvement. We
have devised a strategy that reduces overlap be-
tween training and standard development/test sets,
without introducing additional biases.

Our data split strategy involves two rounds of
sorting. First, documents are sorted by charac-
ter length. Afterward, the ordered collections are
divided into groups of ten documents, which are
then re-sorted based on their internal edit distances.
The first sorting aims to maintain a consistent length

Splitting Data Systematically

'"The release is available at https://pmb.let.

rug.nl/releases/
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distribution across the training, development, and
test sets, while also ensuring some degree of uni-
formity in their semantic distribution. This is crucial
to minimize bias introduced in the standard test
data. The second sorting is particularly designed
to create a certain degree of separation between
the datasets, aiming at decreasing the word overlap.
We allocate the first eight documents to the training
set, and the remaining two are randomly distributed
between the development and test sets. In Sec-
tion 4, our experiments and analysis prove that the
systematic split reduces the overlap between the
training and development/test sets.

The distributions of gold data under the system-
atic split are shown in Table 1. For English, we
adopt an 8:1:1 split ratio, while for the other three
languages, we use a 4:3:3 ratio to ensure the test
data is sufficient.

3.2. Creating Challenge Sets

We create two challenge sets for English: one fo-
cusing on long texts and another dedicated to com-
positional recombination by CCG.

3.2.1. Long-Text Challenge Set

Given that the gold data in the PMB predominantly
consists of short sentences, with an average sen-
tence length ranging between five and six words,
it constrains our evaluation of the model’s capabil-
ity with long texts. In response, we select silver
documents that notably exceed this average length
for manual annotation, and change these into gold
by correcting discourse structure, rhetorical rela-
tions, ellipsis, and inter-sentential pronouns (see
Appendix A.2 for an example). Our long-text set
includes 138 data samples with an average text
length of 61 words, roughly ten times longer than
the standard test set. The average lengths of train,
development and test sets are shown in Table 1.

3.2.2. Compositional Challenge Set

As introduced in section 2, the final layer of the PMB
produces the CCG derivation tree that is enriched
with syntactic and semantic information, which is
subsequently passed to the boxer to produce DRS.
Therefore, recombining the gold CCG tree with
other trees can yield distinct CCG trees, with asso-
ciated text and DRS. In contrast to the creation of
the long-text set, the quality of the DRS produced
by this method closely approximates the gold stan-
dard, which greatly reduces the need for further
manual annotation.

The original CCG derivation tree contains the
compositional categories of words and phrases in
a sentence, as shown in Figure 2 (a). We intro-
duce two recombination operations: substitution
and extension, shown in Figure 2 (c) and (d). In the
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Train Dev Standard Test Long Test Compositional Test
English (EN) 9,057 (5.64) 1,132 (5.38) 1,132 (5.15) 138 (60.78) 1,148 (6.48)
German (DE) 1,206 (5.06) 900 (4.79) 900 (4.87) — —
Dutch (NL) 586 (5.62) 435 (5.09) 435 (5.08) — —
Italian (IT) 745 (4.73) 555 (4.52) 555 (4.53) — —

Table 1: Distribution of train, development, and test sets in PMB 5.0.0 using the systematic split, together
with two challenge sets. The average sentence length of each set are provided in brackets.

have a big and strong dog
S[dcl\NP

| have a big and strong dog
! S[dcl]

bl have a dog
L NP (S[dC\NP)NP  NP/N N
i >
a dog !
| N > |
have a dog P
5 S[dcl\NP . i
| have a dog
LSl ;
| (b) Substitution Operation §
I want a dog !
! NP (S[dC\NPYNP  NP/N N
i >
adog
i N > i
: want a dog P
i S[dcl]\NP - E
| want a dog
| S[dcl] i
(c) Extension Operation
i I have a big and strong dog i
| NP (S[dC\NP)NP NP/N  N/N _conj N/N N
and strong
| (N/NY\(N/N) 5
big and strong
| N/N E
I >
big and strong dog
: N i
i - >
! a big and strong dog !
NP 5 |

Figure 2: Two recombination operations performed
on the CCG derivation tree of example sentence
“I have a dog”: (b) substitution (c) extension. We
retained only the CCG categories and their corre-
sponding words/phrases, excluding other semantic
information.
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substitution operation, the leaves or subtrees within
a CCG derivation tree are replaced by counterparts
from other different trees, provided they share the
same CCG category. For instance, the word have
swaps with want, as highlighted in blue. The exten-
sion operation takes a singular leaf from the tree
and develops it into a larger subtree. As shown in
Figure 2 (c), dog with the N category is extended
to a subtree rooted at NV, resulting in the phrase big
and strong dog. The pseudo-code detailing these
two operations is provided in Appendix A.1.

However, this method will generate many se-
mantically abnormal sentences though they adhere
strictly to syntactic structure. In this case, we use
masked language models to estimate sentence
pseudo-log-likelihood (PLL) scores (Salazar et al.,
2020; Kauf and Ivanova, 2023). In practice, BERT
(Devlin et al., 2018) is utilized as the scoring model,
with a manually determined threshold. Specifically,
the threshold is adjusted to eliminate 95% of the
generated sentences, retaining only the top 5% that
are highly deemed semantically correct.

Using this approach, we recombine the CCG
trees of training samples and choose from the gen-
erated data, with the details presented in Table 1.
Table 2 and 3 show some example texts produced
through substitution and extension operations. Be-
yond individual operations, we also conduct mul-
tiple iterations on a sentence. The symbol x indi-
cates the number of times an operation is applied
to the same sentence.

4. Experiments and Analysis

This section offers an introduction to the selected
seqg2seq models, experimental settings, results and
analysis for the text-to-DRS parsing and DRS-to-
text generation.

4.1.

The current approach to semantic parsing and text
generation with DRS mainly involves fine-tuning a
pre-trained language model. Our initial experiment
employs a model based on BERT embeddings and
LSTM architecture, following the methodology of
van Noord et al. (2020). Then we utilize T5 and
BART, two pre-trained transformer-based models.
Specifically, we choose their multilingual variants:

Model Selection



Category \ Operation \ Training Set Compositional Set
Noun N=N Bill was killed by an intruder.  Bill was killed by an Irishman.

Pronoun NP=NP My bag is very heavy. His bag is very heavy.

Verb (S\NP)/NP=>(S\NP)/NP The police are following us. The police are visiting us.
Adjective S\NP=-S\NP My tie is orange. My tie is wet.

Adverb (S\NP)/(S\NP)=-(S\NP)/(S\NP) | The rentis very high. The rent is extremely high.
Preposition PP/NP=-PP/NP The boy bowed to me. The boy bowed behind me.
Determiners NP/N=NP/N The answer is clear. Neither answer is clear.

Modal (S\NP)/(S\NP)=-(S\NP)/(S\NP) | It will be scary. It should be scary.

i N=N .
Substitutionx 2 + (SNP)/NP=(S\NP)/NP Russia fears the system. Cuba replaced the system.
NP=NP
Substitution x 3 + PP/NP—PP/NP | took the elevator to the They took another elevator to
fourth floor. the last floor.
+ S\NP=S\NP

Table 2: Examples of substitution operations with
shows the most common combinations for both tw

CCG categories and operations. Note the table only
o-fold (substitution x 2) and three-fold (substitution x

3) iterations. The color blue indicates the operation depicted in Figure 2 (b).

Category \ Training Set Compositional Set
- My brother is rich.
Noun My s rich. My brother is rich.
Verb Coffee will be after the meal. Coffee W!|| be served after the meal.
Coffee will be served after the meal.
. Tom was
Adjective Tom was Tom was thoughtful
. . Tom is courteous.
Extensionx 2 is .
Tom is courteous.
. There are thirty names on the list.
Extensionx3 | There are on the There are thirty names by on the list.

Table 3: Examples of extension operations. We have excluded the operations of CCG categories due to

the vast number of extension variations, which are
we present the most prevalent extension types for e
depicted in Figure 2 (c).

mT5 (Xue et al., 2021), byT5 (Xue et al., 2022),
mBART (Liu et al., 2020), and DRS-MLM (Wang
et al., 2023) which is pre-trained on DRS data us-
ing the mBART architecture. In the case of DRS-
MLM, for it is initially pre-trained on a train set under
random split, we re-pre-train it using the train set
based on our systematic split. To maintain con-
sistent model sizes, we selected the large version
across all models.

4.2. Evaluation Metrics

The evaluation process for Text-to-DRS parsing
consists of two primary phases (Poelman et al.,
2022). Firstly, the generated DRSs and gold stan-
dard DRSs are transformed into Penman notation
(Kasper, 1989). Subsequently, we utilize SMATCH
(Cai and Knight, 2013), an evaluation tool for AMR
parsing, to calculate the match between the out-
put and the gold standard by quantifying the over-
lap of triples. Evaluation of the generation task is
conducted using BLEU (Papineni et al., 2002), ME-
TEOR (Lavie and Agarwal, 2007), and COMET(Rei

nearly impossible to cover comprehensively. Instead,
ach category. The color orange indicates the operation

et al., 2020).

4.3. Experiment Settings

We carried out three primary experiments. (1) We
fine-tuned the selected language models for four
languages: EN, DE, NL, and IT, and evaluated them
using the standard test set. Following the training
configurations set by van Noord et al. (2018); Poel-
man et al. (2022); Wang et al. (2023), we trained the
models on gold and silver data for EN, and trained
on gold, silver, and bronze data for DE, NL, and
IT. This was subsequently followed by a fine-tuning
phase exclusively on gold data; (2) We calculated
and compared the word overlap rate of the train
sets and test sets under systematic and random
split. Then, we showed the performance of the two
top-performing models from the first experiments
under these two splits. To ensure the assessment
was solely influenced by the data split, we only
tested on the English (only English has sufficient
gold data) and fine-tuned exclusively on the gold
data, and (3) We tested all fine-tuned models in the
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first experiments on the long-text set and compo-
sitional set. We divided the compositional set into
two subsets: substitution and extension, to assess
the difficulty produced by these two operations.

For all experiments and models, uniform hyperpa-
rameters were employed, and the presented results
are the average scores derived from three parallel
experiments.?

4.3.1. Standard Test

Table 4 shows the results of the text-to-DRS parsing
task. Across the four languages, both byT5 and
DRS-MLM models stood out, with byT5 attaining
88.0 in German, slightly surpassing DRS-MLM’s
87.1, and both models achieving the same F1 of
87.2 in ltalian. However, in English and Dutch,
DRS-MLM takes the lead with F1 91.5 and 85.5
respectively. mT5 and mBART closely follow, but
their performance in Dutch is significantly weaker,
possibly due to the limited Dutch data in their pre-
training corpus.

Table 5 shows the results of DRS-to-text gen-
eration. ByT5 surpasses other models in all lan-
guages except for Dutch. Particularly in English,
ByT5 achieves top scores with 71.9, 54.9, and
93.0 in three metrics, respectively. However, for
the Dutch, DRS-MLM remains the superior model
across these three metrics.

The standout performance of byT5 and DRS-
MLM can be attributed to byte-level tokenization
and specific pre-training, respectively. Unlike other
tokenization methods, like Byte Pair Encoding
(BPE, Sennrich et al., 2016), byT5’s byte-level to-
kenization, which can be seen as character-level
within our four target languages, results in a smaller
dictionary and has the ability to handle unseen
words. DRS-MLM employs several pre-training
tasks on the PMB data, making the model better
suited for the DRS data format. This advantage is
most obvious when dealing with Dutch, which has
the least training data among the four languages.

4.3.2. Systematic Split vs. Random Split

Figure 3 displays the distribution of word overlap
rates between train and development/test sets un-
der random and systematic split. The word overlap
rate, defined in Equation 3, measures the word-
level sentence similarity. According to the figure,
the systematic word overlap distribution is further
to the left than the random split, indicating that it
has less overlap. And as outlined in Section 3, the
systematic split does not simply reduce overlap by
indiscriminately adding bias. It also guarantees that

2We provide the most recent experimental results for
all test sets, available at https://pmb.let.rug.nl/
models.php.
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each set has a consistent length distribution, which
can also be viewed as a semantic distribution to
a certain extent. Therefore, in the case of PMB,
a systematic split is a more effective method for
dividing the dataset compared to the random split.

sentencel U sentence2 ®)

We further proved the advantage through experi-
ments. The parsing and generation results under
these two splits are shown in Table 6 and 7. The
model’s performance on the random split exceeds
that on the systematic split for both tasks, suggest-
ing the systematic approach presents more rigor-
ous challenges.
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Figure 3: Distribution of word overlap rates between
train and test sets in EN, DE, NL, IT. Lower overlap
rates signify fewer words occurring in both train and
test sets.
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Figure 4: Distribution of word overlap rates between
train and development sets in EN, DE, NL, IT.

4.3.3. Challenge Test Sets

The results of the models on the challenge test sets
are shown in Tables 8 and 9. The performance on


https://pmb.let.rug.nl/models.php
https://pmb.let.rug.nl/models.php

English German Dutch Italian
Parser F1 ERR F1 ERR F1 ERR F1 ERR
LSTM 78.6 8.4 80.2 4.0 74.4 8.5 79.6 5.0
mT5 88.8 2.8 86.7 1.9 47.0 16.0 82.0 2.8
byT5 91.4 2.1 88.0 0.7 79.8 5.0 87.2 0.7
mBART 89.1 2.3 86.1 1.8 64.5 3.4 86.2 1.8
DRS-MLM 91.5 1.5 87.1 21 85.5 2.0 87.2 0.9

Table 4: Evaluation results for neural text-to-DRS parsing on the standard test sets of four languages.
Note: ERR is the ill-formed rate (%) of generated DRSs that fail to transform into a graph structure.

English German Dutch Italian
Generator B M C B M C B M C B M C
LSTM 338 324 725|249 254 671|190 21.6 632 | 28.2 247 722
mT5 699 534 928|478 375 848 | 11.3 152 63.6 | 488 36.3 86.0
byT5 719 549 930|509 391 852|418 342 821|532 385 875
mBART 518 435 881|408 334 799 | 381 320 806 | 458 345 847
DRS-MLM | 67.5 524 922 | 476 36.6 844 | 494 375 86.0 | 46.3 342 86.3

Table 5: Evaluation results for neural DRS-to-text generation on the standard test sets of four languages.

Note: B = BLEU; M = METEOR; C = COMET.

Random split | Systematic split

Parser F1

ERR F1 ERR
byT5 87.1 5.0 83.5 6.0
DRS-MLM | 88.9 1.9 87.3 4.1

Table 6: Results of parsing under random and sys-
tematic split. Lower scores are marked.

Systematic split

Random split

Generator B M C B M C
byT5 66.1 522 91.7 | 647 51.0 89.0
DRS-MLM | 65.8 514 91.7 | 60.2 484 87.9

Table 7: Results of generation under random and
systematic spilit.

the long-text test set is significantly inferior, marked
by a high incidence of ill-formed outputs®. The
most pronounced drop is observed in ByT5, which
shows a reduction of 86% compared to the stan-
dard test set. In the generation task, although trun-
cation does not hugely impact on evaluation, the
models still grapple with long sequences, reflecting
decreases of at least 29.9, 11.9, and 16.2 across
three metrics. Notably, neural models struggle with

SSMATCH employs a hill-climbing technique to identify
the optimal match, which may introduce inaccuracies
when evaluating the output of the model for long texts
(Opitz and Frank, 2022). In this case, the results for long
texts should be considered as reference only.

the long set, primarily because their tokenization
significantly amplifies both input and output lengths.
For example, while the average sentence lengths
in the long set stand at 61 for text and 253 for DRS,
these numebrs increase to 98 and 503 after BPE
tokenization (mT5, mBART, and DRS-MLM) and
even further to 410 and 1370 with character-level
tokenization (ByT5). Obviously, these models can
not handle such long sequences as effectively as
the short sequences in the standard test.

For the compositional challenge set, it’s crucial
to note that all semantic components in the test
sets were also in the training. Therefore, we ex-
pect near-perfect scores from the models. They
perform well on the compositional-substitution set,
showcasing their ability to learn and apply word
meanings in known sentence structures. Among
these models, byT5 performs the best with 93.1 F1
in parsing, while mT5 and DRS-MLM show similarly
strong performance in generation. When testing on
the compositional-extension set, the performance
of the models dropped by around ten points in both
tasks. Most parsing or generation errors were in
the newly added parts in the texts, likely due to
the introduction of more intricate sentence struc-
tures, especially compound predicate adjectives
and attributive clauses, as shown in the examples
in Table 3. The most frequent errors of the models
are provided with examples in Appendix A.2.

5. Conclusion

Past performance of neural semantic parsers and
meaning-to-text generators have been slightly in-
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en-long en-substitution | en-extension
Parser F1 ERR | F1 ERR F1 ERR
LSTM 43.7 19.2 | 90.8 2.8 827 35
mT5 38.8 346 | 889 29 80.3 8.9
byT5 55 65.4 | 93.1 0.5 84.8 5.0
mBART | 22.0 53.8 | 89.7 1.4 80.4 7.6
DRS-MLM | 20.0 57.7 | 90.3 2.8 81.1 7.7

Table 8: Evaluation results for text-to-DRS parsing
on the challenge test sets.

en-long en-substitution | en-extension

Generator | B M Cc B M C B M C
LSTM 548 14.6 40.3|58.7 43.6 82.1|49.1 41.3 77.6
mT5 31.4 40.3 76.6|75.2 55.6 92.7|67.3 52.9 90.0
byT5 141 28.3 59.3|75.7 54.7 92.5|66.7 53.0 89.8
mBART |15.7 28.7 60.6|68.8 51.8 89.8|58.4 48.8 86.1
DRS-MLM | 32.6 40.5 75.4|76.0 54.9 92.5|69.4 53.2 90.0

Table 9: Evaluation results for DRS-to-text genera-
tion on the challenge test sets.

flated (or at best, made the suggestion that these
semantic computational tasks were close to being
“solved”) due to data leakage from training to test
and non-representative test sets. At least, that is
what our empirical study on the Parallel Meaning
Bank showed. We created a more realistic assess-
ment of performance by refining the data split and
formulating challenge sets. A systematic split for
the PMB yields a test set that is harder for semantic
parsers and generators. The introduction of two
further challenge sets, one with manually corrected
longer documents and one with automatically de-
rived compositional recombination using categori-
cal grammar, are indeed way more challenging than
the standard test set. Hence, semantic parsing and
text-to-meaning generation can not be considered
“solved” yet.
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A. Appendix

Appendix A.1 Pseudo-code for CCG
recombination

Both substitution and extension operations begin
with a standard pre-processing step: subtree set
construction. This extracts all subtrees from the
dataset’'s CCG derivation trees (For consistency,
we treat leaves as subtrees with only the root). Sub-
stitution operation primarily involves randomly se-
lecting subtrees, and then deleting and substituting
them. The replacement subtree is chosen from the
list in the first step. Extension operation involves
forming child mappings and producing subtrees
according to the mappings.
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Algorithm 1 Extract Subtrees from CCG Trees

Algorithm 3 Extension Operation

: Variables:
. SubtreeList < empty list
. AICCGTrees < CCG tree list

: function ExTRACTSUBS(node, currentPath)

if node is null then return

end if

Add node to currentPath

if node.left and node.right are null then
Add currentPath to SubtreeList

end if

ExTRACTSUBS(node.left, current Path)

ExTRACTSUBS(node.right, current Path)

: end function

: function SuBTREESFORTREE(r00t)
ExTRACTSUBS(r00t, empty list)
: return SubtreeList

: end function

: function SuBTREESFORTREES(AIICCGTrees)

for each tree in AlICCGTrees do
SuBTREESFORTREE(tree)

end for

. return SubtreeList

: end function

Algorithm 2 Substitution Operation

1
2

o ahRw

10:
11:

: Variables:
. SubtreeList < list of subtrees

: function GETPARENT(tree, childNode)
for each node n in tree do
if n.left = childNode or n.right =
childNode then
return n
end if
end for
return null
end function

12:

183:
14:
15:

16:
17:
18:
19:
20:
21:

function DeLeTEANDADD(iree, nodeToDelete)
parent — GETPARENT(tree, nodeToDelete)
newSubTree < randomly select from
SubtreeList with same root of nodeToDelete
if parent.left = nodeToDelete then
parent.left — newSubTree
else if parent.right = nodeToDelete then
parent.right < newSubTree
end if
end function

22:

23:
24

25:
26:

function SussTITUTE(tree)

nodeToDelete < randomly select a node
from tree

DeLeTEANDADD(tree, nodeToDelete)
end function

: Variables:
. Subtrees < list of subtrees
: ChildMap < dictionary of children

]

2

3

4:

5: function TRAVERSE(node)

6: if node is null then

7 return

8 end if

9 if node.left then

0 ChildM ap|(node, node.le ft)] —

node.right

11: end if

12: if node.right then

13: ChildMap|(node, node.right)] —
node.left

14: end if

15: TRAVERSE(node.left)

16: TRAVERSE(node.right)

17: end function

18:

19: function CREATESUBTREE(parent, left, right)

20: parent.left = left

21: parent.right = right

22: end function

10:

23:

24: function ExTENSION(tree)

25: leaf < RANDOMSELECTLEAF(iree)

26: if left then

27: newSubRoot < CREATESUBTREE(leaf,

leaf, ChildMap[(leaf,leaf)]) = To extend the
node from right

28: else

29: newSubRoot <« CREATESUBTREE(leaf,
ChildMap|(leaf,leaf)], leaf) = To extend the
node from left

30: end if

3t choose the newSubtree from Subtrees ac-
cording to newSubRoot

32: replace lea f with newSubtree

33: end function

Appendix A.2 Case Study

In this appendix, we present some wrong genera-
tions by byT5 model in the semantic parsing task.
Additionally, the gold-standard text and DRS can
also be seen as examples of the challenge sets.



Test set

Gold Text

Gold DRS

Generated

Standard

Long Text

Substitution

Extension

Mary called us.

Recent studies show
that children who do
not get enough sleep
tend to have some
emotional problems
as well as weight
gain later in life. As
VOA’s Melinda Smith
reports, the research
seems to blame the
parents.

Hungarian prisoners
broke out of jail.

Mr. Smith who worked
on that project asked
Jane to marry him.

female.n.02 Name "Mary"

call.v.03 Agent -1 Time +1 Co-Agent +2
time.n.08 TPR now

person.n.01 Sub speaker

recent.a.02 AttributeOf +1

study.n.01

show.v.02 Proposition >1 Experiencer -1 Time +1
time.n.08 EQU now

CONTINUATION <0

child.n.01

tend.v.01 Agent -1 Time +1 Topic +2
time.n.08 EQU now

have.v.01 Pivot -3 Theme +3 Theme +7
emotional.a.03 AttributeOf +1
problem.n.01

entity.n.01 Sub -1 Sub +2

weight.n.01

gain.n.01 Theme -1

later.r.01 EQU -6

life.n.01

NEGATION <1

time.n.08 EQU now

get.v.01 Pivot -12 Time -1 Theme +2
enough.a.01 AttributeOf +1

sleep.n.01

CONTINUATION <3

agency.n.01 Name "VOA"

female.n.02 Name "Melinda Smith" PartOf -1
report.v.01 Agent -1 Time +1

time.n.08 EQU now

CONTINUATION <1

research.n.01

seem.v.01 Experiencer -1 Time +1 Stimulus +2
time.n.08 EQU now

blame.v.01 Agent -3 Theme +1
person.n.01 Role +1

parent.n.01

country.n.02 Name "Hungary"

person.n.01 Location -1 Role +1
prisoner.n.01

break_out.v.03 Theme -2 Time +1 Source +2
time.n.08 TPR now

jail.n.01

mr.n.01

male.n.02 Name "Smith" Title -1

work.v.01 Agent -1 Time +1 Theme +2
time.n.08 TPR now

project.n.01

ask.v.02 Agent -4 Time +1 Recipient +2 Topic +3
time.n.08 TPR now

female.n.02 Name "Jane"

marry.v.01 Agent -1 Co-Agent +1

male.n.02 ANA -8

female.n.02 Name "Mary"

call.v.03 Agent -1 Time +1 Theme +2
time.n.08 TPR now

person.n.01 Sub speaker

recent.a.01 AttributeOf +1
study.n.04

show.v.04 Proposition >1 Experiencer -1 Time +1
time.n.08 EQU now
CONTINUATION <0

child.n.01

NEGATION <1

time.n.08 EQU now

get.v.01 Pivot -2 Time -1 Theme +2
enough.a.01 AttributeOf +1
sleep.n.01

tend.v.01 Agent -4

T

country.n.02 Name "Hungary"

person.n.01 Source -1 Role +1

prisoner.n.01

break_out.v.01 Source -2 Time +1 Theme +2
time.n.08 TPR now

jail.n.01

mr.n.01

male.n.02 Name "Smith" Title -1

work.v.02 Agent -1 Time +1 Theme +2
time.n.08 TPR now

project.n.01

ask.v.02 Agent -4 Time +1 Patient +2 Result +3
time.n.08 TPR now

female.n.02 Name "Jane"

marry.v.01 Agent -1 Co-Agent +1

male.n.02 ANA -5

Table 10: Four examples in different test sets.

175



	Introduction
	Background and Related Work
	Discourse Representation Structure
	Combinatory Categorical Grammar
	The Parallel Meaning Bank
	Parsing and Generation with DRS
	Data Split Methods
	Semantic Corpora with Long Texts
	Compositional Generalization

	Improving Semantic Evaluation
	Splitting Data Systematically
	Creating Challenge Sets
	Long-Text Challenge Set
	Compositional Challenge Set


	Experiments and Analysis 
	Model Selection
	Evaluation Metrics
	Experiment Settings
	Standard Test
	Systematic Split vs. Random Split
	Challenge Test Sets


	Conclusion
	References

