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Abstract
For human-robot dialogue in a search-and-rescue scenario, a strong knowledge of the conditions and objects a robot
will face is essential for effective interpretation of natural language instructions. In order to utilize the power of large
language models without overwhelming the limited storage capacity of a robot, we propose PropBank-Powered Data
Creation. PropBank-Powered Data Creation is an expert-in-the-loop data generation pipeline which creates training
data for disaster-specific language models. We leverage semantic role labeling and Rich Event Ontology resources
to efficiently develop seed sentences for fine-tuning a smaller, targeted model that could operate onboard a robot for
disaster relief. We developed 32 sentence templates, which we used to make 2 seed datasets of 175 instructions for
earthquake search and rescue and train derailment response. We further leverage our seed datasets as evaluation
data to test our baseline fine-tuned models.
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1. Introduction

In dangerous and dynamic problem spaces like
search and rescue, instructing a robot agent in the
field via natural language offers a flexible means
of communication with a low cognitive burden on
rescue workers. However, it is imperative that the
robot agent be able to correctly understand and ex-
ecute natural language instructions from its human
operator. For example, for the instruction “move
past the chair and try to find an entrance,” the robot
agent should be able to determine if the instruc-
tion is related to navigation, interacting with objects
with a mechanical arm, identifying obstacles in its
environment, or a combination of those options.
These instructions are often specific to the disaster
scenario in question, the tools required for search
and rescue for the given disaster, and the overall
environment where the disaster occurred. Finally,
the robot agent needs physical common-sense rea-
soning to effectively follow instructions in such a
precarious environment.

Large language models (LLMs) have shown
great promise for encoding world knowledge
(Petroni et al., 2019), as well as strong perfor-
mance on instruction following tasks (Ouyang et al.,
2022; Wang et al., 2022; Chung et al., 2022). How-
ever, these models have drawbacks for human-
robot interaction in disaster relief. Instruction LLMs
are often unspecialized, aimed at accomplishing
a plethora of diverse written tasks rather than spe-
cializing in a domain-specific task with its own as-
sumptions and peculiarities. Additionally, LLMs are
trained on tasks that do not require a strong basis

in physical common sense, including the potential
usages of objects, which we term ’affordances.’ As
a LLM may not have any specific semantic training,
it is unclear how they will perform on relevant se-
mantic scenarios like reasoning about properties of
objects. Another challenge is that LLM’s reasoning
can be difficult to interpret and predict.

Furthermore, there is a pragmatic limitation of
available hardware in robot systems. As LLMs
vastly increase in size, it becomes more difficult
for smaller hardware systems to use these mod-
els. Most robots use one commercially available
GPU, and assuming the GPU has 24 GB of memory
and the LLM is using 4-bit quantization (Dettmers
et al., 2023), the robot could realistically only run
an LLM with 40B parameters. A robot working in
disaster relief needs many other systems onboard,
so memory space is even further limited down to
smaller 7 billion or 13 billion parameter models.
These smaller models would need fine-tuning to be
competent in the field due to their size. However,
fine-tuning data for specific types of disasters are
not easily available.

We hypothesize a solution to this problem space
is to fine-tune small LLMs with a wide variety of
disaster-specific data. These LLMs should be able
to answer both multiple choice and open ended
questions about how to execute different subtasks
of the disaster. They should be able to reason about
the various objects a robot could come across dur-
ing a disaster relief mission. This includes knowing
the functions of different objects, the different states
an object can be in, the relative size and shape of
objects, etc. Yet another important task is recogniz-
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Figure 1: The workflow for generating gold-standard instructions. After collecting domain knowledge about
different types of questions to be answered, we created templates for the different types of instructions
and categorized them to ensure a relatively even distribution of queried knowledge in our results. We then
determine the terms, roles, and/or vocabulary that could fill in the templates. Creating these templates
allowed us to quickly generate gold standard instructions for object affordances and earthquake search
and rescue. These instructions were then used for both perturbing the embeddings of a language model
during the training data generation stage and evaluating the resulting fine-tuned model. Instructions
corresponding to the occupy.01 ARG1 role are highlighted in yellow. Instructions corresponding to the
go.02 INSTRUMENT role are highlighted in blue. More in-depth examples of seed sentences can be
found in table 1.

ing what objects have the potential to be dangerous.
All of these functionalities are necessary in order
for successful human-robot interaction in these dis-
aster scenarios, both for ease of interaction and
for the robot agent’s successful execution of the
instruction. The goal of this work is to create a
framework for generating data that can provide a
basis for reasoning about this wide variety of tasks.
This process can be seen in Figure 1.

While the tasks we want an LLM to accomplish
are diverse and ambitious, Taori et al. (2023) has
had great success with a similar task to ours. They
instruction fine-tuned the LLaMa 7B model to have
similar instruction following performance to GPT3.5,
a much larger LLM. To do this, they expertly crafted
seed instructions that were fed into OpenAI’s text-
davinci-003 as In-Context Learning (ICL) for
generating high-quality synthetic data (Dong et al.,
2023). While effective, their methodology for creat-
ing seed sentences for synthetic data generation
is not appropriate for our use case for two reasons.
For one thing, the seed instructions used by Taori
et al. (2023) were created by a group of experts
whose broad domain and lack of time constraints
meant they could generate uniquely formatted seed
instructions on a relatively ad hoc basis. We need a

systematized pipeline to ensure that our sentences
are generated quickly as well as accurately, and
that all relevant areas of our disaster domain are
covered by our seed sentences. This is so a robot
agent can be deployed quickly and with high ac-
curacy for disasters that place time constraints on
when relief efforts must happen. Additionally, the
seed instructions were not based in any particu-
lar semantics that Taori et al. (2023) wanted their
model to “understand”, while we need our model to
have semantic understanding of the disaster and
the objects a robot agent could encounter while
navigating it.

To solve these issues, we propose an expert-in-
the-loop data generation pipeline called PropBank-
Powered Data Creation, which can be seen in Fig-
ure 1. In this pipeline, seed sentences are informed
by disaster expert knowledge, then created by a
linguistic expert in one work day. These seed sen-
tences are then used as in-context learning for syn-
thetic data generation to produce a much larger
dataset than would otherwise be possible with a
tight timeframe and a highly specialized domain.
The seed sentences are constructed using tem-
plates rooted in the semantic properties of disaster-
relevant senses from the PropBank lexicon (Palmer
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et al., 2005). These seed instructions also serve
as a semantically informed evaluation, since they
are not included in the resulting synthetic dataset.

The contributions of this paper are as follows:

1. A process where linguists, with minimal dis-
aster expert input, can quickly generate gold-
standard seed sentences to be used during
synthetic data generation. This includes 35
sentence templates for generating seed sen-
tences.

2. An ontology of over 300 disaster relevant vo-
cabulary terms that are annotated with Prop-
Bank sense-role labels representing the ob-
jects’ affordances and change of state poten-
tials

3. Two sets of 175 seed sentences: one focused
on earthquakes, and one focused on the Ohio
Train Derailment1

2. Background

In the sections to follow, we provide background
information on the source of common-sense object
affordance knowledge that we leverage to seed
the generation of fine-tuning data, followed by the
fine-tuning procedure we adopt.

2.1. Object Properties
As interaction with objects is a major component of
the instructions a robot may be given, it is important
to have a framework for describing different types
of objects and what affordances, or functionalities,
a given object may have, as well as the canonical
changes of state the object may undergo.

We leverage the Affordance Ontology of disaster-
relevant vocabulary terms (Shichman et al., 2023)
that adopts a PropBank-style (Palmer et al., 2005)
representation of the vocabulary’s function and
state changes in terms of semantic roles each term
played with respect to an event. This resource, an
extension of the Rich Event Ontology (Bonial et al.,
2021), is a hub mapping event concepts from differ-
ent semantic role labeling resources and includes
“qualia relations,” and specifically “telic” relations
that denote the affordances of objects in terms of
events (Kazeminejad et al., 2018).

The Rich Event Ontology previously only repre-
sented a limited number of telic qualia relations
expressed between objects and particular events.
The Affordance Ontology extends the vocabulary
and representations of the Rich Event Ontology by

1https://www.reuters.com/world/us/ohio-carry-out-
controlled-release-chemicals-train-derailment-site-
2023-02-06/

representing object affordances in terms of Prop-
Bank sense-role pairings for given senses of events.
For example, within the Affordance Ontology, the
affordance of a bucket is labeled as an ARG0, or
“container” of a contain.01 event, defined loosely
as “hold inside.”2 A box would not only be repre-
sented with this same containing affordance, but
would also be characterized by a representation of
a canonical change of state: to be open (ARG1 of
open.01) or closed (ARG1 of close.01).

The Affordance Ontology provides a basis of a
vocabulary of objects that are likely to be present in
generic search and rescue scenarios. This means
that this resource can serve as a gold-standard set
of object properties within our disaster use cases.
In this research, we not only use the Affordance
Ontology, but also extend it to new objects and af-
fordances leveraging our PropBank-Powered Data
Creation workflow (described in detail in section 3).

There are other resources for defining object
functionality that we considered for our application—
notably the Suggested Upper Merged Ontology
(SUMO) (Niles and Pease, 2003), which includes
axioms and object definitions to indicate object af-
fordances. However, we preferred to use PropBank
because of its elegance in representing the object’s
functionality and because of the amount of data
supporting its approach. Furthermore, SUMO is
more focused on connecting semantic concepts
stored on the word level rather than fully describ-
ing events. Using PropBank, specifically the Prop-
Bank rolesets, also allows for our work to be inte-
grated with other Natural Language Understand-
ing resources like Abstract Meaning Representa-
tion, which shares the same roleset representation
of events (Banarescu et al., 2013) and can distill
instructions into action primitives and their corre-
sponding parameters (Bonial et al., 2020).

2.2. Generating Natural Language
Instructions

Obtaining high quality language for training and
fine-tuning language models is expensive and time
consuming. With the rise and improvement of
LLMs, significant work is being done to examine if
LLMs can do this work with more speed and with
the same level of accuracy as crowd-sourcing.

Notably, Wang et al. (2022) developed a frame-
work for prompting a language model to create a
diverse set of instructions which could be used to
fine-tune said language model. Specifically, the
process begins with writing 175 unique seed in-
structions, then prompting GPT3 to generate a new
set of diverse instructions, then filtering out instruc-
tions of insufficient quality via ROUGE-L score. Af-

2https://propbank.github.io/v3.4.0/
frames/contain.html

https://propbank.github.io/v3.4.0/frames/contain.html
https://propbank.github.io/v3.4.0/frames/contain.html
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ter generating approximately 52,000 instructions,
these instructions were then fed back into GPT3
for fine-tuning. This resulted in SELF-INSTRUCT,
a fine-tuned GPT3 model that humans rated sig-
nificantly better on instruction tasks than vanilla
GPT3. Furthermore, though it performed worse
than all versions of InstructGPT, it was close and
still competitive, and required much less human
labor (Wang et al., 2022).

Inspired by the success of Wang et al. (2022) and
the release of LLaMa (Touvron et al., 2023), Taori
et al. (2023) created their own fine-tuned instruction-
following model, Alpaca. Alpaca largely followed
the same algorithm for generating their own instruc-
tions as SELF-INSTRUCT. The major innovation
of Alpaca was that it used the output of GPT3 to
fine-tune the smaller LLaMa 7B model rather than
GPT3 itself. This provided a major performance
boost, with humans rating the Alpaca answer to
be the preferred one just as often as Vanilla GPT3.
We follow the approach of Alpaca, but make use of
PropBank to quickly develop seed instructions.

3. PropBank-Powered Data Creation
Methodology

To quickly turn expert knowledge from both written
and oral sources into a disaster-specific LLM, we
aim to develop an efficient way of generating a set
of gold standard seed instructions. These seed
sentences will then be used as in-context learning
for synthetic data generation, which in turn will be
used to fine-tune a smaller LLM to enhance its
performance on a specific disaster domain.

To create the initial set of seed sentences, we
developed the PropBank-Powered Data Creation
Pipeline, which relies upon sentence templates with
slots that are populated largely by object vocabu-
lary from the Affordance Ontology (Shichman et al.,
2023). The vocabulary that can be used within a
particular slot is constrained by the PropBank-style
representation of properties such as its affordances
and change of state potentials. For example, to cre-
ate a seed sentence querying relative weight, one
would take the template “Which of these objects
is the lightest? [LIST OF OBJECTS]” and fill in
the “blank” with a list of objects that were randomly
generated, then refined to only include objects with
differentiable weights. Template examples can be
seen in Table 1. More complex and elaborate ex-
amples can be found in Table 2.

Thus, templates can be semi-automatically popu-
lated based on linguistic properties of the template
slot, instead of having disaster experts develop
dozens of unique instructions. This decreases time
to robot deployment while maintaining the accu-
racy of the seed sentences. The challenge there-
fore becomes how to effectively template important

properties for downstream use.

3.1. Creating the Templates
To tackle the challenge of creating templates for
generating seed sentences, we developed an anno-
tation workflow in which graduate student linguistic
annotators brainstormed a variety of instructions
and questions that a disaster-relief specialist might
want a robot to be able to execute or answer. The
annotators were instructed not to write instructions
outside of a LLM’s capabilities, like image identifi-
cation or referring to a 3D space the LLM cannot
perceive (e.g. "Get that can from your right"). Some
examples of brainstormed questions include “What
can be used for travel and carry large loads?” and
“How can an adult reach the ceiling?”.

The linguistic annotators then moved from the
hypothetical to real data by incorporating disas-
ter expert knowledge. For the purposes of this
paper, our ‘expert knowledge’ came from written
documents about the response to the Ohio train de-
railment (Air Sampling; Water Sampling; Soil Sam-
pling; Derailment Tools; Yan et al., 2023) and the
search and rescue process after earthquakes (Ar-
ranz et al., 2023; Hydraulic Rescue Tools; Scarbury,
2015; Thermal Cameras). A separate author col-
lected the expert knowledge, and our annotators
reviewed these data before constructing the query
templates. Our queries were focused on a few key
pieces of disaster information. we gathered expert
data about the specific subtasks each disaster had.
For example, for earthquakes, we researched how
to lift and remove rubble from a building collapse,
and for the train derailment the annotators queried
about the types of environmental testing that were
done to detect dangerous chemicals in the area.
We also queried about the specific objects used
in each subtask, what they are used to achieve,
and how to use them safely. Third, we researched
precautions that should be taken for the disaster
as a whole, both by civilians and by rescue work-
ers. Without this expert knowledge, the templates
would not be as useful or cover all relevant infor-
mation. Examples of the resulting disaster-related
questions that came from this research are in step
1 of Figure 1.

The annotators then inspected all of the brain-
stormed instructions, generalized over them, then
wrote original instruction templates, as exemplified
in step 2 of Figure 1. For the example “What can be
used for travel and carry large loads,” the central
notion (here, of having a task (travelling) that needs
completion with the help of an object (a type of vehi-
cle with the affordance of go.02 INSTRUMENT) that
has additional constraints that go beyond the basic
affordance label (ability to carry large loads) was
then “templatized” into prompts of the form, Tell me
which of these can perform [AFFORDANCE] given
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Category Templates Examples Instances
in Seed
Sets

Relative
Size/weight

Biggest Object, Heaviest
Object, Relative Fit

Which of these objects is the lightest? out-
let, broom, pail, orange, screen

15

Would a shoe fit in a bag?
Appropriate Ob-
ject Affordance

Basic Affordance, Size
Restricted, Shape Re-
stricted, General Property
Restricted,

Which of the following can be used to climb
and is bigger than a table? stile, stairway,
stepladder, step, ladder

38

Goal Restricted, Differ-
ence within Affordance,

What should I use if I want to learn some-
thing from the internet?

Difference within Affor-
dance given Criteria

What is the difference between a window
and a pane?

Is-A and Hyper-
nyms

Basic Is-A, Identical Us-
age, Sub-Types

Can you use a shed as a barn? 16

List several types of truck and their use
cases.

Objects in Risky
Situations

Cause Injury, Cause Dan-
ger, Cause Object Dam-
age

Which of the following objects would be the
most dangerous if it hit something? dvd,
screen, wall, drum, mat

16

Required Equip-
ment

How to Use, Equipment for
Scenarios, Role of Equip-
ment in Task

Give a step by step explanation of how to
use a concrete saw.

15

What role does an air canister play in test-
ing air quality?

Primary and
Secondary
Object Facts

Where Object Found, Ob-
jects in Location, Sec-
ondary Uses,

Hey, which of the following can be used
as a lever? art, motorcycle, picture, dvd,
broom

34

Frequency of use, Aver-
age Knowledge of Use,

How well does the average person know
how to use a concrete saw?

Ease of Interaction Given
Object State

Is a raised or lowered drawbridge more
effective at getting cars across the river?

Disaster Spe-
cific Knowledge

Preparations, Warning
Signs, General Informa-
tion

List and explain the different hazards to
look out for besides train cars after a train
derailment.

10

Instruction Fol-
lowing

Instruction Identification,
Follow-Up Questions

Choose the navigation instruction: drink
from the bottle, sail a boat, enter the door-
way

30

Table 1: An overview of the types of templates within each category, some examples of resulting seed
sentences within each category, and the number of instances of each category within the resulting seed
dataset. Note the emphasis on affordances, object knowledge, and instruction knowledge.

[GENERAL OBJECT PROPERTY]?. We then cat-
egorized this resulting template under the general
category of “Appropriate object affordances” along-
side other template instructions focused on query-
ing about objects’ functionalities and affordances
(see step 3 of Figure 1). The complete list of tem-
plate categories with corresponding examples can
be found in Table 1.

After developing the templates, the annotators
used a list of objects from the disaster-specific ex-
pertise and labelled each object with all applicable
PropBank sense-role pairings. We added these
labels to Affordance Ontology previously described
in 2.1. For instance, “Train,” which is relevant to

the Ohio train derailment, was labelled occupy.01
ARG1, go.02 ARG2, and contain.01 ARG0 by our
annotators. This means a train can hold people,
be used for transporting people, and can contain
objects. “Air horn,” which is relevant to Earthquake
search and rescue, was labelled with signal.02
ARG0 and alert.01 ARG1, meaning that an air horn
can both signal information and warn of potential
danger. This extension of the Affordance Ontology
can be seen in step 4 of Figure 1. Examples of how
Affordance Ontology labels connect to vocabulary
used in the templates are in Table 2.
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3.2. From Templates to Seed Instructions
For our next step, we determined what vocabulary
could potentially fill in the blanks for each template.
We examined each template and determined which
vocabulary terms with associated linguistic proper-
ties from the list could appropriately fill in the blanks
of each instruction. For instance, we determined
that the affordance of occupy.01 ARG1 (i.e. an ob-
ject that a human can occupy) can appropriately
fill in the AFFORDANCE slot for the template Tell
me which of these objects can perform [AFFOR-
DANCE] given [GENERAL OBJECT PROPERTY].
We then chose properties corresponding to each
chosen sense-role label to fill in the GENERAL OB-
JECT PROPERTY slot, thus further restricting the
number of correct answer objects. This process
is shown in step 5 of Figure 1, where one exem-
plified PROPERTY slot associated with occupy.01
ARG1 is can move, which restricts the list of po-
tential correct answers from balcony, barn, boat,
building, car, floor (story), house, truck, train to be
boat, car, truck, train. Another exemplified property
slot associated with go.02 INSTRUMENT is holds
one person, which restricts the resulting correct
answers with the go.02 INSTRUMENT affordance
to only motorcycle, bike. This process of choos-
ing appropriate affordances and properties for the
Identical Use Case template is shown in Table 2.

We chose all possible vocabulary terms with
associated linguistic properties for each template,
then randomly selected which vocabulary items
would fill in a particular blank to generate the final
seed questions. An example of a final seed instruc-
tion, arising from the template “Tell me which of
these objects can perform [AFFORDANCE] given
[GENERAL USE CASE]” is “Tell me which of the fol-
lowing are places people can occupy and can move:
car, building, train.”. The resulting gold-standard
instruction is seen in step 6 of Figure 1.

The linguistic annotators each decided on the
correct answers based on context. For disaster
related knowledge and required equipment knowl-
edge, the annotators relied heavily on our disaster
expert sources. In general, answers could not be
automatically generated from templates because
we often tested for linguistic knowledge that went
more in-depth than the knowledge encoded in Prop-
Bank sense-role affordance labels. One example
is in step 7 of Figure 1. Objects that have the label
occupy.01 ARG1 cannot be differentiated by mobil-
ity by affordance label alone. Similarly, in Table 2,
sharing an affordance of store.01 ARG2 does not
indicate or preclude that “barn” and “shed” have
a hypernym or is-a relationship. The annotators
had to use their own common-sense capabilities to
achieve the level of granularity we need for assess-
ing LLM common sense capabilities.

Upon request, we will make available both com-

Populated by...
Template Can you use

[object-slot1] as
a/n [object-slot2]?

Two objects
w/ identical
affordance

Potential
Slot 1
Affor-
dances

Path-of enter.01 doorway, open-
ing, gateway, en-
trance, etc.

ARG2 of store.01 shed, barn,
greenhouse,
silo, etc.

Path-of go.02 road, train track,
floor, doorway,
trail, etc.

Potential
Slot 2
Affor-
dances

same as above same as above

Seed 1 Can you use a doorway as an
opening?

Answer 1 Yes because a doorway is a
type of opening found in build-
ings.

Seed 2 Can you use a shed as a
barn?

Answer 2 No because a shed is too
small to store hay, livestock,
and tractors like a barn can.

Table 2: Population of templates leveraging seman-
tic role labeling linguistic features for quick gen-
eration of domain-specific seed sentences: The
template requires two objects within affordances
that annotators identified contain terms with hy-
pernym relationships. Two objects with the same
sense-role label, or affordance, are then randomly
selected to fill each slot, and a linguistic annotator
uses common sense knowledge to answer the re-
sulting query. By training the model on both correct
and incorrect answers that naturally arise from ran-
dom generation, the deeper linguistic meaning of
use-case hypernyms is expressed in our data.

plete sets of seed questions, which also serve as
an evaluation set for the model tuned for an earth-
quake disaster and the Ohio train derailment, re-
spectively. In Table 2, we demonstrate our work-
flow for developing the disaster-specific seed set
efficiently for the Identical Use Case template. With
our annotation workflow for developing new models
for new disaster scenarios, we can use an expert’s
time to provide only disaster-specific questions and
vocabulary, as well as rating existing template qual-
ity.

4. Resulting Datasets

Our resulting datasets balance between covering
a wide variety of physical object properties, such
as size and weight, and holding specific knowl-
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Figure 2: An example of output from our pre-
liminary model developed using the earthquake
PropBank Powered Data Creation dataset. Here,
text-davinci-003 (A version of GPT 3.5) fails
to choose the correct instruction from the options,
but our much smaller model with PropBank Pow-
ered Data Creation can successfully correlate visi-
bility with the pertinent instruction.

edge for an LLM to draw from when generating
synthetic data based on the dataset. Furthermore,
the datasets thoroughly cover required information
for two very different types of disasters. For earth-
quakes, the priority is rescuing trapped individuals
and clearing away rubble and partially collapsed
buildings. For the Ohio train derailment, the focus
was on monitoring the air, water, and soil for danger-
ous chemicals and ensuring the volatile chemicals
that leaked from the train cars did not explode.

We initially tested PropBank-Powered Data Cre-
ation with our earthquake seed sentence dataset.
This was a lengthy process of determining the types
of templates we wanted, what they would be, and
what vocabulary fit with each template. In contrast,
developing the seed sentences for the Ohio train
derailment took about 10 hours because we built
on the pre-existing templates and potential choices
for each fill in the blank. We are now confident
that a disaster expert would need to give an hour of
their time and some pointers to relevant literature to
make PropBank Powered Data Creation successful.
An expert annotator would then need one work day
to develop the seed sentences. This means that
the time between interviewing the disaster expert
and deploying a model using PropBank-powered
data could be as little as 3-4 days, depending on
computational fine-tuning resources.

5. Baseline Fine-Tuned Model

The next step in our research is to use the
PropBank-powered data as in-context learning ex-
amples for generating a synthetic dataset that will,
in turn, fine-tune a small language model. We have
made a preliminary model using the PropBank-
powered earthquake data as our seed sentences,

text-davinci-003 as the model that generated
a synthetic dataset of 20,000 instructions (OpenAI,
2023), and the LLaMa 7B model for fine-tuning
(Touvron et al., 2023). We then had evaluators
with expertise in linguistics compare the outputs of
text-davinci-003 and our PropBank-powered
model by voting for which LLM won or if there was
a tie and rating the quality of the winning answer
on a scale of 0-3.

While the model our team developed had some
successes, as can be seen in Figure 2, our prelimi-
nary results show we still have work to do. We had 3
annotators vote in our head-to-head testing, which
resulted in our model winning approximately 8% of
the evaluation prompts, tying with text-davinci-
003 for approximately 22.5% of the prompts, and
losing to text-davinci-003 for approximately
69% of the prompts. Further investigation found
this was likely due to poor alignment between the
seed sentences and the synthetic data. We believe
the poor alignment was due to insufficient in-context
learning during the data generation process, and
are looking to improve this in future iterations. Mak-
ing a preliminary model did prove that PropBank
Powered Data Creation can be used both as evalu-
ation and as seeding data, and we are excited to
explore those capabilities as well in future work.

6. Related Work

6.1. Evaluation Datasets for Robots

Ahn et al. (2022) tests LLMs’ abilities to execute
instructions by developing a set of tasks for the
robot agent to learn using reinforcement learning,
then training a model to calculate the probability
of a task being completed successfully paired with
the probability that a natural language instruction
will precede a given task. To do this, the authors
wrote 101 instructions addressing various degrees
of semantic complexity, including following prim-
itive instructions, abstract nouns and verbs, and
long-horizon planning that requires many steps to
accomplish the instruction. The model, called Say-
Can, developed skills that transfered from the mock
kitchen where it was trained to a real kitchen with
minor losses in planning and performance. More
interestingly, the authors also showed that SayCan
performed better when they used larger LLMs with
more linguistic knowledge. They also were able to
utilize chain-of-thought fine-tuning to get a natural
language explanation about the tasks that SayCan
executed in order to fulfill the instruction.

Rather than having the LLM create a policy for a
robot agent to execute itself, Xie et al. (2023) have
GPT 3.5 translate the premise of the instruction
from natural language to Planning Domain Defini-
tion Language (PDDL), an explicit way of defining
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all objects, predicates, and available actions within
an environment. To test GPT 3.5’s abilities to trans-
late tasks, the authors developed tasks related to
block stacking and navigating a kitchen that test an
LLM’s basic parsing competence, object associa-
tion between natural language and entities in PDDL,
numerical reasoning, physical and spatial reason-
ing, and world knowledge. They found that GPT 3.5
was able to perform well when the instructions were
completely explicit and had decent performance at
filling in the blanks for specifying goals and had
decent reasoning about basic real world objects
and relations. However, the authors also found that
GPT 3.5 could not handle the complex and ambigu-
ous physical relationships, and that GPT 3.5 likely
relied extensively on the one-shot example it as
given, rather than reasoning about the domain as
a whole (Xie et al., 2023).

6.2. Robots and Language Models

PaLM-E is a multi-modal model designed to ac-
cept image, text, and sensor data and then output
images, answers, or plaintext robot policy (Driess
et al., 2023). This is achieved by vectorizing images
into the same space as text embeddings, which
allows for multi-modal fine-tuning but makes it un-
clear how the model would determine a particular
robot’s capabilities. RT-2 takes PaLM-E a step fur-
ther by encoding language, vision, and actions into
the same embedding space (Brohan et al., 2023).
This allows for the robot agent to go beyond making
only policy to making specific moves.

Instruct2Act takes a different approach and trains
a LLM to output python code for a closed loop of per-
ception, planning and actions (Huang et al., 2023).
It does this by supplying the LLM with a variety of
APIs for completing perception and action tasks.
The scope of testing was limited to table top simula-
tions, but the framework is inherently more flexible
because the model can be fine-tuned to produce
different python code.

These models all elicit interactions with the phys-
ical world, but Ghaffari and Krishnaswamy (2023)
argue that these connections can’t fully capture the
complexity of the physical world because they don’t
include any physical data beyond images. To solve
this problem, they train a neural network on physical
simulations, then create a LLM embedding affine
transformation matrix from both the physical em-
bedding space and GPT3 embeddings. They find
that LLM embeddings in the physical embedding
space do correlate with the objects they describe,
Most interestingly, nouns have a stronger correla-
tion, and are thus more grounded, than verbs and
attributes, much like how nouns are often learned
first during language acquisition (Ghaffari and Kr-
ishnaswamy, 2023).

7. Future Work

In addition to our immediate goal of improving syn-
thetic data generation techniques and fine-tuning
parameters, we are interested in expanding Prop-
Bank Powered Data Creation to become multi-
modal. While even smaller multi-modal models
are still too large to be useful in our robotics do-
main, there is a clear path for the expansion of
our protocol. Notably, we hope to gather image
data that can reinforce what different objects may
look like in a given environment, how to interact with
relevant equipment, and objects performing their af-
fordances or changing states. These images could
be paired with PropBank labels, vocabulary terms,
and complete instructions. The variety of ways im-
ages can be combined with PropBank Powered
Data Creation makes this an exciting new avenue
for improving transformer model performance on
disaster scenarios.

8. Conclusion

We introduce PropBank Powered Data Creation,
a pipeline for efficiently creating semantically mo-
tivated seed sentences to be used for generating
synthetic data for disaster related scenarios. We ex-
tended our Affordance Ontology and created 2 sets
of 175 seed sentences for the domains of earth-
quake search and rescue and chemical spills fol-
lowing train derailments. These seed sentences
extensively query objects’ affordances, physical
characteristics, changes of state, and fine-grained
properties to ensure thorough evaluation of a LLM
trained on PropBank Powered Data Creation-based
synthetic data. We created a LLM demonstrating
this full pipeline, and will continue to work on align-
ing our synthetic data to our seed sentences to
increase LLM performance in disaster-related do-
mains.

9. Ethical Considerations

PropBank Powered Data Creation is fundamentally
based on biasing a language model towards feed-
back from a small group of selected sources. While
this is for a positive effect within our domain, it may
be harmful in domains that require more social com-
mon sense than ours. Within our templates, we
tried as much as possible to be gender-neutral to
discourage gender bias.

Our biggest form of bias is in assumptions of the
specifics of our objects. We imagined our objects
from a Western perspective, which can affect the af-
fordances assigned to the object and how we query
the object’s properties. For instance, we imagine
“curtains” to be window dressings, but in nomadic
cultures a curtain could be used to separate living
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spaces within a tent. A positive about the structure
of PropBank Powered Data Creation is that it pur-
posefully allows time for adding and editing to the
Affordance Ontology in order to align the data to a
particular disaster and location. However, this is
time consuming and puts the onus on the linguistic
annotator to adjust the ontology both quickly and
with cultural sensitivity.

Though the domain of this project is robots in
disaster relief scenarios, we have not tested any
implementation of this dataset on a robot, let alone
a robot in a dangerous situation. We caution that
extensive grounded testing must be done on any
LLM resulting from these data before any real-world
implementation can occur safely.
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