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Abstract
Considering the increasing applications of Large Language Models (LLMs) to many natural language tasks, this
paper presents preliminary findings on developing a verification component for detecting hallucinations of an LLM
that produces SPARQL queries from natural language questions. We suggest a logic-based deductive verification of
the generated SPARQL query by checking if the original NL question’s deep semantic representation entails the
SPARQL’s semantic representation.
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1. Introduction

This paper reports the preliminary results of devel-
oping a verification component of a chat-like inter-
face for chemists interested in retrieving informa-
tion about chemical compounds from a knowledge
graph (KG) like Wikidata or PubChem.1

In Section 2, we briefly presented our pipeline
and how questions formulated in English as the Ex-
ample (1-a) are translated to the SPARQL queries
as the one presented in Listing 1 using an LLM like
GPT-4 (OpenAI, 2023) or LLAMA-2-70b 2. How-
ever, our focus in this paper is not on the SPARQL
generation nor the correctness of the answer pro-
vided by the Knowledge Graph for the SPARQL
query. Instead, we focus on validating the SPARQL
query obtained from the LLM. In other words, if the
SPARQL ‘makes sense’ given the original ques-
tion formulated in English. Preventing hallucina-
tions has been a hot topic in the literature recently
(Wang et al., 2023; Cao, 2023; Ling et al., 2023;
Dhuliawala et al., 2023). In our application to assist
chemists asking for properties about chemical com-
pounds in a chat, a user relying only on the LLM’s
final answer can be misguided if he can’t read the
intermediary SPARQL query produced to retrieve
the facts from the Knowledge Graph.

(1) a. What is the mass of benzene?
b. Give me the benzene’s toxicity.
c. What chemical compounds have less

than 0.07 g/kg of solubility?
d. What is the electric dipole moment of

the allyl alcohol?
e. What is the mass of the compound

with InChIKey UHOVQNZJYSORNB-
UHFFFAOYSA-N?

1We will restrict our examples to Wikidata KG, but the
techniques can be used with any KG.

2https://ai.meta.com/llama/

In Example (1), we present some variants of ques-
tions about chemical compounds and their proper-
ties that a chemist can submit to our chat interface.
We are restricting our focus to factoid questions,
answerable by simple SPARQL queries involving
only simple triple patterns; there are many chal-
lenges to dealing with such questions. The first
and most obvious is that the syntactic structure can
vary greatly. The second challenge is that prop-
erties are hardly mentioned by their labels in KGs.
For instance, in our context, toxicity should be in-
terpreted as the substance’s median lethal dose
(LD50),3 but we could not be sure in a more gen-
eral context. Third, the property values are usually
measured in complex units. Solubility is measured
in ‘grams per kilogram,’ and LD50 is expressed
as the mass of substance administered per unit
mass of the test subject, typically as milligrams
of a substance per kilogram of body mass. More-
over, Lethal dosage often varies depending on the
method of administration; many substances are
less toxic when administered orally than when intra-
venously administered. To sum up, the toxicity of a
compound is usually expressed as a complex unit
like ‘LD50 Rat oral 3530 mg/kg’. Fourth, chemicals
can be identified in various ways. For example, ‘al-
lyl alcohol’ has 91 synonyms ranging from IUPAC
names to identifiers in different standards proposed
by the scientific communities.4

Figure 1 presents two logical formulas ex-
pressed in higher-order logic, particularly in ULKB
Logic (Lima et al., 2023). ULKB is an open-source
framework written in Python for logical reasoning
over knowledge graphs. The first formula, For-
mula 1, is the logical semantics of Example (1-a)

3The reader doesn’t have to understand the chemical
terms mentioned in this paragraph; we are only exempli-
fying the particularities on processing English questions
on a technical domain.

4https://pubchem.ncbi.nlm.nih.gov/
compound/Allyl-alcohol

https://ai.meta.com/llama/
https://pubchem.ncbi.nlm.nih.gov/compound/Allyl-alcohol
https://pubchem.ncbi.nlm.nih.gov/compound/Allyl-alcohol
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1 PREFIX rdfs : <http :// www .w3. org /2000/01/ rdf - schema #>
2
3 SELECT ?v WHERE {
4 wd: Q2270 wdt : P2067 ?v .
5 }

Listing 1: SPARQL query

obtained with MRS Logic (Rademaker et al., 2023),
a library to translate English sentences into logi-
cal formulas built on top of ULKB and ‘deep’ lin-
guistic specialized tools. The second formula, For-
mula 2, is the translation of the SPARQL to the
ULKB logic, a functionality also presented in the
ULKB Library. Provided a proper map between the
predicates «wdt:P2067» 5 and _mass_n_off and
also between «wdt:Q2270» and _benzene_n_1,
we can conclude that Formula 1 entails Formula 2,
certifying that the query is indeed related to the
English questions. Section 3 presents the tools we
rely on, and Section 4 elaborates on our process
for validating the SPARQL query.

To summarize, our contribution is a deductive
approach to prevent LLM hallucinations in trans-
lating English questions to SPARQL queries. The
validation process reported here is a component of
a chat-based assistant for chemists interested in
obtaining information about chemical compounds
from a large and complex KG without having to
construct a SPARQL query manually. In other
words, we are focusing not on ordinary questions
presented in datasets like (Trivedi et al., 2017) but
on questions made by chemists about chemical
compounds, a deep technical domain with plenty
of technical terms. On the other hand, our method
is not restricted to any particular Knowledge Graph
Question Answering (KGQA) approach; it can be
adapted for different domains and systems such as
(Zhou et al., 2021). Before describing the SPARQL
validation method based on the semantic parsing
of the NL utterances, we present in Section 2 the
overview of our text to SPARQL conversion pipeline
based on LLM. Our pipeline is one of the compo-
nents of ChemChat, a conversational expert assis-
tant in material science (Erdmann et al., 2024).

2. The architecture of our system

Using prompt engineering, we used ‘few-short
learning’ (Brown et al., 2020). We implemented
an LLM pipeline to translate English questions to
SPARQL queries. Figure 2 presented the pipeline
and the workflow to process the Example (1-a). To
create the prompts, with the help of some chemists,

5We are adopting the notation «...» as a simplified
way to reference the fully qualified URI of an item from
the Wikidata data schema.

we collected examples of English questions and
manually annotated the technical chemical terms
on them and their related SPARQL queries.

Let us first describe the step-by-step process of
constructing a SPARQL from an English sentence.
The pipeline (blue boxes) starts by sending the
input question through an LLM with examples to
suggest our goal of extracting a table with the rel-
evant terms (usually adjective and noun phrases)
and their classification as either ‘property’ or ‘entity.’
We construct ‘Prompt 1’ from the set of examples
we have collected. Next, we parse the table re-
ceived from the LLM to disambiguate the terms (that
is, grounding them to Wikidata identifiers) using a
full-text search on a database populated with rele-
vant Wikidata items and properties with their labels.
Utilizing the fact we are building a specialized inter-
face for chemists, this database (an Elastic Search
6 index) is constructed from Wikidata’s chemical
taxonomy using items like ‘type of chemical en-
tity’ (Q113145171) and the ‘WikiProject Chemistry’
(Q8487234) as seeds and exploring their descen-
dants and related concepts and properties. We
use the query results to construct a disambiguation
table mapping each term obtained from the com-
pletion of Prompt 1 to its best-matching Wikidata
identifier. Once we have the Wikidata identifiers,
we can produce the second prompt (Prompt 2), now
using examples of pairs of English questions and
SPARQL queries together with their identifiers. We
submit Prompt 2 to a second LLM to generate the
final SPARQL query. Sometimes, the LLM fails to
produce a valid SPARQL query; to deal with that,
we repeat the process a few times and use the most
frequent answer as the expected solution.

As stated in the introduction, this article does not
aim to describe the LLM pipeline completely nor
discuss its performance, precision, or recall. These
topics will be the subject of another article. Our fo-
cus here is on one specific component: the method
to validate the SPARQL obtained for each question
in English, presented in the salmon boxes of Fig-
ure 2. First, the same English question submitted
by the chemist is parsed with a computational gram-
mar for English, and a semantic representation of
the sentence is produced. This semantic repre-
sentation is translated to a sentence (Sentence A)
in higher-order logic using the MRS Logic library.

6https://www.elastic.co

https://www.elastic.co
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∃ x13, _benzene_n_1 x13 ∧ (∃ x8, _mass_n_of x8 x13

∧ (∃ x3, thing x3 ∧ (∃ e2, _be_v_id e2 x3 x8))) (1)

∃ value, «wdt:P2067» «wdt:Q2270» value (2)

Figure 1: The formal semantics of the sentence in Example (1-a) and the translation to a logical formula of
the SPARQL query from Listing 1. «wdt:P2067» is a binary predicate (associated with an RDF edge), and
«wdt:Q2270» is a constant (associated with an RDF node). In ULKB, the «...» indicates that the function
or predicate is associated with a URI. Applying a function or predicate to its arguments is usually written
as f(x, y) in many formal languages. Still, in ULKB, we write f x y, omitting the parenthesis and commas.

Full-text search engine

Entity extraction and 
broad classification

“What is the mass of benzene?”

How tall is the Eiffel Tower?
height, property
Eiffel Tower, entity
…

What is the mass of benzene?

Question:

Entity disambiguation

mass, property
benzene, entity

Prompt 1:

SPARQL generation

How tall is the Eiffel Tower?
height, P2048
Eiffel Tower, Q243
sparql: SELECT ?mass { wd:Q243 wdt:P2034 ?mass }
…

What is the mass of benzene?
solubility, P2067
benzene, Q2270
sparql:

Prompt 2:
mass, P2067
benzene, Q2270

LLM

LLM

Answer retrieval

Answer:

SELECT ?value {
  wd:Q2270 wdt:P2067 ?value 
}

Labels
Description
altLabels

[{”value": 42.3“}]

Answer:
Theorem 

Prover
Something is wrong.

Syntatic/Semantic
Parsing

(∃ x13, _benzene_n_1 x13 ∧ (∃ 
x8, _mass_n_of x8 x13 …))

A

Yes

Δ,A ⊢ B?

B
No

KB

Figure 2: In our pipeline, the natural language question goes through one initial LLM prompted to extract
relevant question terms. These terms are disambiguated using a full-text search over a subset of relevant
Wikidata items. The search result helps a second LLM to generate SPARQL queries with the correct
Wikidata identifiers.

The SPARQL query obtained from the LLM is also
translated to Sentence B in higher-order logic us-
ing the ULKB library SPARQL to HOL translation.
Using the ULKB wrapper to theorem provers, we
check if sentence A (together with some additional
axioms in the set of formulas ∆) entails sentence
B. The following section describes the natural lan-
guage processing tools we used for parsing and
constructing logical formulas.

3. Background

MRS Logic (Rademaker et al., 2023) is a Python
library to convert NL utterances into higher-order
logic formulas. It is built on top of many other com-
ponents that we describe below.

The main component of MRS Logic (Rademaker

et al., 2023) is the English Resource Grammar
(ERG) (Flickinger, 2000; Flickinger et al., 2000;
Copestake and Flickinger, 2000). The English
Resource Grammar is a broad-coverage, linguisti-
cally precise, general-purpose computational gram-
mar. It is implemented in the theoretical frame-
work of Head-driven Phrase Structure Grammar
(Pollard and Sag, 1994) where both morphosyn-
tactic and semantic properties of English are ex-
pressed in a declarative format. Combined with
specialized processing tools, it can map running
English text to highly normalized representations
of meaning called Minimal Recursion Semantics
(MRS) (Copestake et al., 2005). ERG is developed
as part of the international Deep Linguistic Pro-
cessing with HPSG Initiative (DELPH-IN). It can
be processed by several parsing and realization
systems, including ACE (Crysmann and Packard,
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2012).7. MRS Logic uses PyDelphin (Goodman,
2019) library to communicate with ACE.

MRS structures directly interface with syntax and
can be underspecified in various aspects, such as
word senses and quantifier scopes. This under-
specification enables a single MRS to encompass
multiple interpretations. Figure 3 shows one among
the nine possible MRSs for Example (1-a). It con-
sists of a multiset of relations called elementary
predications (EPs). An EP usually corresponds
to a single lexeme but can represent grammatical
features (e.g., thing and udef_q, called abstract
predicates). Each EP has a label or handle, a predi-
cate symbol, which, in the case of lexical predicates,
encodes information about lemma, part-of-speech,
and coarse-grained sense distinctions, and a list of
numbered arguments: ARG0, ARG1, etc. The value
of an argument can be either a scopal variable
(a hole representing the places where alternative
labels could fill) or a non-scopal variable (events,
states, or entities). The ARG0 argument has the
EP’s distinguished variable. This variable denotes
an event, state, or referential or abstract entity (ei
or xi, respectively). Each non-quantifier EP has its
unique distinguished variable. Finally, an MRS has
a set of handle constraints describing how the EPs’
scopal arguments can be nested with EP labels. A
constraint hi =q hj denotes equality modulo quan-
tifier insertion. In addition to the indirect linking
through handle constraints, EPs are directly linked
by sharing the same variable as argument values,
capturing the predicate-argument structure of the
sentence. Finally, MRS also records properties
on variables indicating morpho-syntactic marks of
person, number, tense, aspect, etc. The topmost
relation in Figure 3 is _be_v_id, which has the non-
empty arguments x5 and x9. The x5 is the distin-
guished variable of the relation thing. A handle
constraint equates the sentential variable h2 with
h1, the top handle. The rest of the EPs can be
explained similarly. Note that h7 does not appear
in the handle constraints, suggesting that we have
more than one possible way to equate this hole
with the available labels.

For solving the underspecification of the scopes
of quantifiers in an MRS, MRS Logic employs the
Utool scope resolution Java Library (Koller and
Thater, 2005, 2006, 2010). From a single MRS,
Utool can produce many possible scope trees, fully
scoped resolved trees, reflecting the different pos-
sible order of quantifiers in the final logical formula.
For instance, the MRS of Figure 3 has an alterna-
tive reading for the order of quantifiers in Formula 1,
e.g., ∃ x8, . . .∃ x13, . . ., but in this case, the two are
semantically equivalent.

The scope trees are not yet a concrete logical
expression in any logical language. The literature

7http://sweaglesw.org/linguistics/ace/

has many proposals for representing NL utterance
semantics. One of the most fundamental issues
about which logic to use is whether one assumes
any structure on the individuals. Other issues are
the complexity, decidability, and tools for reason-
ing in a particular logic. Type theories are widely
used in formal theories of the semantics of natural
languages (Chatzikyriakidis and Luo, 2020; Ranta,
1994; Winter, 2016). A subset of that, simple type
theory, also called higher-order logic (HOL), is a nat-
ural extension of first-order logic, which is elegant,
highly expressive, and practical (Farmer, 2008).

The ULKB Logic (Lima et al., 2023) implements
HOL in Python for logical reasoning over knowl-
edge graphs. The formulas presented in Figure 1
are HOL formulas encoded in ULKB Logic. ULKB
provides an interactive theorem prover-like environ-
ment that can interact with external provers such
as E prover (Schulz et al., 2019) and Z3 SMT
solver (de Moura and Björner, 2008). In (Lima
et al., 2023), the authors present the logical foun-
dations and implementation of ULKB Logic and its
interfaces for fetching statements from knowledge
graphs and calling external provers. These inter-
faces are vital for achieving ULKB Logic’s primary
goal, which is twofold: (i) provide a common lan-
guage and interactive theorem prover-like environ-
ment for representing commonsense and linguistic
knowledge, and (ii) facilitate the use of state-of-
the-art computational logic tools to reason over
the knowledge available in knowledge graphs. For
(ii), ULKB uses SPARQL (W3C SPARQL Working
Group, 2013), the standard query language of the
Semantic Web, and allows users to use logic for-
mulas as queries, parse SPARQL queries into logic
formulas and submit SPARQL queries to KG end-
points.

Finally, consider the possible senses for the word
‘mass.’ ERG only distinguishes senses that are
morphosyntactically marked. Since further sense
distinctions could never be disambiguated based
on grammatical structure alone, the ERG predicate
symbol _mass_n_of intended to be an underspec-
ified representation of all the specific word senses.
For instance, Wordnet 3.1 (Miller, 1995) contains
eleven possible nominal senses for this word. We
use UKB (Agirre and Soroa, 2009) for Word Sense
Disambiguation (WSD), the ERG predicates. UKB
performs graph-based disambiguation using any
pre-existing knowledge base, provided the struc-
ture of the graph (nodes and edges) and the dictio-
nary of words or multi-word expressions associated
with each node.

To summarize, MRS Logic takes an NL utterance
and calls ACE to obtain all possible MRSs. Given
an MRS, it is transformed into a scope tree using
Utool and passed to UKB to disambiguate the ERG
predicates, linking them to nodes in a reference

http://sweaglesw.org/linguistics/ace/


49

⟨h1, e3{SF ques, TENSE pres,MOOD indicative,PROG -,PERF -},
h4:thing⟨0:4⟩(ARG0 x5{PERS 3,NUM sg}),
h6:which_q⟨0:4⟩(ARG0 x5, RSTR h8, BODY h7),
h2:_be_v_id⟨5:7⟩(ARG0 e3, ARG1 x5, ARG2 x9{PERS 3,NUM sg}),
h10:_the_q⟨8:11⟩(ARG0 x9, RSTR h12, BODY h11),
h13:_mass_n_of⟨12:16⟩(ARG0 x9, ARG1 x14{PERS 3,NUM sg}),
h15:udef_q⟨20:28⟩(ARG0 x14, RSTR h17, BODY h16),
h18:_benzene_n_1⟨20:27⟩(ARG0 x14)

{h1 =q h2, h8 =q h4, h12 =q h13, h17 =q h18 } ⟩

Figure 3: The first MRS return by ERG for the Example (1-a).

KG.8 Finally, the MRS is translated into ULKB for-
mulas. MRS Logic integrates all the technologies
described above. At the high level, the translation
starts from the topmost node of the scope tree, the
handle in the higher position, usually a quantifier.
The translation is fully explained in (Rademaker
et al., 2023).

4. Validating an SPARQL

Our main problem can be defined as the logical
entailment test in Equation 3.

∆, T (α) |= G(α) (3)

where α is an English question, T (α) is one of the
possible higher-order logic formulas obtained from
the English question α by the MRS Logic (Sec-
tion 3), e.g., Formula 1, and G(α) is a first-order
logic formula obtained from the translation of the
SPARQL query, in our case, produced as the trans-
lation of the same English question to SPARQL by
an LLM, e.g., the Formula 2 (Section 1). Finally, ∆
is a set of axioms to support the entailment. This
logic theory connects the symbols from the ERG
grammar presented in the MRS to those obtained
from the SPARQL query, the KG identifiers.

Consider again the natural language (English)
question from Example (1-a). From the MRS in Fig-
ure 3, the UKB disambiguation step, using Word-
net 3.1 as KG disambiguates, produces the map-
ping of e2 to the sense “have the quality of be-
ing; copula, used with an adjective or a predi-
cate noun” (Synset 02610777-v), variable x8 to
“the property of a body that causes it to have a
weight in a gravitational field” (Synset 05031420-
n. Synset 05031420-n is associated with the Wiki-
data item Q11423 by the ‘WordNet 3.1 Synset ID’
(P8814) Wikidata property. This item has ‘Wikidata
property‘ linking it to the property P2067). The
variable x13 is disambiguated to “a colorless liquid
hydrocarbon” (Synset id 14798860-n, associated
to the Wikidata item Q2270 by the same P8814

8This process can later be refined to use the Wikidata
Lexemes.

Wikidata property. In other words, from the disam-
biguation produced by UKB, we can follow the links
to the Wikidata items and properties. This process
allow us to properly associating the ERG predi-
cates _benzene_n_1 to Q2270 and _mass_n_of
to P2067. The Wikidata item Q2270 does not have
a value for ‘Wikidata property,’ which means it is
not an item used as a property of something. This
disambiguation process will be revised to better use
the Wikidata Lexeme data, which can have more
flexible mappings to the items and properties of
Wikidata.

From the last paragraph, we have enough infor-
mation to instantiate some axioms in the ULKB
theory, the ∆ above. Axiom 4 tells us that some-
thing that is the argument of the ERG unary predi-
cate _benzene_n_1 is the «wsd:benzene» item in
Wikidata. Axiom 5 tells us that the ERG binary pred-
icate _mass_n_of can be translated to the Wikidata
property «wsd:mass». A Python function in ULKB
can construct both axioms; these functions are ac-
tually macros in HOL. The function gets the ERG
predicates and the mappings from UKB. From the
mapping and the type (and arity) of the Wikidata en-
tities (item or property), the function can instantiate
the axioms from a set of templates.

∀ x,_benzene_n_1 x → x = «wsd:benzene» (4)
∀ x y,_mass_n_of x y → ∃ v,«wsd:mass» y v

(5)

Example (1-b) would instantiate another axiom,
the word ‘toxicity’ evokes an ERG unary predicate
_toxicity_n_1 and not a binary predicate as the
word ‘mass.’ The connection between the words
‘benzene’ and ‘toxicity’ is mediated by the abstract
predicate poss (possessive) from ERG. The tem-
plate that handles this case would produce the Ax-
iom 6.

∀ x y z, _toxicity_n_1 y ∧
(_of_p z y x ∨ poss z y x ∨ compound z y x)

→ ∃ v,«LD50» x v (6)

Provided the axioms 4 and 5 above, Z3 SMT
Solver (de Moura and Björner, 2008) can easily
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prove the entailment ∆, T (α) |= G(α) certifying
that the SPARQL query is indeed entailment by
the HOL formula, the semantics of the original NL
question.

We admit that Example (1-a) discussed above
is quite simple. We have not addressed the more
complicated cases with properties and entities ex-
pressed by more than one word (Sag et al., 2002)
and complex expressions of units of measurement.
The literature is vast on possible methods for link-
ing entities and their use in domain-specific cases
(Zhou et al., 2023). However, it is worth highlighting
that (1) It seems that few templates deal with the
most common cases of variants of syntactic con-
structions used in English questions we are consid-
ering, that is, questions in a technical domain such
as chemistry; (2) any entity detection and entity
disambiguation (also called entity linking) method
can be equally employed in our framework; and
(3) Since 2018, Wikidata has also stored linguistic
data such as words, phrases, and sentences. This
information is stored in new types of entities called
Lexemes (L), Forms (F), and Senses (S). These
entities can be linked appropriately to Q items and
properties, facilitating the disambiguation process
during the semantic parsing of the sentence and
constructing the axioms above by demand.

5. Conclusions and Future Work

In conclusion, we have presented a logic-based
approach to validate SPARQL queries derived from
translations of natural language (NL) questions.
Our focus on addressing the well-documented risks
of hallucinations in KGQA amidst the widespread
utilization of Large Language Models (LLMs) po-
sitions our work as a neuro-symbolic endeavor to-
ward ensuring ’Safe AI.’ While much previous re-
search has also explored the use of semantic pars-
ing for question-answering (Gu et al., 2022; Berant
et al., 2013) – mainly using machine learning meth-
ods for semantic parsing and producing represen-
tations like AMR (Banarescu et al., 2013) – and
evaluated LLMs in this context (Faria et al., 2023),
the novelty of our approach lies in the use of Mini-
mal Recursion Semantics (MRS) produced by ERG,
a high-precision computational grammar, and the
translation of MRS to higher-order logic (HOL) to
represent the semantics of English sentences and
the further compositional and deterministic transla-
tion of HOL formulas to SPARQL (query) and from
SPARQL (to validate).

Central to our methodology is MRS Logic, a
Python Library built upon ’deep’ linguistic process-
ing technologies from the DELPH-IN Consortium.
By extending DELPH-IN tools to translate MRS
to HOL formulas and employing ULKB to reason
with these formulas and query KGs, our approach

bridges linguistic and statistical processing meth-
ods for semantic understanding. To the best of
our knowledge, our work is the first comprehen-
sive report on the translation of MRS to a higher-
order logic language, the subsequent translation
of SPARQL to/from HOL, and the use of these
methodologies for comparing English questions
with SPARQL queries.

While a preliminary evaluation of the MRS Logic
capability of translating NL utterances to HOL state-
ments has been conducted using text entailment
tests (Rademaker et al., 2023) in the SICK dataset
(Marelli et al., 2014), we recognize the necessity
of further evaluating our SPARQL validation proce-
dure, mainly as we aim to tackle more challenging
questions in domains like chemistry, leveraging in-
sights from existing KGQA systems (Zhou et al.,
2023). The translation from HOL to SPARQL is
compositional and deterministic, but still, many nu-
ances of NL utterances may not be captured ad-
equately by our current implementation. At this
stage, there is no dataset of NL queries in the chem-
istry domain associated with SPARQL with and
without hallucinations to test our approach. Note
that we focus on technical domains rather than on
general-purpose common sense datasets like LC-
QUAD (Trivedi et al., 2017). We are not dealing with
unrestricted entities and their properties (people,
places, events, etc.) that make entity recognition
and entity and word sense disambiguation almost
a guess without a reasonable context. The LLM
pipeline for SPARQL generation was used precisely
for its coverage and robustness, and it is unclear if
the symbolic processing will capture few or many
of the actual possible queries that a domain ex-
pert may submit. A quantitative evaluation of our
approach will undoubtedly be necessary in subse-
quent work. It is worth mentioning the complexity
of constructing a domain-specific QA dataset with
questions that need to be relevant (not toy exam-
ples) and with different levels of complexity.

As part of our future endeavors, we aspire to
reimplement our approach using Lean (Moura and
Ullrich, 2021), a programming language and in-
teractive theorem prover, thus transitioning from
HOL to dependent types. Dependent type theory
has been widely acknowledged as a formal tool
for understanding natural language (Ranta, 1994;
Chatzikyriakidis and Luo, 2020), and exploring this
avenue could further enhance the robustness and
applicability of our methodology.
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