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Abstract

We conduct a series of experiments on ranking scientific abstracts in response to popular science queries issued
by laypersons. We show that standard IR ranking models optimized on topical relevance are indeed ignoring the
individual user’s context and background knowledge. We also demonstrate the viability of complexity-aware retrieval
models that retrieve more accessible relevant documents or ensure these are ranked prior to more complex docu-
ments on the topic. More generally, our results help remove some of the barriers to consulting scientific literature by
laypersons and hold the potential to promote science literacy in the general public.
Lay Summary: In a world of misinformation and disinformation, access to objective evidence-based scientific in-
formation is crucial. The general public ignores scientific information due to its perceived complexity, resorting to
shallow information on the web or in social media. We analyze the complexity of scientific texts retrieved for a layper-
son’s topic, and find a great variation in text complexity. A proof of concept complexity-aware search engine is able
to retrieve both relevant and accessible scientific information for a layperson’s information need.
Keywords: Complexity-Aware Information Retrieval, Text Complexity and Readability, Lay Access to Scientific Text.

1. Introduction

The internet and social media drastically altered
both the process of generating information and the
way we consume it. The internet gives us far eas-
ier access to objective scientific information, which
is a natural antidote against the pervasive misin-
formation and disinformation on the Web. In real-
ity, only a small number of non-specialists refer to
scientific sources, opting instead for superficial in-
formation disseminated on the internet and social
media. One of the primary motives for avoiding
the scientific literature is its perceived complexity.
Even in developed countries, up to 30% of the pop-
ulation can only comprehend texts written with a
basic vocabulary (Štajner et al., 2022).

Traditionally Information Retrieval (IR) systems
are evaluated according to their efficiency in re-
trieving documents topically related to a query but
this paradigm ignores the widely varying back-
grounds and expertise levels of individual users,
who may strictly prefer more accessible infor-
mation on the topic over highly advanced doc-
uments. Specialized scholarly search engines,
such as Google Scholar, DBLP, or PubMed, are
designed to assist experts in scientific literature re-
view (Gusenbauer and Haddaway, 2020) and thus
do not target the accessibility of retrieved docu-
ments to laypersons. However, retrieved scientific
documents might be too difficult for a user who
might not understand these documents. As a re-
sult, these documents might be completely use-
less for a user even if they are relevant to the
query.

We assume an information retrieval or retrieval

augmented generation setting with a closed collec-
tion. Despite promising results of LLMs for multi-
ple NLP tasks, including the application of Chat-
GPT for biomedical QA (Jahan et al., 2023; Ateia
and Kruschwitz, 2023), these models still suffer
from problems such as hallucinations (Ji et al.,
2023; Ateia and Kruschwitz, 2023; Ermakova et al.,
2023a) or non-determinism and its potential cas-
cading effect (Ateia and Kruschwitz, 2023). For
example, ChatGPT provides correct or partially
correct answers in half of the cases but the pro-
vided references only exist in a small fraction of
the answers (Zuccon et al., 2023). This model’s
instability and hallucinations reduce the reliability
of the provided answers for a scientific request.
Arguably, these generative models even increase
the need for grounded scientific evidence to vali-
date generated responses.

In this paper, our main aim is to investigate the
viability of complexity-aware retrieval models aim-
ing to retrieve scientific information for non-expert
users. Specifically, we aim to answer the following
research questions:

• How difficult are scientific abstracts?

• Are current retrieval models sensitive to text
complexity?

• How effective are complexity-aware retrieval
models?

To answer these research questions, we con-
ducted a series of experiments on ranking sci-
entific abstracts in response to popular science
queries. As traditional ad-hoc retrieval bench-
marks, such as TREC collections, are not aimed
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at evaluating the complexity of the retrieved doc-
uments, we conducted our experiments on a spe-
cialized scientific retrieval corpus for a broad au-
dience. The CLEF SimpleText track (Ermakova
et al., 2021, 2022, 2023b) was the first to inves-
tigate the barriers that ordinary citizens face when
accessing scientific literature head-on, by making
available corpora and tasks to address different
aspects of the problem. The CLEF SimpleText
track studies both the initial ranking of scientific ab-
stracts in response to a popular science query and
the use of emerging text simplification (e.g., Wu
and Huang, 2022; Laban et al., 2021) approaches
to rewrite complex text in order to make them ac-
cessible. This paper investigates whether the ini-
tial ranking stage can already be made aware of
the text complexity of retrieved abstracts, and at-
tempts to rank more accessible literature first.

The rest of this paper is structured in the follow-
ing way. In Section 2, we discuss related work on
ranking scientific text and related work on quanti-
fying text complexity. In Section 3, we analyze the
difficulty of scientific abstracts. In Section 4, we
discuss traditional lexical and neural ranking mod-
els and analyze both their retrieval effectiveness
as well as the text complexity of retrieved results.
In Section 5, we introduce two complexity-aware
ranking approaches and analyze the trade-offs be-
tween retrieval effectiveness and complexity of the
retrieved results. We end in Section 6 with discus-
sion and conclusions.

2. Related Work

This section discusses related work. First, we dis-
cuss prior work on retrieving scientific text with par-
ticular emphasis on the data used in the exper-
iments of this paper. Second, we discuss prior
work on quantifying text complexity, with particu-
lar emphasis on the common readability measures
used in our analysis.

2.1. Scientific Text Retrieval
The origins of the field of IR and its Cranfield/TREC
evaluation paradigm are based on searching aca-
demic literature (Cleverdon, 1962, 1967). The
constantly growing number of scientific publica-
tions makes the use of automatic tools neces-
sary, including information retrieval or summariza-
tion (Guo et al., 2021). Although specialized sci-
entific documents have long been considered by
IR systems (Jones and Van Rijsbergen, 1976),
they are not sensitive to the complexity of the
text. Moreover, academic search systems, includ-
ing Google Scholar, PubMed, and Web of Sci-
ence, are traditionally designed for scientific do-
main experts to assist them in doing systematic

reviews, meta-analyses (Gusenbauer and Had-
daway, 2020). Knowledge extraction from pub-
lished scholarly literature for business and re-
search applications is another popular area of re-
search but it also targets specialists in a particu-
lar domain rather than laypersons (Thakur and Ku-
mar, 2022).

Given the escalating worries about public misin-
formation in various countries and the rise of dis-
information campaigns orchestrated by organiza-
tions, addressing how to effectively educate a wide
audience about the progress in technology and sci-
ence is a major concern (Scheufele and Krause,
2019).

The CLEF SimpleText track shifted the focus
to laypersons searching scientific literature (Er-
makova et al., 2021, 2022, 2023b). The track cov-
ers a wider range of topics on automatic scientific
text simplification, from language simplification to
terminology extraction and explanation. For the
analysis in this paper, we use the data of the CLEF
SimpleText Track’s Task 1 retrieving scientific ab-
stracts in response to a popular science query:

Corpus The Corpus consists of 4.9 million bib-
liographic records, including 4.2 million aca-
demic abstracts with corresponding detailed
information about authors, affiliations, and
citations from the Citation Network Dataset
(12th version released in 2020)1 (Tang et al.,
2008).

Context There are 40 popular science articles,
with 20 from The Guardian2 and 20 from Tech
Xplore.3 These journalistic articles were used
to construct search requests on popular sci-
ence topics.

Requests There are 114 queries with 1-4 queries
per context article, 47 queries are based on
The Guardian and 67 on Tech Xplore.

Train Data The SimpleText organizers provide rel-
evance judgments for 29 queries (correspond-
ing to 15 Guardian articles, G01–G15), with
23 queries having more than 10 relevant ab-
stracts. The approaches of this paper haven’t
been trained on this data, but it can serve as
an additional evaluation for unsupervised ap-
proaches.

Assessments For the evaluation, we used the rel-
evance assessments released for the Simple-
Text test data for 34 queries associated with
the 5 articles from The Guardian (G16–G20,
17 queries) and 5 articles from Tech Xplore
(T01–T05, 17 queries).

1https://www.aminer.cn/citation
2https://www.theguardian.com/science
3https://techxplore.com/

https://www.aminer.cn/citation
https://www.theguardian.com/science
https://techxplore.com/
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Table 1: Text complexity: readability in school grade levels
Grade Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

School Elementary Jr. High High School Undergrad. Grad. PhD

Primary Secondary University PhD

Compulsory Higher Edu.

Age 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 2: Flesch-Kincaid Grade Level of CLEF SimpleText data
Data Size Length FKGL

Mean Median Mean Median

Corpus (scientific abstracts) 4,894,063 901 913 13.87 13.90
News (popular science) 40 5,504 5,540 12.69 12.80

For details of the exact task setup and results, we
refer the reader to the detailed overview of the
track in (Ermakova et al., 2023b).

2.2. Text Complexity

This paper performs an initial analysis of the com-
plexity of the scientific abstracts retrieved for a
popular science query. The most used way to
quantify text complexity is by using readability mea-
sures (Zamanian and Heydari, 2012). To quantify
the complexity, we use the popular Flesch-Kincaid
Grade Level (FKGL) measure based on lexical and
grammatical complexity (Flesch, 1948). This is a
simple measure based on word length and sen-
tence length, which may not be the most accurate
for a single abstract but a reasonable approxima-
tion when averaging over larger sets of data. Read-
ability measures have been criticized ever since
their invention (e.g., Štajner et al., 2012), but are
the most used initial indicators of text complexity in
NLP and IR.

The FKGL score is calibrated to correspond to
the readability level suitable for a given school level
in the U.S. school system, as shown in Table 1.
While literacy levels vary in the population, even
among adults, one may assume that an average
layperson would have finished compulsory educa-
tion, corresponding to a high school diploma at a
grade level of 12.

3. Corpus Analysis

In this section, we will investigate our first research
question: How difficult are scientific abstracts?
Specifically, we apply readability measures to ana-
lyze the text complexity of the scientific data used
in our experiments.

Table 2 shows an analysis of the text complex-
ity of the corpus and of popular science context.
As shown in Table 2, the average (median) length
of the abstracts is 901 (913) tokens, and the aver-
age (median) complexity of the abstracts is 13.87
(13.9) FKGL.

How complex are scientific abstracts? We can
immediately confirm that scientific literature is in-
deed complex: the scale is the U.S. grade levels
in years, with 12 being the exit level of compul-
sory education (high school diploma), hence the
observed complexity of 14-15 is translating to stu-
dents halfway in undergraduate or college educa-
tion.

What is the target level of complexity? Recall
that the track also provides 40 popular science ar-
ticles from The Guardian and TechXplore, which
are written by professional science journalists for
a general audience. As also shown in Table 2, the
average (median) length of these articles is 5,504
(5,540) tokens, and the average (median) com-
plexity of the articles is 12.69 (12.8) FKGL, con-
firming that a FKGL around 12, translating to the
readability level of a high school diploma, is appro-
priate for laypersons.

Is every single abstract too complex for an av-
erage citizen? We down-sampled the corpus by
taking every 500th article, resulting in an arbi-
trary sample of 8,513 non-empty abstracts. Fig-
ure 1 (top) shows the distribution of FKGL readabil-
ity levels, which show a striking variation ranging
from 5 (elementary school, 10-year-old children)
to 25 (graduate school domain expert). Figure 1
(bottom) visualizes this extreme variation, plotted
against the length of the abstracts. There is in fact
a weak correlation between text complexity and
length (r=0.1059, highly significant, regression line
with slope 0.0007 in red), but for any length, we
find abstracts on any level of readability.
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Figure 1: Distribution of text complexity in Flesch-
Kincaid Grade Levels (top) and by length (bottom).

Our corpus analysis confirms the common as-
sumption that scientific literature is complex, and a
large fraction of abstracts would be very challeng-
ing for a layperson. However, our analysis also re-
veals that a significant fraction of abstracts is within
the readability levels of most adult citizens. In the
rest of this paper, we will investigate how informa-
tion retrieval approaches can be made aware of
the text complexity and prioritize the retrieval of rel-
evant and accessible abstracts for the request at
hand.

4. Effectiveness and Text Complexity

In this section, we will study our second research
question: Are current retrieval models sensitive
to text complexity? Specifically, we will use tradi-
tional and neural rankers for scientific text. First,
we will evaluate the results in terms of retrieval ef-
fectiveness. Second, we will analyze the retrieved
results in terms of their text complexity.

4.1. Lexical and Neural Ranking Models
We first conduct a standard IR evaluation of sci-
entific text retrieval, using the corpus of scientific
abstracts and popular science requests from the
CLEF SimpleText track (Ermakova et al., 2023b).

First, we use a representative traditional ranker
BM25 which is based on TF-IDF and normalized
document length (Robertson et al., 2009). BM25
is commonly used in traditional search engines,
including ElasticSearch,4 Apache Solr,5 and Ter-
rier.6 We used the ElasticSearch implementation
of BM25 to retrieve 1,000 results for each keyword
query which serves as a first-stage retrieval for
the neural re-ranking models. Second, we use
a representative neural cross-encoder re-ranker
which is a re-implementation of BERT for query-
based passage re-ranking (Nogueira and Cho,
2019). This model has shown effective retrieval
performance even when applied in zero-shot to
new data. Specifically, we apply an MSMARCO-
trained model available from Hugging Face.7 We
use this neural cross-encoder re-ranker in a zero-
shot way to re-rank either the top 100 or the top 1k
retrieved abstracts by the BM25 run.

4.2. Retrieval Effectiveness

We first look at the retrieval effectiveness in the
same way as in any other IR evaluation based on
topical relevance judgments. Table 3 shows the
performance of the three retrieval models on the
train and test data, and we make a number of ob-
servations. We use standard IR evaluation mea-
sures:

• MRR (Mean Reciprocal Rank), which shows
a harmonic mean of the ranks;

• Precision@k aiming to compute the share of
relevant documents in the top-k retrieved re-
sults;

• NDCG (Normalized Discounted Cumulative
Gain) considering both the relevance of the
items and their position in the list;

• Bpref, preference-based metric that consid-
ers whether relevant documents are ranked
above irrelevant ones;

• MAP (Mean Average Precision), the mean of
the average precision scores for each query.

Comparing the BM25 and the neural re-rankers on
the test data, we see that the cross-encoders lead
to considerable improvement in retrieval effective-
ness, on all evaluation measures. In particular,
NDCG@10 increases from 0.3911 up to 0.4782 for

4https://www.elastic.co/
5https://opensolr.com/
6http://terrier.org/
7https://huggingface.co/cross-encoder/

ms-marco-MiniLM-L-12-v2

https://www.elastic.co/
https://opensolr.com/
http://terrier.org/
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
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Table 3: Retrieval effectiveness on CLEF SimpleText train (top) and test (bottom)
Run MRR Precision NDCG Bpref MAP

5 10 20 5 10 20

BM25 1k 0.5605 0.4345 0.3655 0.3161 0.3606 0.3627 0.4385 0.4226 0.4072
CE 100 0.5252 0.3241 0.3034 0.2448 0.2701 0.2947 0.3472 0.4012 0.3033
CE 1k 0.4608 0.2759 0.2379 0.1701 0.2312 0.2307 0.2582 0.3335 0.2001

BM25 1k 0.6424 0.4353 0.4059 0.2990 0.4165 0.3911 0.3315 0.2502 0.1895
CE 100 0.7050 0.5118 0.4912 0.3657 0.5004 0.4782 0.4007 0.2616 0.2011
CE 1k 0.6329 0.4765 0.4735 0.3578 0.4502 0.4448 0.3816 0.2797 0.2051

Table 4: Analysis of output (over all 114 queries)
Run Queries Top Year Length FKGL

Avg Med Avg Med Avg Med

BM25 1k 114 10 2012.0 2014 1000.0 995.5 14.0 13.9
CE 100 114 10 2011.7 2013 1102.3 1041.5 14.2 14.1
CE 1k 114 10 2011.8 2014 1142.3 1047.0 14.2 14.1

the CE 100 run, suggesting that the relevant docu-
ments have higher ranks, especially in the top posi-
tions. The results on the train data are less impres-
sive, but inspection reveals very high fractions of
unjudged documents at the top of the neural runs,
as no neural IR system contributed to the pools of
the train data. Hence, the test data reflects the
quality of these runs.

4.3. Text Complexity
We saw that modern IR models perform well in
terms of retrieval effectiveness, but how complex
are the retrieved abstracts? Table 4 shows an anal-
ysis of text complexity of the top 10 results of the
lexical and neural models.

We see that the top 10 of the traditional BM25
model retrieves texts of a similar complexity level
as the corpus (shown in Table 2 above) with an
FKGL of around 14 (with a mean of 14.0, and
a median of 13.9). The neural re-rankers also
retrieve abstracts with this complexity level, with
a slightly higher mean of 14.2 and median of
14.1. To remind, FKGL level 14 corresponds
to university-level education, higher than can be
taken for granted by a layperson user. Our results
indicate that both traditional lexical rankers and
modern neural re-rankers focus indeed solely on
the topical relevance of abstracts—is the abstract
on the topic of the request—and ignore other as-
pects such as the text complexity.

In this section, we saw that lexical and in partic-
ular neural rankers are highly effective in retrieving
scientific text. This observation is consistent with
the retrieval effectiveness of these models in other

domains, and it’s reassuring that their effective-
ness extends to the domain of scientific text rank-
ing. Their increased effectiveness is already mak-
ing important potential contributions to the findabil-
ity of scientific literature, and hence the UNESCO
SGDs, at least for expert searchers who have suf-
ficient expertise and language proficiency levels.

5. Complexity-Aware Search

In this section, we explore our third research ques-
tion: How effective are complexity-aware retrieval
models? We are interested in making the IR ap-
proach aware of the complexity of the text, with the
intent to retrieve relevant and accessible texts to
our layperson user. We first analyze the distribu-
tion of complexity in the retrieved set of abstracts.
We then propose straightforward approaches to
combine evidence for relevance and readability
into the ranking and evaluate these approaches
in terms of retrieval effectiveness and in terms of
the resulting text complexity. Can we trade-off be-
tween these two requirements in ways more suit-
able for laypersons searching scientific text?

5.1. Analysis of Complexity
What subset of abstracts is selected by a general
query based on the popular science newspaper ar-
ticles? We use the default ElasticSearch engine,
retrieve the top 100 scientific articles for each re-
quest, and analyze the text complexity of each re-
trieved abstract. Over the 114 queries, this results
in a sample of 11,400 abstracts. As shown also
in Table 2, the average (median) length of the re-
trieved abstracts is 948 (928) tokens, and the aver-
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Figure 2: Distribution of text complexity: Top 100
results BM25 over 114 queries by rank (top) and
topic (bottom).

age (median) complexity of the abstracts is 13.79
(14.4) FKGL. Hence, the retrieved abstracts are
comparable to the corpus statistics, both in terms
of length and text complexity, and the distribution
of FKGL (not shown) is very similar.

Figure 2 shows the distribution of FKGL readabil-
ity levels over the rank of retrieval (top) and over
each individual query (bottom). In both cases, we
see that the standard retrieval engine is completely
blind to the text complexity and exclusively focuses
on the topical relevance of the abstract. As a result,
for any rank and any topic, we see again a striking
variation in FKGL, ranging from 10 (starting high
school, 15-year-old children) to 20 (doctoral/PhD
candidate).

5.2. Complexity-Aware Retrieval Models
Based on the observations above, we explore the
viability of complexity-aware retrieval (CAR) mod-
els that combine both the relevance and text com-
plexity of a given abstract.

Complexity-Aware Retrieval Filter Our first ap-
proach is based on a straightforward global filter,
that will only allow the retrieval of abstracts with
a favorable readability level. In reality, we use

a fudge factor to ensure all selected abstracts re-
ceive a higher relevance score than those filtered
out.8 In pseudo-code for FILTER:
if (fkgl <= median_fkgl)

then combined_score = relevance_score + 10
else combined_score = relevance_score

We use a global median FKGL of 14 to create in-
terpretable experimental conditions where we pri-
oritize the more accessible half of the corpus and
actively demote the less accessible half.

Complexity-Aware Retrieval Combine The
neural cross-encoder provides a well-behaved
score distribution with a small fraction of docu-
ments per topic receiving a positive relevance
score. We invert the FKGL level so that lower
FKGL levels are more desirable, in a way that
the median FKGL level becomes a zero score. In
pseudo-code for COMBINE:
if (relevance_score > 0)

then combined_score = relevance_score
+ (median_fkgl - fkgl)

else combined_score = relevance_score
Unlike in the rigorous filter, here a high relevance
score can still overturn a less desirable FKGL, and
a very desirable FKGL can overturn a low rele-
vance score.

We opt for simple and straightforward ap-
proaches where we are in full control of the ex-
perimental parameters and obtain clear and inter-
pretable outcomes. For the experiments in the rest
of this section, we focus on the cross-encoder re-
ranking model.

5.3. Effectiveness and Text Complexity
How will promoting readability fare? Will this be
sufficient to retrieve accessible abstracts? And at
what cost in performance, as we are trading off
against standard retrieval effectiveness?

5.3.1. Text Complexity

Let us first look at whether our complexity-aware
retrieval approaches are indeed factoring in the
text complexity of the retrieved abstracts. Table 5
shows the text complexity of the top 10 results for
all of the 114 queries.

8This is following William S. Cooper, ACM SIGIR
Salton winner in 1994, who promoted both strict math-
ematical rigor but also the use of simple experimental
stimuli to test controllable and interpretable outcomes.
We choose a boost factor of 10 based on the distribu-
tional analysis before, which ensures a cohort ranking
in which our filter pushes below median FKGL abstracts
to the top of the ranking while preserving the internal
ranking of each cohort.
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Table 5: Analysis of complexity-aware retrieval results (over all 114 queries)
Run Queries Top Year Length FKGL

Avg Med Avg Med Avg Med

CE 1k 114 10 2011.8 2014 1142.3 1047.0 14.2 14.1
CE 1k CAR combine 114 10 2011.6 2014 992.9 909.0 11.2 11.2
CE 1k CAR filter 114 10 2011.5 2014 1056.8 982.0 12.2 12.4

Table 6: Complexity-Aware Retrieval effectiveness on train(top) and test (bottom)
Run MRR Precision NDCG Bpref MAP

5 10 20 5 10 20

CE 100 0.5252 0.3241 0.3034 0.2448 0.2701 0.2947 0.3472 0.4012 0.3033
CE 100 CAR combine 0.4371 0.3172 0.3069 0.2466 0.2190 0.2489 0.2795 0.3998 0.2838
CE 100 CAR filter 0.5946 0.3517 0.3138 0.2655 0.3008 0.3041 0.3241 0.3906 0.3009
CE 1k 0.4608 0.2759 0.2379 0.1701 0.2312 0.2307 0.2582 0.3335 0.2001
CE 1k CAR combine 0.3182 0.2000 0.1966 0.1655 0.1423 0.1633 0.2240 0.3211 0.1714
CE 1k CAR filter 0.4952 0.2759 0.2414 0.1563 0.2390 0.2431 0.2531 0.3249 0.1934

CE 100 0.7050 0.5118 0.4912 0.3657 0.5004 0.4782 0.4007 0.2616 0.2011
CE 100 CAR combine 0.6779 0.4529 0.3971 0.3456 0.4415 0.4016 0.3642 0.2658 0.1792
CE 100 CAR filter 0.7349 0.5294 0.4353 0.3309 0.5252 0.4511 0.3716 0.2597 0.1790
CE 1k 0.6329 0.4765 0.4735 0.3578 0.4502 0.4448 0.3816 0.2797 0.2051
CE 1k CAR combine 0.5880 0.4412 0.4147 0.3098 0.3854 0.3706 0.3250 0.2700 0.1865
CE 1k CAR filter 0.6403 0.5000 0.4765 0.2941 0.4754 0.4533 0.3334 0.2727 0.1936

We observe that our complexity-aware rankers
are indeed returning more accessible scientific ab-
stracts to our lay users. The CAR Filter approach
retrieves abstracts of FKGL around 12 (mean 12.2,
median 12.4) and the CAR Combine approach
FKGL around 11 (mean and median 11.2). To put
these text complexity levels in context, an FKGL of
11-12 corresponds to the final years of compulsory
education and even lower than the journalistic text
used as context for the search requests.

That is, the complexity-aware retrieval ap-
proaches are indeed effective in retrieving more ac-
cessible scientific abstracts corresponding to the
reading level of the targeted lay user.

5.3.2. Retrieval Effectiveness

Let us now look at the performance in terms of
retrieval effectiveness. Recall that our baselines
are highly effective cross-encoder rankers exhibit-
ing competitive zero-shot performance on many
collections and domains. Our CAR approaches
try to avoid retrieving complex, but potentially rel-
evant abstracts, so we may observe a trade-off
in terms of retrieval effectiveness. Table 6 shows
the results. First, we observe that the CAR Com-
bine approach leads to a loss of performance, with
NDCG@10 on the train data dropping 16% to 28%.
Recall this may still be a reasonable trade-off ap-

proach: CAR Combine reduces the FKGL consid-
erably to 11 and strictly focuses on retrieving only
accessible content, and still obtains an effective-
ness that can exceed the BM25 model. It is rea-
sonable to assume our lay user would prefer to
see more accessible abstracts first. Second, the
CAR Filter approach fares even better. We would
expect some trade-off between retrieval effective-
ness and text complexity, and see indeed some
small drop at higher recall levels. However, we
see a gain in performance on early precision. On
the main measure NDCG@10 however, we even
observe small gains in retrieval effectiveness up
to +5% on the train data and up to +2% on the test
data.

In this section, we investigated the viability of
complexity-aware rankers aiming to retrieve rele-
vant and accessible abstracts for lay users. First,
in line with our analysis of the distribution of text
complexity per topic, We observed that we can fac-
tor text complexity into the ranking models, and cre-
ated different types of rankers that promote rele-
vant and accessible text to the front of the ranking.
Second, we expected some trade-off in effective-
ness between pure-relevance rankers and com-
plexity-aware rankers. However, our experiments
demonstrate that the cost can be quite small: it can
even lead to minor gains in retrieval effectiveness.



23

Third, more generally, perhaps most important is
the potential positive effect on the user experience
of these models by retrieving abstracts fitting the
background and education level of our users. This,
in turn, holds great promise to increase science lit-
eracy and broaden the audience of objective sci-
entific information to the general public.

6. Discussion and Conclusions

The main aim of this paper was to investigate the
viability of complexity-aware retrieval models aim-
ing to retrieve scientific information for non-expert
users. Scientific literacy is crucial for all citizens,
yet traditional IR systems and specialized schol-
arly search engines seem to cater to expert users.

We conducted an extensive analysis of both rel-
evance and complexity and made a number of ob-
servations. Our first research question was: How
difficult are scientific abstracts? We found that
scientific abstracts had high complexity levels on
average, confirming the common assumption that
scientific literature is complex, but also a remark-
able spread of complexity levels. Our second re-
search question was: Are current retrieval models
sensitive to text complexity? We found that cur-
rent lexical and neural retrieval models focus exclu-
sively on topical relevance and retrieve scientific
abstracts with a complexity similar to the overall
corpus. Our third research question was: How ef-
fective are complexity-aware retrieval models? We
found that complexity-aware retrieval models com-
bining relevance and text complexity are effective
in reducing the text complexity of retrieved results.
One of the more effective strategies is a straightfor-
ward filter that demotes those abstracts with unde-
sirable text complexity in the ranking. We expected
to have to trade off the retrieval effectiveness with
the accessibility of scientific abstract, however, we
observed no loss of retrieval effectiveness.

More generally our experiments demonstrate
the viability of building complexity-aware rankers
sensitive to the background expertise and lan-
guage proficiency levels of our searchers. This
has the potential to greatly improve the user ex-
perience of lay users searching scientific litera-
ture. Complexity-aware retrieval is a step to make
IR more inclusive and sustainable by making sci-
entific knowledge and health-related information
more accessible to a wider audience including peo-
ple with a lower level of education or learning dis-
abilities and thus reducing inequality.

Our conclusions prompt the need for further
study of complexity-aware IR. In the future, we
plan to investigate in-depth more advanced tech-
niques to evaluate the complexity of texts as well
as the accessibility of scientific texts from the per-
spective of users with different backgrounds.

7. Ethics and Limitations

Complexity-aware ranking is an important step for-
ward to more quality education by making scientific
research really open, accessible, and understand-
able for everyone. Difficult scientific texts are less
accessible for non-native speakers (Siddharthan,
2002), young readers, people with reading disabil-
ities (Gala et al., 2020; Chen et al., 2016), needed
for reading assistance (e.g. congenitally deaf peo-
ple) (Inui et al., 2003) or lower level of education.
Thus, complexity-aware models could help to re-
duce inequality and contribute to the inclusiveness
and sustainability of natural language processing
and information retrieval. Complexity-aware re-
trieval models can help to make science results
accessible for anyone, promoting equal access to
education, and health-related information, and ulti-
mately more equal employment opportunities.

The popularization of science is one of UN-
ESCO’s oldest programs (UNESCO, b). Educa-
tion is at the core of UNESCO programs to reach
its sustainable development goals (UNESCO, a).
This paper investigates how IR can promote sci-

Figure 3: UNESCO Sustainable Develop-
ment Goals, with particular contributions to
SDG 4, as well as SDG 3, SDG 5, and
SGD 10. Based on https://en.unesco.org/
sustainabledevelopmentgoals.

ence literacy, making significant direct contribu-
tions to SGD 4 (quality education), and SGDs 5
and 10 (reduced inequalities), and SDG 3 (increas-
ing well-being), see Figure 3. Moreover, through
education it has an indirect impact on all the 17 sus-
tainable development goals (SDGs) of UNESCO.

The current paper presents a proof of concept
of the viability of complexity-aware search. For
this reason, we opted for technically simple and
interpretable manipulation of very standard classi-
cal and modern neural retrieval rankings. This en-
sures that our results hold for entire classes of sys-
tems, but presents no final claims on what would
constitute an optimal approach.

Similarly, we equate perceived text complexity
with the very crude approximations provided by
traditional readability measures. These readabil-
ity measures have been widely studied and widely
used in the literature, ensuring that our results can
be directly compared. An additional advantage of
these readability measures is that they are clearly
interpretable in terms of grammatical and lexical

https://en.unesco.org/sustainabledevelopmentgoals
https://en.unesco.org/sustainabledevelopmentgoals
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complexity, strengthening the general conceptual
results of the paper.

However, the perceived complexity of scientific
text, and the real-world barriers to accessing scien-
tific documents, as well as the key science literacy
we may need to provide to lay users, is far more
complex. This would need to address missing
background knowledge and vernacular, including
terminological explanations aiming for the layper-
sons. For example, explaining a medical condition
as angina pectoris in precise medical terms may
be less helpful than its imprecise relation to heart
attacks. Similarly, a technical definition of an ad-
vanced term like differential privacy may be less
helpful than explaining that this is a soft precondi-
tion for protecting a lay user’s privacy. Such lay
explanations seem more general and categorical
(this is a type of cancer, privacy protection, ...).

We hope and expect that our general results
showing that search engines can be made sensi-
tive to text complexity, will inspire a novel research
line in NLP and IR, developing different search
technology that can avoid overly complex search
results, and appropriate NLP technology that can
help laypersons understand the retrieved scientific
information. Such future technology should em-
power lay users, and let them interactively explore
scientific information rather than become another
single gatekeeper to information. This involves at-
tention to learning aspects, and improving their sci-
ence literacy, in ways that positive reinforcement
of laypersons interest and use of objective science.
This can be a natural antidote against shallow in-
formation on the web and in social media, often
published for their monetary or political value and
not their information value or lay user’s interests.
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