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1 Introduction

Large Language Models (LLMs) are highly ad-
vanced Artificial Intelligence (AI) systems capa-
ble of understanding, interpreting, and generating
languages. The integration of AI chatbots like
ChatGPT into our daily lives and businesses has
had a profound impact on both society and indus-
tries (Eloundou et al., 2023). However, the success
of GPTs/LLMs depends not only on their ability
to generate responses and perform tasks well but
also on their alignment with human values and
expectations.

The prevalent method for aligning AI/LLMs cur-
rently involves preference learning (PL) through
human feedback. However, gathering human feed-
back is slow and expensive and often results in
incomplete or imperfect data (Bai et al., 2022; Lee
et al., 2023). Furthermore, participants may inten-
tionally provide inaccurate or harmful feedback due
to malicious intentions, as pointed out by (Casper
et al., 2023). These factors can lead to unintended
consequences in estimating rankings from prefer-
ence datasets from models such as BTL. They pose
a considerable challenge in ensuring the integrity
and reliability of the preference datasets used for
aligning LLMs, especially when scaling up the
alignment process with large-scale responses and
participants.

Approaching the issues, we consider the fol-
lowing learning problem: Suppose there are 𝑛
responses we wish to order based on a notion of
comparison, between every pair of responses, with
probabilistic outcomes. Further, we are given a
set, ℵ = {(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})}, consisting of 𝐾 indepen-
dent pairwise comparison outcomes, denoted by
{𝑦𝑘𝑖 𝑗} ∈ {0, 1}, 𝑘 ∈ [𝐾], between pairs of responses
(𝑖, 𝑗) ⊆ [𝑛] × [𝑛], a significant proportion of which
might be corrupted by an adversary.

In this passive learning setting, our contribu-
tions are as follows. We give a generic definition

Figure 1: CURATRON corrects incomplete and
adversarially corrupted preference data to improve
RLHF/DPO alignment results compared to using the
raw initial preference data.

of (additive) adversarial noise and show that if it
is not accounted for, the quality of the estimated
ranking can be quite poor. To address this, we de-
velop an efficient and correct ranking method called
Robust Preference Data for Rigorous Alignment
(RORATRON), which is robust against adversarial
noise. Under certain assumptions, we prove that
our method guarantees high-probability learnabil-
ity with a small margin of error. We also devise a
method called Complete Robust Preference Data for
Rigorous Alignment (CURATRON) to handle the
scenario where not all pairs are compared, and the
observed pairwise data is adversarially corrupted.

2 Related Work

LLM Alignment with PL from human feedback:
PL was initially developed to train agents in simu-
lated environments to perform nuanced behaviors
that are hard to define but easy to observe and recog-
nize (Christiano et al., 2017). It has recently been
found successful in aligning LLMs to human inten-
tions and values such as harmfulness, helpfulness,
factuality, and safety. Some of the methods of PL in
LLMs are RLHF (Ouyang et al., 2022), RLAIF (Bai
et al., 2022; Lee et al., 2023), DPO/𝜓PO (Rafailov
et al., 2023; Tunstall et al., 2023; Zhao et al., 2023),
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and SLiC-HF (Zhao et al., 2023).

Ranking Models: In the BTL model, item 𝑖
has an associated score 𝑤𝑖; then, the probabil-
ity that item 𝑖 is preferred over 𝑗 is given by
𝑃𝑖 𝑗 = 𝑒−𝑤𝑖/(𝑒−𝑤𝑖 + 𝑒−𝑤 𝑗 ) where w ∈ R𝑛 is the
BTL parameter vector to be estimated from data;
here, P ∈ R𝑛×𝑛 is called the ‘preference matrix’.
A closely related model, in the non-active setting,
is the recently proposed LR model (Rajkumar and
Agarwal, 2016) wherein a generic class of prefer-
ence matrices is characterized to be those having
low rank under transformations using certain func-
tions; specifically, for BTL-like models, the logit
function defined as 𝜓(𝑥) = log (𝑥/(1 − 𝑥)) turns
out to right choice as shown in their paper. However,
while their model accounts for missing information,
they do not consider the harder problem of handling
adversarial noise.

Robust Subspace Recovery: The Robust PCA
(RPCA) problem (Netrapalli et al., 2014) addresses
the following question: suppose we are given a data
matrix M which is the sum of an unknown low-rank
matrix L and an unknown sparse matrix S, can we
recover each of the component matrices? While
several works (Yi et al., 2016; Hsu et al., 2011) an-
alyze this problem, it is shown in (Netrapalli et al.,
2014) that, under information-theoretically tight
assumptions, a simple iterative algorithm based on
non-convex alternating projections of appropriate
residuals provably yields an 𝜖-accurate solution in
𝑂 (log(1/𝜖)) iterations with an overall computa-
tional complexity of 𝑂 (𝑛2𝑟2 log(1/𝜖)) where 𝑟 is
the rank of L. We will use this result, in particular,
to derive guarantees for our ranking problem.

3 Problem Setup
3.1 Notation
We denote the set of all permutations of 𝑛 LLM
responses/items as S𝑛. If not specifically defined,
we use lower-case letters for scalars, upper-case
letters for global constants, lower-case bold-face
letters for vectors and upper-case bold-face letters
for matrices; specifically, P denotes a preference
matrix. Let P𝑛 := {P ∈ [0, 1]𝑛×𝑛 |𝑃𝑖 𝑗 + 𝑃 𝑗𝑖 = 1}
denote the set of all pairwise preference matrices
over 𝑛 responses. Let the set of stochastic-transitive
matrices be P𝑆𝑇𝑛 := {P ∈ P𝑛 |𝑃𝑖 𝑗 > 1/2, 𝑃 𝑗𝑘 >
1/2 =⇒ 𝑃𝑖𝑘 > 1/2}. Let the set preference
matrices described by the BTL model be P𝐵𝑇𝐿𝑛 :=
{P ∈ P𝑛 |∃w ∈ R𝑛 s.t. 𝑒−𝑤𝑖/(𝑒−𝑤𝑖 + 𝑒−𝑤 𝑗 )}. Let

𝜓 : [0, 1] ↦→ R be a strictly increasing bĳective 𝐿-
Lipschitz function and define the class of low-rank
preference matrices with respect to𝜓 asP𝐿𝑅 (𝜓,𝑟 )𝑛 =
{P ∈ P𝑛 |rank(𝜓(P)) ≤ 𝑟} where 𝑟 ∈ [𝑛]; when
we apply such a transformation to a matrix, it is
applied entry-wise. In this paper, we take 𝜓 to be
the logit function.

For any matrix M ∈ R𝑛×𝑛, let the infin-
ity norm be denoted by ∥M∥∞ = max𝑖, 𝑗

��𝑀𝑖 𝑗 ��,
the Frobenius norm be denoted by ∥M∥𝐹 =√︃∑𝑛

𝑖=1
∑𝑛
𝑗=1 𝑀

2
𝑖 𝑗 , the spectral norm be denoted by

∥M∥2 = maxx,y∈R𝑛 x⊤My. Denoting the indicator
function by 1, define the zero norm of a matrix to be
the maximum number of non-zero elements in any
row/column, ie, ∥M∥0 = max(max 𝑗

∑𝑛
𝑖=1 1(𝑀𝑖 𝑗 ≠

0),max𝑖
∑𝑛
𝑗=1 1(𝑀𝑖 𝑗 ≠ 0)). Let the Singular Value

Decomposition (SVD) of a square matrix be given
by M = U𝚺V⊤ where U,V ∈ R𝑛×𝑟 are orthonor-
mal matrices (whose columns are singular vectors)
and 𝚺 ∈ R𝑟×𝑟 is the diagonal matrix of singu-
lar values. Now, M is said to be 𝜇-incoherent
if max

(
max𝑖



e⊤𝑖 U




2 ,max𝑖


e⊤𝑖 V




2

)
≤ 𝜇

√︁
𝑟/𝑛

where e𝑖 denotes the 𝑖𝑡ℎ basis vector in R𝑛. Also,
let 𝜎max := max𝑖 Σ𝑖𝑖 and 𝜎min := min𝑖 Σ𝑖𝑖 .

We define the distance between a permutation
𝜎 ∈ S𝑛 and a preference matrix P ∈ P𝑛 as:

dist(𝜎,P) :=
(
𝑛
2

)−1 ∑︁
𝑖< 𝑗

1
((𝑃𝑖 𝑗 > 1/2) ∧ (𝜎(𝑖) ≻ 𝜎( 𝑗)))

+
(
𝑛
2

)−1 ∑︁
𝑖< 𝑗

1
((𝑃 𝑗𝑖 > 1/2) ∧ (𝜎( 𝑗) ≻ 𝜎(𝑖)))

Note that the above loss function basically is the
number of pairs on which the ordering with respect
𝜎 and P differ divided by the number of ways to
choose two out of 𝑛 responses. Finally, let 𝑃min =
min𝑖≠ 𝑗 𝑃𝑖 𝑗 and Δ = min𝑖≠ 𝑗

��𝜓(𝑃𝑖 𝑗) − 𝜓(1/2)��.
3.2 Characterization of the Adversary
The following (weak) assumption characterizes the
properties of the adversary.
Assumption 1. The (additive) adversarial noise
which corrupts a 𝜇-incoherent preference matrix
P ∈ P𝐿𝑅 (𝜓,𝑟 )𝑛 is modeled by a skew-symmetric
sparse matrix S so that the corrupted preference
matrix Pc ∈ P𝑛 is given by Pc = P + S. We assume
the (deterministic) bounded degree condition that
∥S∥0 ≤ 𝑑 < 𝑛 such 𝑑 < 𝑛/512𝜇2𝑟 where 𝑟 ≤ 𝑛.
So, why do existing non-robust algorithms not re-
cover the true response ordering in the presence
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of an adversarial noise source? This question is
answered by the following proposition, which pre-
cisely quantifies how bad a ranking could be when
an algorithm uses the corrupted pairwise preference
matrix. The key idea is to construct an adversary
that intentionally flips true comparison results.
Claim 1 (Upper bound on estimation error).
Under Assumption 1 it is possible that dist(�̂�,Pc) =
𝑂 (1).
Proof. Assume that we are exactly given the entries
of the preference matrix as opposed to sampling
them. Note that in order to estimate a ranking from
a given preference matrix, we still need to use a
pairwise ranking procedure. Let �̂� ∈ S𝑛 be the
output of any Pairwise Ranking (PR) procedure with
respect to an underlying preference matrix Q ∈ P𝑛.
For a constant 𝛾 > 1, �̂� is said to be 𝛾-approximate
if dist(�̂�,Q) ≤ 𝛾min𝜎∈S𝑛 dist(𝜎,Q). Define the
following distance which measures the fraction of
response pairs over which two preference matrices
{Q,R} ∈ P𝑛 disagree.

dist(Q,R) :=
(
𝑛
2

)−1 ∑︁
𝑖< 𝑗

1
((𝑄𝑖 𝑗 > 1/2) ∧ (𝑅𝑖 𝑗 < 1/2))

+
(
𝑛
2

)−1 ∑︁
𝑖< 𝑗

1
((𝑄𝑖 𝑗 < 1/2) ∧ (𝑅𝑖 𝑗 > 1/2))

By Lemma 20 of (Rajkumar and Agarwal, 2016),
for Q ∈ P𝑆𝑇𝑛 and R ∈ P𝑛, we have dist(�̂�,Q) ≤
(1 + 𝛾) dist(Q,R). But note that it is possible that
dist (Q,R) = 1 as it is easy to construct by R that
disagrees with Q in every entry by simply setting
R = Q⊤. Now, we may set Q = P and R = Pc for
any algorithm that uses Pc for ranking; specifically,
for the adversary satisfying Assumption 1, we can
see by a direct counting argument that dist (Q,R) ≤
𝑑 (2𝑛−1−𝑑)
𝑛(𝑛−1) which proves the claim. □

4 Fully Observed Adversarial Setting
4.1 Algorithm
We present our main algorithm for robust passive
ranking from pairwise comparisons in the presence
of adversarial noise in Algorithm 1. The input data
consist of the set of pairwise comparison results
ℵ = {(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})}, (𝑖, 𝑗) ∈ [𝑛] × [𝑛], 𝑘 ∈ [𝐾],
𝑦𝑘𝑖 𝑗 ∈ {0, 1}. The algorithm assumes the true rank
of 𝜓(P) as an input parameter; specifically, for the
BTL model, we set 𝑟 = 2. Algorithm 1 calls the
Robust PCA and 𝛾-approximate pairwise ranking
procedures.

Algorithm 1 RORATRON: Robust Preference Data
for Rigorous Alignment
Input: Comparison dataset ℵ = { (𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗 }) }, true rank 𝑟 .
Output: Ranking of 𝑛 responses, �̂� ∈ S𝑛 .
1: Estimate entries of P̂ for 𝑖 ≤ 𝑗 as:

𝑃𝑖 𝑗 =

{
1
𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗 if 𝑖 < 𝑗

1/2 if 𝑖 = 𝑗

2: Set 𝑃𝑖 𝑗 = 1 − 𝑃𝑗𝑖 for all 𝑖 > 𝑗.
3: Perform robust PCA: {𝜓 (P) , Ŝ} ← RPCA(𝜓 (P̂) , 𝑟 ) .
4: Using a pairwise ranking procedure after taking the inverse transform:

�̂� ← PR(P) .
5: return �̂�.

4.2 Analysis
We begin with a useful short result followed by the
statement and the proof of our main result that, with
high probability, we achieve 𝜖–accurate ranking
in polynomial time using polynomial number of
samples, despite the presence of adversarial noise.
In this context, it is noteworthy that we present
the result for LR models which strictly contain the
BTL model while being much more general (Rajku-
mar and Agarwal, 2016); upon proving this result,
we specialize it to the classic BTL model as well
(Corollary 1).
Lemma 1 (Some properties of the logit function).
Let 𝑎, 𝑏, 𝑐 ∈ (0, 1) such that 𝑐 = 𝑎 + 𝑏. Then, we
have,

1. 𝜓(𝑐) = 𝜓(𝑎) + 𝜓(𝑎 + 𝑏) + 𝜓(1 − 𝑎)
2. 𝜓(𝑎) + 𝜓(1 − 𝑎) = 0.

Proof. Both follow by using the definition of the
logit function that 𝜓(𝑎) = log(𝑎/(1−𝑎)) and using
the property that log(𝑎𝑏) = log(𝑎) + log(𝑏). □

Theorem 1 (Provably good estimation of rank-
ing in LR models in the presence of adversar-
ial noise). Let P ∈ P𝐿𝑅 (𝜓,𝑟 )𝑛 be the true prefer-
ence matrix according to which the pairwise com-
parison dataset ℵ = {(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})} is generated
for all responses pairs (𝑖, 𝑗) such that 𝑘 ∈ [𝐾].
Let P̂ be the empirical preference matrix com-
puted using ℵ. Let S ∈ [0, 1]𝑛×𝑛 be the adver-
sarial matrix that additively corrupts P̂. Let 𝜓
be 𝐿-Lipschitz in [ 𝑃min

2 , 1 − 𝑃min
2 ] and 𝜓(P) be

𝜇-incoherent. Let each pair be compared indepen-
dently𝐾 ≥ 16384𝜇2(1+𝛾)𝐿2𝑛2 log2(𝑛)/𝜖Δ2 times
where Δ = min𝑖≠ 𝑗

��𝜓(𝑃𝑖 𝑗) − 𝜓(1/2)��. Then, with
probability atleast 1−1/𝑛3, Algorithm 1 returns an
estimated permutation �̂� such that dist(�̂�,P) ≤ 𝜖 .
Remark 1 (Computational complexity). In Al-
gorithm 1, Step 1 takes 𝑂 (𝑛2𝐾) = 𝑂 (𝑛4 log2 𝑛/𝜖)
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time, Step 3 takes 𝑂 (𝑛2𝑟2 log(1/𝜖)), and Step 4
takes 𝑂 (𝑛2 + 𝑛 log 𝑛) time. Thus, putting together
the cost of these main steps, the overall computa-
tional complexity of our robust ranking algorithm
for P ∈ P𝐿𝑅 (𝜓,𝑟 )𝑛 is 𝑂 (𝑛4 log2 𝑛/𝜖).
Remark 2 (Identifying adversarially corrupted
pairwise comparisons). From Step 3 of Algo-
rithm 1, using Theorem 2 of (Netrapalli et al., 2014),
we also have Supp(Ŝ) ⊆ Supp(S) and thus we can
identify the corrupted pairwise comparison results.

Proof. Let 𝑃𝑖 𝑗 be the empirical probability estimate
of 𝑃𝑖 𝑗 . Note that we compute 𝑃𝑖 𝑗 = 1

𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗

from the given pairwise comparison dataset, ℵ =
{(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})}. Now, P̂ = P̃ + S. By Lemma 1,
we may write the adversarially corrupted empirical
probability estimate as 𝜓(P̂) = 𝜓(P̃) + S̃ where
S̃ = 𝜓(P̃+S) +𝜓(1−P̃). We have 𝜓(P̃) = 𝜓(P) +Ñ
where Ñ = 𝜓(P̃) − 𝜓(P). Now, this noise, Ñ, is
purely due to finite-sample effects which can be
controlled (using concentration arguments given in
the inequality 𝜉3 below) by driving it down to as
small a value as we want by ensuring large enough
number of comparisons for each pair. Note that we
input 𝜓(P̂) = 𝜓(P) + S̃ + Ñ to Subroutine ?? and
obtain 𝜓(P) as the output in Step 3 of Algorithm 1.
Hence, using Theorem 2 from (Netrapalli et al.,
2014), if




Ñ



∞
≤ 𝜎min(𝜓(P))/100𝑛, we have,

∥𝜓 (P)−𝜓 (P)∥𝐹 ≤ 𝜖 ′+2𝜇2𝑟(7∥Ñ∥2+ 8𝑛
𝑟 ∥Ñ∥∞)

after 𝑇 ≥ 10 log(3𝜇2𝑟𝜎1/𝜖 ′) iterations associated
with Subroutine RPCA. Next, we have, with proba-
bility at least 1 − 1/𝑛3,

∥𝜓 (P)−𝜓 (P)∥𝐹 ≤ 𝜖 ′ + 2𝜇2𝑟

(
7



Ñ




2
+ 8𝑛
𝑟




Ñ



∞

)
𝜉1≤ 𝜖 ′ + 32𝜇2𝑛




Ñ



2

𝜉2≤ 𝜖 ′ + 32𝜇2𝑛𝜏

𝜉3≤ 𝑛
√︂

𝜖

1 + 𝛾
Δ
2

where 𝜉1 follows by using 𝑟 ≤ 𝑛 and



Ñ




∞
≤



Ñ




2
,

𝜉2 follows by substituting for Ñ from Lemma 2
with 𝐾 ≥ 𝐿2𝑛2 log2 𝑛

𝜏2 , and 𝜉3 is obtained using 𝜖 ′ =

𝑛
√︃

𝜖
1+𝛾

Δ
4 , 𝜏 = min

(
𝜎min(𝜓(P))/100,

√︃
𝜖

1+𝛾
Δ

128𝜇2

)
.

Then using similar arguments as proof of Theorem
13 in (Rajkumar and Agarwal, 2016), we obtain our
result. □

Lemma 2 (Concentration of sampling noise). Un-
der the conditions of Theorem 1, let each response

pair be compared such that the number of com-
parisons per response pair is 𝐾 ≥ 𝐿2𝑛2 log(𝑛)

𝜏2 ; with
probability at least 1 − 1/𝑛3,




Ñ



2
≤ 𝜏.

Proof. Let 𝐿 be the Lipschitz constant of 𝜓 and set
𝐾 ≥ 𝐿2𝑛2 log(𝑛)

𝜏2 . Using the inequality that



Ñ




2
≤

𝑛



Ñ




∞
,

Pr(∥Ñ∥2≥𝜏) ≤ Pr
(


Ñ




∞
≥ 𝜏
𝑛

)
= Pr

(
∃(𝑖, 𝑗) :

���𝜓(𝑃𝑖 𝑗) − 𝜓(𝑃𝑖 𝑗)��� ≥ 𝜏
𝑛

)
≤
∑︁
𝑖, 𝑗

Pr
(���𝜓(𝑃𝑖 𝑗) − 𝜓(𝑃𝑖 𝑗)��� ≥ 𝜏

𝑛

)

≤
∑︁
𝑖, 𝑗

Pr
(���𝑃𝑖 𝑗 − 𝑃𝑖 𝑗 ��� ≥ 𝜏

𝑛𝐿

)
≤ 1
𝑛3

□

Next, for completeness, we recall the following
lemma (proved in Theorem 8 and Lemma 14 of
(Rajkumar and Agarwal, 2016)) which characterizes
the incoherence constant 𝜇 of P ∈ (P𝐿𝑅 (𝜓,2)𝑛 ∩
P𝑆𝑇𝑛 ) in Assumption 1.

Lemma 3 (Incoherence of BTL and LR models).
We have P ∈ (P𝐿𝑅 (𝜓,2)𝑛 ∩ P𝑆𝑇𝑛 ) if and only if
𝜓(P) = uv⊤ − vu⊤ for u ∈ R𝑛+ and v ∈ R𝑛 where
u⊤v = 0. Moreover, 𝜓(P) is 𝜇-incoherent where

𝜇 =
√︁
𝑛
2

(
𝑢2

max
𝑢2

min
+ 𝑣2

max
𝑣2

max

)1/2
where 𝑢min = min𝑖 |𝑢𝑖 |,

𝑢max = max𝑖 |𝑢𝑖 |, 𝑣min = min𝑖 |𝑣𝑖 | and 𝑣max =
min𝑖 |𝑣𝑖 |. We also haveP𝐵𝑇𝐿𝑛 ⊂ (P𝐿𝑅 (𝜓,2)𝑛 ∩P𝑆𝑇𝑛 )
since we may set u = 1 where 1 is the all-ones vector
and v = w where w is the BTL parameter vector. In
this case, we may rewrite 𝜇 =

√︁
𝑛
2

(
1 + (𝑤max−𝑤)2

(𝑤min−𝑤)2
)

where 𝑤 = 1
𝑛

∑𝑛
𝑖=1 𝑤𝑖 .

The following corollary makes precise our claim
that up to 𝑂 (𝑛2) response pairs may be subject
to adversarial corruption, but our RORATRON
algorithm still recovers a good ranking.

Corollary 1 (Recovery result for BTL model).
Consider P ∈ P𝐵𝑇𝐿𝑛 . Using Assumption 1, let
the adversarial matrix be S ∈ [0, 1]𝑛×𝑛 satisfying
∥S∥0 ≤ 𝑛/1024𝜇2 where 𝜇 is characterized as in
Lemma 3. Then, with probability 1 − 1/𝑛3, the
output of Algorithm 1 with input P̂ computed using
ℵ = {(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})} satisfies and 𝑟 = 2, dist(�̂�,P) ≤
𝜖 .
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Algorithm 2 CURATRON: Complete Robust
Preference Data for Rigorous Alignment
Input: Comparison dataset ℵ = { (𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗 }) }, true rank 𝑟 .
Output: Ranking of 𝑛 responses, �̂� ∈ S𝑛 .
1: Estimate entries of P̂ for 𝑖 ≤ 𝑗 as:

𝑃𝑖 𝑗 =




1
𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗 if 𝑖 < 𝑗 and (𝑖, 𝑗 ) ∈ Ω

1/2 if 𝑖 = 𝑗 and (𝑖, 𝑗 ) ∈ Ω
1/2 if (𝑖, 𝑗 ) ∉ Ω

2: Set 𝑃𝑖 𝑗 = 1 − 𝑃𝑗𝑖 for all 𝑖 > 𝑗.
3: Set R← OptSpace(𝜓 (P̂)Ω ) .
4: Use a robust PCA procedure: 𝜓 (P) ← RPCA(R) .
5: Using a pairwise ranking procedure after taking the inverse transform:

�̂� ← PR(P) .
6: return �̂�.

5 Partially Observered Adversarial
Setting

In this section, we consider the partially observed
and adversarially corrupted comparison results set-
ting. Both factors can be modeled in a unified
manner by setting the corresponding missing en-
tries of the preference matrix to zero (or a specific
constant to account for numerical stability). We
present our robust ranking algorithm for this setting
in Algorithm 2 – this essentially involves using the
‘OptSpace’ matrix completion algorithm of (Kesha-
van et al., 2010) followed by using the robust PCA
algorithm of (Netrapalli et al., 2014) as sub-routines.
We now derive the recovery guarantees as follows.

Theorem 2 (Provably good estimation of ranking
in BTL model in the presence of adversarial
noise as well as missing data). Consider a similar
notation as in Theorem 1 but let P ∈ P𝐵𝑇𝐿𝑛 . Let
Ω ⊆ [𝑛] × [𝑛] be a set of compared response pairs.
Assume Ω is drawn uniformly from all subsets of
[𝑛] × [𝑛] of size |Ω| such that |Ω| ≥ 𝐶′′𝑛 log(𝑛)
and let the sparse noise satisfy ∥S∥∞ ≤ Δ𝑤

log(𝑛)
𝐶Δ𝑛

where Δ𝑤 := min𝑖, 𝑗
��𝑤𝑖 − 𝑤 𝑗 ��. Let the number of

comparisons per pair be 𝐾 ≥ 𝑐𝑛4/Δ𝑤 . Then with
probability at least 1 − 2/𝑛3, Algorithm 2 returns a
ranking that satisfies dist(�̂�,P) ≤ 𝜖 .
Remark 3 (Robust Estimation of BTL Model
in the Partially Observed Case). For the BTL
model, Theorem 2 says 𝑂 (𝑛 log 𝑛) pairs suffice to
estimate the BTL model, which matches bounds
from (Rajkumar and Agarwal, 2016). Further, even
in this incomplete comparison data case, we are
able to tolerate uniformly random additive sparse
noise with its maximum absolute entry scaling as
the order of the BTL ‘score-gap’ divided by the
number of responses up to logarithmic factors, ie,

𝑂 (Δ𝑤/𝑛).
Proof. From Lemma 3, we have𝜓(P) = 1w⊤−w1⊤
for the BTL model where 𝜓 is the logit function.
Clearly, in this case, 𝜓(P) is a real skew-symmetric
matrix of rank 𝑟 = 2. Since it is skew-symmetric, its
eigenvalues, which are the roots of its charateristic
polynomial, are of the form ±𝜆𝑖 for some 𝜆 ∈ R and
𝑖 =
√
−1, and hence, 𝜎min(𝜓(P)) = 𝜎max(𝜓(P)),

ie, the condition number of 𝜓(P), 𝜅 = 1. Now, we
recall the spectral-lower bound from Corollary 2 of
(Horne, 1997),

𝜎min (𝜓 (P) ) ≥
∥𝜓 (P) ∥𝐹√
𝑟 (𝑟−1)

≥
√︂
𝑛(𝑛−1)

2 Δ𝑤 (1)

where Δ𝑤 = min𝑖, 𝑗
��𝑤𝑖 − 𝑤 𝑗 ��.

Let Ω ⊆ [𝑛] × [𝑛] be a subset of all the re-
sponse pairs with comparison results among which
some might be corrupted by sparse noise, ie,
𝜓(P̂Ω) = 𝜓(PΩ) + S̃Ω + ÑΩ. Let T := S̃Ω + ÑΩ.
From Theorem 1.2 of (Keshavan et al., 2010),
we have 1

𝑛




𝜓(P̂) − 𝜓(P)



𝐹

= 1
𝑛 ∥T +M∥𝐹 ≤

𝐶𝜅2 𝑛
√
𝑟
|Ω | ∥T∥2 where M is the noise matrix after

obtaining the completed matrix 𝜓(P̂) from 𝜓(P̂Ω)
using OptSpace. Using triangle inequality and
noting that |Ω| ≥ 𝐶′′𝑛 log(𝑛), the noise may be
bounded as

∥ÑΩ+M∥∞ ≤



ÑΩ +M





𝐹
≤ ∥T∥2

√
2𝐶𝑛2

|Ω| +



S̃Ω





𝐹

𝜁1≤ 𝐶′ 𝑛

log(𝑛)



S̃Ω





2

(2)

where 𝐶, 𝐶′ and 𝐶′′ are constants and 𝜁1 is ob-
tained by using the triangle inequality that ∥T∥2 ≤


S̃Ω





2
+



ÑΩ





2
, followed by setting 𝐾 ≥ 𝑐𝑛4/Δ𝑤

for constant 𝑐 and finally using



S̃Ω





𝐹
≤ √𝑛




S̃Ω





2
.

Then, combining Equations 2 and 1, we have if
log(𝑛)
𝐶Δ𝑛

Δ𝑤 ≥



S̃Ω





2
=



𝜓(P̂) − 𝜓(P̃)




2

≥



𝜓(P̂) − 𝜓(P̃)




∞
≥ 𝐿




P̂ − P̃




∞
≥ ∥S∥∞

where 𝐶Δ is a global constant and using Lemma 2,
then we have the guarantee (along similar lines
as that of Theorem 1 that Algorithm 2 returns an
estimated permutation which satisfies dist(�̂�,P) ≤
𝜖 . □

6 Experiments
We now perform simulations in order to understand
the performance of our robust ranking approach
in practice in both general and LLM preference
dataset settings.

35



6.1 Performance of Robust Ranking in LLM
Preference Dataset

In this illustrative experiment, from the MT-Bench
dataset (Zheng et al., 2023), we collect the data
of the first prompt “Compose an engaging travel
blog post about a recent trip to Hawaii, highlight-
ing cultural experiences and must-see attractions"
and its six responses from GPT-3.5, GPT-4 (Ope-
nAI et al., 2023), Claude-v1 (Anthropic, 2023),
Vicuna-13B (Chiang et al., 2023), Alpaca-13B
(Taori et al., 2023), and LLaMA-13B (Touvron et al.,
2023a). Additionally, we generated nine responses
to the same prompt using Llama-2-70B-chat-hf
(Touvron et al., 2023b), Falcon-180B-chat (Al-
mazrouei et al., 2023), Openchat-3.5 (Wang et al.,
2023), Mixtral-8x7B-Instruct-v0.1 (Jiang
et al., 2024), Mistral-7B-Instruct-v0.2
(Jiang et al., 2023), Gemini-pro (Gemini
et al., 2023), Dolphin-2.2.1-mistral-7B
(Hartford, 2023), Solar-10.7B-instruct-v1.0
(Kim et al., 2023), Yi-34B-chat (01.ai, 2023)
from Hugging Face’s HuggingChat (Hugging Face,
2023) and LMSYS’s Chatbot Arena (Zheng et al.,
2023). So we have 𝑛 = 15 responses.

Next, we rank the responses using OpenAI’s GPT-
4 Turbo GPT-4-1106-preview (OpenAI et al.,
2023). This ranking helps us create the BTL param-
eter vector w. We then sort this vector descendingly
for visually accessible when building the corre-
sponding preference matrix P ∈ R𝑛×𝑛. With

(𝑛
2
)

comparisons in P, we randomly remove entries
based on a specified deletion probability parameter,
𝑑𝑝, to simulate unobserved comparisons. We then
create an adversarial skew-symmetric sparse matrix,
S, using the given matrix P and an adversarial cor-
ruption probability parameter 𝑎𝑝. When corruption
is applied, it involves randomly selecting a value
from 𝑈 (−5, 5) and then adding to the P to give
P𝑐, which then becomes the input of our algorithm.
It’s important to note that P is a skew-symmetric
matrix, any corruption must be applied to both 𝑖 𝑗
and 𝑗𝑖 values.

Our experiment results visualized in Figure 2
show that 𝑑𝑝 = 10% and 𝑎𝑝 = 10% can signifi-
cantly affect the ranking of different models and
the rank of the matrix when performing logit link
transformation. The ranking can get altered quite
badly when compared to the original matrix. Also,
the logit link transformation of the corrupted matrix
is high-rank, which indicates that there are noises
in the matrix. By using CURATRON to impute the

missing comparisons and filter out the noisy sparse
matrix, we successfully reconstruct the original
matrix, which is low-rank when in logit link trans-
formed form. As a result, we obtain the correct
ranking. We also obtain noisy comparisons that
can be used to identify responders with malicious
intent and prevent them from continuing to alter
results.

We now examine how our algorithm performs
across different levels of unobserved and adversar-
ially corrupted comparisons. In the plots shown
in Figure 3, we compare the performance of our
approach by varying two parameters, 𝑑𝑝 and 𝑎𝑝.
We use normalized Frobenius error, correlation,
and ranking distance as evaluation metrics. Our
results are averaged over 5 runs. When there is
no adversarial noise, we can recover the original
P with no normalized Frobenius error and perfect
correlation and ranking, even if 50% of the compar-
ison data was missing. This suggests that we may
not need to collect all comparisons from humans
to obtain the entire data. We observe that, with
𝑛 = 15, we only need to obtain about 50 − 55%
of the 105 comparisons and fill in the rest with
our algorithm to achieve a strict 0% NFE, perfect
correlation, and ranking. On the other hand, when
missing data is absent, our algorithm performs well
with NFE of approximately 6%, even when 35%
of the comparison data is adversarially corrupted.
When both adversarial noise and missing data are
present, we can achieve a low NFE of around 4%
when both 15% of the comparison data is missing
and 15% of adversarially corrupted comparisons
(30% in total) affect P.

Figure 2: Left: Original matrix. Middle: corrupted
matrix. Right: reconstructed matrix. The corrupted
matrix has 10% adversarial corruptions and 10% of
unobserved comparisons. We use our CURATRON algo-
rithm to successfully recover the original matrix.
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Figure 3: Average over 5 runs of reconstruction error,
correlation, and distance between reconstructed ranking
and original ranking for different percentages of unob-
served and adversarial comparisons.

7 Conclusion

Our study examines how missing information and
distorted feedback can impact LLMs, potentially
compromising their performance in terms of align-
ment with human values. We have proposed a
robust algorithm for provably correct and efficient
ranking responses in the BTL, LR, and general
binary choice models. This robust ranking data is
then input in the PL step. Further, we also handled
the partially observed setting, wherein only some
response pairs are compared, by integrating matrix
completion techniques into our robust learning al-
gorithm. In all cases, we provided statistical and
computational guarantees using novel techniques.
Through our comprehensive analysis, we hope to
contribute to the ongoing discussion on AI safety
by helping to create and scale LLMs/AGI mod-
els that align with human values and expectations.
Some future research directions include tightening
the recovery results for partially observed settings
under weaker conditions (possibly using noisy-case
extensions of (Yi et al., 2016)), exploring other
notions of adversarial noise, and understanding the
minimax optimal rates for ranking estimators un-
der various noise models. We also plan to study
the parametric non-active pairwise ranking setting,
studying lower bounds and practical algorithms in
the active setting similar to (Heckel et al., 2016).
Furthermore, it would be interesting to investigate
whether we can extend this approach to solve the
entity corruption problem in retrieval models, as
shown in (Naresh et al., 2022). Another research
direction could be defining an alignment framework

that expands DPO to various objective functions
based on Rank Centrality (Negahban et al., 2017).
Finally, we aim to examine the relationship between
robust PL and model capacity, as this can shed light
on the trade-offs between model complexity and
generalization performance.
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