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Abstract

When distributional differences exist between
pre-training and fine-tuning data, language
models (LMs) may perform poorly on down-
stream tasks. Recent studies have reported that
multi-task learning of downstream task and
masked language modeling (MLM) task during
the fine-tuning phase improves the performance
of the downstream task. Typical MLM tasks
(e.g., random token masking (RTM)) tend not
to care tokens corresponding to the knowledge
already acquired during the pre-training phase,
therefore LMs may not notice the important
clue or not effective to acquire linguistic knowl-
edge of the task or domain. To overcome this
limitation, we propose a new masking strat-
egy for MLM task, called L3Masking 1, that
leverages lessons (specifically, token-wise like-
lihood in a context) learned from the vanilla
language model to be fine-tuned. L3Masking
actively masks tokens with low likelihood on
the vanilla model. Experimental evaluations
on text classification tasks in different domains
confirms a multi-task text classification method
with L3Masking performed task adaptation
more effectively than that with RTM. These
results suggest the usefulness of assigning a
preference to the tokens to be learned as the
task or domain adaptation.

1 Introduction

Language Models (LM) pre-trained on generic doc-
uments such as BERT (Kenton and Toutanova,
2019) or GPTs (e.g., GPT-4 (Achiam et al., 2023))
may perform poorly on downstream tasks when
the vocabulary or context used in the documents
in each pre-training and downstream task differs
(Gururangan et al., 2020; Shi et al., 2024). To
bridge the domain gap between pre-training and
fine-tuning, continual pre-training is used. Contin-
ual pre-training re-trains a model by applying the

1The code is available at https://github.com/usk-Kim
ura/L3Masking
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Figure 1: L3Masking vs. Random Token Masking.
L3Masking determines masking tokens based on the
pseudo-likelihood calculated through the vanilla model.

pre-training task again on the task or domain data
(Xie et al., 2023). Recent studies have reported
that multi-task learning (MTL) of downstream and
pre-training tasks (e.g., masked language modeling
(MLM)) during the fine-tuning phase can improve
the performance of downstream tasks in compari-
son with continual pre-training (Dery et al., 2022,
2023; Kimura et al., 2023).

Existing task or domain adaptation methods for
the encoder of Transformer architecture (Vaswani
et al., 2017) typically utilize MLM, and random
token masking (RTM) is mostly used masking strat-
egy (Kenton and Toutanova, 2019; Liu et al., 2019).
MLM is expected to use to adaptively learn the dis-
tribution of task and domain data from the learned
distribution of the pre-training corpora. The MLM
with simple strategy treats all tokens equally. How-
ever, existing MLMs ignore the linguistic knowl-
edge already acquired by the language model, and,
to learn the distribution properly, it requires large
amount of time and data. Beside the fact that the
amount of data for fine-tuning is limited, the more
efficient masking strategy for MLM task is desired.

To overcome this, we propose a new masking
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strategy for MLM called L3Masking (Leveraging
Lessons Learned from vanilla model) as an effec-
tive task or domain adaptation. Figure 1 highlights
the difference between L3Masking and a popu-
lar and simple masking strategy Random Token
Masking. L3Masking identifies tokens with low
likelihoods as task- or domain-specific tokens that
appear less frequently in the similar contexts in the
generic documents, and it actively masks them so
that LM learns these tokens during fine-tuning.

Unlike causal language modeling which com-
putes the likelihood of a token in a sentence only
from the preceding tokens, MLM can compute the
likelihood of the token conditional on both preced-
ing and subsequent tokens. This difference has led
to variations in the idea of a sentence’s likelihood
and has been noted in what is called the pseudo-log-
likelihood (PLL) (Kauf and Ivanova, 2023). Based
on the PLL, this study defines a token-wise pseudo-
likelihood in the downstream task sentence and
actively mask tokens with low pseudo-likelihood.

In consequence, the contributions of this paper
can be summarized as follows:

• L3Masking: This paper proposes a new mask-
ing strategy called L3Masking for MLM task
in the multi-task text classification, which set
token-wise mask probabilities for task or domain
adaptation, enhancing the adaptability of LMs to
new domains and tasks.

• Validation: Experimental evaluations reported
in this paper validate the effectiveness of
L3Masking through three text classification tasks
in different domains, highlighting its improve-
ment from the simply fine-tuned models and its
superiority over random token masking in the
comparison of masking strategy.

• Efficiency: This paper also demonstrate that
L3Masking not only improves the text classifi-
cation performance of models but also increases
the efficiency of training in text classification
tasks. By selectively masking task- and domain-
specific tokens, L3Masking reduces the number
of training epochs required while maintaining or
improving accuracy.

2 Related Studies

This section describes the task or domain adapta-
tion methods that have been studied in contexts of
continual pre-training and fine-tuning.

2.1 Adaptation in Continual Pre-training

Continual pre-training is a method of continuing
further pre-training with additional data to adapt
a vanilla LM pre-trained by generic corpora to a
specific task or domain (Gururangan et al., 2020;
Xie et al., 2023). A fundamental assumption of the
method, known as the Selective Language Model-
ing (SLM) (Lin et al., 2024), is that all tokens are
not equally useful for adaptation. Specifically, a
reference model is first prepared that is continually
pre-trained on high-quality data for the domain in
question. Then, from low-quality data containing
many tokens that are not included in the documents
of downstream tasks in the domain concerned, to-
kens with the necessary knowledge are identified
and actively learned, thereby enabling effective and
efficient continual pre-training.

The difference between SLM and L3Masking
is the quality of the target documents. SLM re-
lies on high-quality data from the domain to deter-
mine whether a token corresponds to that linguistic
knowledge, therefore, the cost of collecting high-
quality data is high. L3Masking differs from SLM
in that it determines task- or domain-specific tokens
based only on the data of downstream task.

2.2 Adaptation in Fine-Tuning

META-TARTAN (Dery et al., 2022) is an effec-
tive task or domain adaptation method that brings
pre-training tasks into fine-tuning phase, and it
is a multi-talk learning besides of downstream
tasks. META-TARTAN performs the MTL with
the downstream and the pre-training tasks as auxil-
iary tasks and dynamically weights the loss values
of each task to increase the accuracy of the vali-
dation data in the downstream task based on meta-
learning. META-TARTAN employ RTM, which
masks tokens in a uniform random manner (Guru-
rangan et al., 2020), in analogous with continual
pre-training in MLMs.

Many masking strategies for the MLM task have
been proposed, such as Knowledge Masking, PMI-
Masking, and InforMask (Sun et al., 2019; Levine
et al., 2021; Sadeq et al., 2022). These methods
use PMI, which depends on the frequency of token
occurrence and co-occurrence, to increase the prob-
ability of collocation being masked. However, as
the size of the dataset in the post-training phase is
limited compared to the pre-training corpus, these
methods may be less effective with small amounts
of data where the co-occurrence pattern of tokens
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is less pronounced.
Using RTM in META-TARTAN may be not ef-

fective because the masking target masks tokens
with regardless of the linguistic knowledge ac-
quired in pre-training. In order to adapt a data
distribution for downstream tasks that is different
from pre-training, masking more tokens that are not
plausible for the LM in a certain context may ef-
fectively lead to the acquisition of linguistic knowl-
edge in the task or domain. Based on this idea,
L3Masking identifies tokens that are not plausible
in context based on the likelihood of each token in
the context on the vanilla models.

3 L3Masking: the proposed method

This paper propose a new masking strategy of
MLM task for task or domain adaptation, called
L3Masking. The basic idea is to improve task
and domain adaptability by actively masking to-
kens in sentences that are not well trained dur-
ing pre-training. Figure 2 depicts the overview
of L3Masking. L3Masking captures the tokens that
are most likely to represent task- or domain-specific
linguistic knowledge based on a token-wise like-
lihood. Since the likelihood cannot be calculated
simply in bidirectional LM, L3Masking calculates
the token-wise pseudo-likelihood and then masks
more tokens with lower the pseudo-likelihood.

3.1 Pseudo-log-likelihood of a Sentence

In unidirectional LM, the log-likelihood of a sen-
tence can be calculated by summation of the log-
arithm of the predicted probability of the tokens
based on the preceding tokens. However, as MLM
takes the tokens behind a token when predicting
it into account, it expands the interpretation of the
likelihood that can utilize the subsequent tokens
in addition to the preceding tokens. Therefore,
the following three methods are proposed to com-
pute the pseudo-log-likelihood of a sentence in an
MLM, namely, PLL-original (Salazar et al., 2020),
PLL-word-l2r (Kauf and Ivanova, 2023), and PLL-
whole-word (Kauf and Ivanova, 2023).

In the previous study, the PLL score calculated
by PLL-word-l2r is considered the best pseudo-
log-likelihood for a sentence (Kauf and Ivanova,
2023). PLL-word-l2r (PLL12r) is based on word as
a unit for masking and tokens of a word on the right
(future direction) are not aware via masking during

inference. This idea is formulated as follows:

PLL12r(S) :=

|S|∑

w=1

|w|∑

t=1

logPMLM(swt |S\swt′≥t
)

(1)
where the t-th token swt is subject to calculate a
probability in a context represented as S\swt′≥t

. For
inference, the context is constructed by substituting
the token sub-sequence of a word w, where the t-th
token swt is a part of, from swt to the last token
swt′ of w. In other words, S\swt′≥t

is denoted as

(s0, s1, . . . , st−1, [MASK], ..., [MASK], st′+1, . . . , sn).

3.2 Token-wise Pseudo-likelihood
In this study, the pseudo-likelihood (PL) of each
token is calculated based on PLLl2r (Eqn. (1)). In
this study, this pseudo-likelihood of token s in a
sentence S is called the PL of Token (PLT) and is
defined as follows:

PLT
(
X = swt | S\swt′≥t

)

= PMLM

(
swt | S\swt′≥t

)
(2)

where X refers to the token for which the PLT is
to be calculated.

For instance, given a sentence “The quick brown
fox jumps over the lazy dog,” suppose to calculate
the pseudo-likelihood of the token “jump.” Here,
“jumps” is assumed to consist of two subwords:
“jump” and the suffix “s.” The context S\swt′≥t

is
“The quick brown fox [MASK] [MASK] over the lazy
dog.” Using this context, the probability of “jump”
is calculated PLT(X = “jump” | S\swt′≥t

).

3.3 Convert PLT to Mask Probability
In L3Masking, the PLT is the pseudo-likelihood it-
self, that is, the probability of the token in a context.
Since our idea is to mask more tokens with lower
likelihood, we take the complementary probability,
PLTc (Eqn. (3)), as the mask probability.

PLTc
(
X = swt | S\swt′≥t

)

= 1− PLT
(
X = swt | S\swt′≥t

)
(3)

The existing study has discussed that a signifi-
cantly high mask probability for the MLM task can
degrade the performance of downstream tasks (Wet-
tig et al., 2023). Therefore, in this study, we define
a modified PLT (mPLT) that is controlled to pre-
vent the PLTc used as the mask probability from
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Figure 2: Overview of L3Masking. PLT denotes the token-wise pseudo-likelihood. P (∗|S\M) represents the
prediction probability for each token in the vocabulary of the language model at the masked position in a context
S\M excluding the masked token.

becoming too high. In particular, mPLT is calcu-
lated so that the mask probabilties in a sentence
to a specified value p̄. Formally, given a PLTc se-
quence P = (p1, p2, . . . , pn) corresponding with a
n-length token sequence of a sentence and a speci-
fied average mask probability p̄, find a constant α
such that 1

n

∑
pi∈P αpi = p̄. From this equation,

α = np̄∑
pi∈P pi

can be easily derived. By using this

α, mPLT for each token t in a sentence S can be
calculated as follows:

mPLT
(
X = swt | S\swt′≥t

)

= α · PLTc
(
X = swt | S\swt′≥t

)
(4)

Note that in some cases when n is large and/or
the summation of PLTcs is too small (since PLTc

is token-wise probability,
∑

pi∈P pi = 1 does not
hold.), it may theoretically happen mPLT values
become more than 1. To assure mPLT to be prob-
abilistic and p̄ consistent, when an mPLT value
exceeds 1, the exceeded value is equally distributed
to all the other tokens in the sentence.

3.4 Mask Strategy

In the proposed masking strategy, the value [MASK]
calculated by Equation (4) is the mask probability
of the token in each sentence. The process for
constructing the MLM task, such as replacing to-
kens and random tokens, follows the strategy in
RoBERTa (Liu et al., 2019). The tokens to be ma-
nipulated are determined based on the probabilities
calculated for each token. Of these, the token is
replaced with the [MASK] token with a probability
of 80%, and the token is replaced by a random

token with the 10% probability, and 10% proba-
bility of leaving the token as is. Also, unlike the
masking strategy of BERT, the [MASK] positions
are re-calculated for each mini-batch.

4 Evaluation Experiment

To evaluate L3Masking, we conducted experiments
to answer the following four questions:

• Q1: Does LM learn their own shortcomings from
the vanilla model to improve their classification
performance compared with the fine-tuned model
of the vanilla model only on downstream tasks?

• Q2: Does L3Masking improve classification per-
formance by adaptively learning task- or domain-
specific tokens effectively?

• Q3: Does L3Masking mask task or domain-
specific tokens more frequently than random
token masking, and how does this change the
model’s adaptability?

• Q4: Does L3Masking improve the efficiency of
training by focusing more on masking important
tokens in the data for the relevant domain and
downstream tasks?

4.1 Settings

Datasets and Metrics. In our experiments, we
use three datasets ACL-ARC (Jurgens et al., 2018),
Ohsumed (Hersh et al., 1994), and IMDb (Maas
et al., 2011), to evaluate existing methods and our
method. The basic statistics for each dataset are
shown in Table 1. As for the text classification
problem, we set the evaluation metrics as macro F1

score and accuracy in the confusion matrix.
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Table 1: Basic statistics of the three datasets used in the evaluation experiments. |Dtrain|, |Dvalid| and |Dtest|
represent the numbers of instances in the training, validation, test data, respectively, and |C| is the number of classes.

Domain Task Type of Supervised Label |Dtrain| |Dvalid| |Dtest| |C|
Computer Science ACL-ARC (Jurgens et al., 2018) citation intent 1,688 114 139 6
Medical Ohsumed (Kringelum et al., 2016) category classification 3,022 4,043 4,043 23
Movie Review IMDb (Luan et al., 2018) sentiment classification 25,000 2,500 22,500 2

Table 2: Experimental Settings

Parameter Value

Optimizer AdamW
Learning Rate 1e-4
Token Length 128
Batch Size 64
Dropout Rate 0.10
Average Mask Probability 0.15
Number of Epochs 150
Early Stopping Patience (epochs) 3

Comparison Methods. To demonstrate the
usefulness of L3Masking, we implemented
L3Masking into the multi-task learning text clas-
sification framework (MTL) of META-TARTAN2

(Dery et al., 2022) instead of RTM for the MLM
task. To answer Q1, L3Masking is compared with a
simple fine-tuned model without any auxiliary task,
and we call it STL (Single Task Learning). To show
a comparison of the impact of MLM on classifica-
tion performance due to different masking strate-
gies in Q2 and Q3, RTM and L3Masking were used
as auxiliary tasks in META-TARTAN framework,
and we call MTL methods with these masking
strategies as RTM and L3Masking for short, respec-
tively. Note that MLM tasks, including L3Masking
and RTM, were applied to data of the text classifi-
cation task. To answer Q4, we recorded the number
of training epochs of the META-TARTAN frame-
work when using RTM or L3Masking, respectively.

Implementations. The hyper-parameters of
META-TARTAN were set as Table 2, and the
same hyper-parameters were used for L3Masking
and the baseline methods. Our experimental
evaluation selected the vanilla models pre-trained
in the generic corpora, BERT-base3 (Kenton

2https://github.com/ldery/TARTAN/tree/main,
accessed on October 13, 2024

3google-bert/bert-base-uncased, https://huggingfac
e.co/google-bert/bert-base-uncased, accessed on
October 13, 2024

and Toutanova, 2019) and RoBERTa-base4 (Liu
et al., 2019), as LM for META-TARTAN in
our experimental evaluation to confirm task and
domain adaptability. In addition, the vanilla
models pre-trained on the dedicated domain
corpora, SciBERT5 (Beltagy et al., 2019) and
ClinicalBERT6 (Wang et al., 2023), were used to
check task adaptability to the computer science
domain (ACL-ARC task) and medical domain
(Ohsumed task). To optimize task weights of
META-TARTAN, objective metrics were aligned to
the evaluation metrics (i.e., accuracy or macro F1).
For instance, when evaluating the performance of
RTM or L3Masking by the accuracy metric, the
task weights of META-TARTAN are optimized
based on accuracy scores in the validation data.

4.2 Results
Table 3 showcases the results of this experiment.
Overall, our method, L3Masking, demonstrated im-
provements across a range of datasets compared
to the baseline methods. In particular, L3Masking
performed superior or comparable to Baseline and
RTL in ACL-ARC and Ohsumed, regardless of
the language models. However, in general domain
dataset IMDb, L3Masking and RTM showed supe-
rior performance to STL, while the gap between
L3Masking and RTM are limited. This result in-
dicates that advantages of L3Masking are more
emphasized in domain-specific contexts.

On the ACL-ARC dataset, L3Masking showed
varying degrees of improvement across different
general domain LM compared to RTM; L3Masking
on both BERT-base and RoBERTa-base showed
improvements in the macro F1 and the accuracy
scores, especially RoBERTa-base benefited to a
greater extent. In particular, L3Masking improved
accuracy by 0.18 points and macro F1 score by

4FacebookAI/roberta-base, https://huggingface.co/F
acebookAI/roberta-base, accessed on October 13, 2024

5allenai/scibert_scivocab_uncased, https://huggingfac
e.co/allenai/scibert_scivocab_uncased, accessed on
October 13, 2024

6medicalai/ClinicalBERT, https://huggingface.co/m
edicalai/ClinicalBERT, accessed on October 13, 2024

57

https://github.com/ldery/TARTAN/tree/main
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/medicalai/ClinicalBERT
https://huggingface.co/medicalai/ClinicalBERT


Table 3: Comparison of Accuracy and Macro F1 of text classification between STL, RTM, and L3Masking in
percentages. The average values and standard deviations of 10 trials are reported. The highest average values for
each language model and for each Accuracy and Macro F1 is in bold.

Dataset ACL-ARC Ohsumed IMDb

Framework Masking Acc F1 Acc F1 Acc F1

(General Domain) BERT-base (Kenton and Toutanova, 2019)

STL - 71.34 ± 0.35 63.07 ± 0.69 76.69 ± 3.41 68.76 ± 3.47 88.05 ± 0.05 87.15 ± 0.56
MTL RTM 70.77 ± 0.86 62.15 ± 0.48 76.98 ± 2.03 67.47 ± 2.40 88.05 ± 0.05 88.19 ± 0.08
MTL L3Masking 71.31 ± 0.98 63.15 ± 0.90 76.81 ± 1.49 66.10 ± 3.50 88.10 ± 0.21 88.08 ± 0.08

(General Domain) RoBERTa-base (Liu et al., 2019)

STL - 71.73 ± 4.06 59.44 ± 6.70 70.07 ± 0.54 60.92 ± 0.91 88.84 ± 0.32 88.89 ± 0.30
MTL RTM 78.94 ± 1.76 70.30 ± 2.20 69.92 ± 0.64 64.83 ± 0.37 91.29 ± 0.27 91.30 ± 0.22
MTL L3Masking 79.12 ± 1.60 73.30 ± 2.90 73.38 ± 0.48 65.02 ± 0.61 91.32 ± 0.15 91.13 ± 0.09

(Domain-Specific) SciBERT (Beltagy et al., 2019) ClinicalBERT (Wang et al., 2023)

STL - 80.36 ± 2.45 71.84 ± 2.73 71.02 ± 0.42 62.85 ± 0.63 - -
MTL RTM 80.14 ± 1.38 70.88 ± 3.06 70.75 ± 0.36 62.70 ± 0.61 - -
MTL L3Masking 82.50 ± 1.90 74.10 ± 2.40 71.66 ± 0.78 63.70 ± 0.60 - -

3.00 points in RoBERTa-base compared to RTM.
However, in the BERT-base, L3Masking performed
comparably to STL. The SciBERT model exhibited
the most substantial improvement with L3Masking,
achieving an accuracy of 82.50 and a macro F1

score of 74.10, surpassing RTM by 2.36 points in
accuracy and 3.22 points in the macro F1 score.

On the Ohsumed dataset, L3Masking’s classi-
fication performance varied. In the general do-
main model, the BERT-base was slightly lower
than RTM in both the macro F1 and accuracy
scores. For BERT-base, accuracy was similar for
STL, RTM, and L3Masking, and STL had the
best macro F1 score. However, for the RoBERTa-
base, L3Masking performed better than STL and
RTM, especially in accuracy, which was 3.46 points
better than RTM. ClinicalBERT with L3Masking
achieved an accuracy of 71.66 and F1 score of
63.70, outperforming STL and RTM.

On the IMDb dataset, L3Masking’s impact
was generally limited across the general domain
LM. For both BERT-base and RoBERTa-base,
L3Masking did not show much difference from
baseline or RTM. These results suggest that
L3Masking’s effect may be less pronounced in gen-
eral domains such as movie reviews.

4.3 Analysis
In this section, we analyze the effectiveness and ef-
ficiency of the L3Masking by examining the types
of tokens that were frequently masked and their
impact on model performance. We also assess in-
fluences on the training process in terms of both

accuracy and the number of epochs required.

Types of tokens masked by L3Masking. The
L3Masking reveals significant insights into domain-
specific adaptation by assigning higher masking
probabilities to tokens that carry essential linguistic
and domain-specific information. Tables 4 and 5
show the results of part-of-speech (POS) analy-
sis on ACL-ARC training data conducted using
NLTK7 in Python, along with the average mask
probability by L3Masking for each POS tag. It
is important to note that while POS analysis is
performed on a word-by-word basis, L3Masking
assigns mask probabilities per token. Therefore,
in this analysis, POS tags are assigned to each to-
ken, including subwords, and the results are then
aggregated by POS tag.

As observed in Table 4, foreign words (FW) and
plural nouns (NNS) exhibit the highest masking
probabilities in both SciBERT and BERT models
within the ACL-ARC dataset. This suggests that
L3Masking effectively identifies tokens contribut-
ing to the domain’s unique linguistic patterns, fa-
cilitating more effective knowledge transfer during
fine-tuning.

In contrast, general grammatical tokens such
as wh-pronouns (WP) and base form verbs (VB)
consistently show lower masking probabilities (Ta-
ble 5), indicating that these elements contribute
less to domain-specific adaptations. This distinc-
tion underscores L3Masking’s ability to prioritize

7Natural Language Toolkit (Version 3.8.1) , https://ww
w.nltk.org/, accessed on October 13, 2024
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Table 4: The top 5 POS tags with the highest masking probability for RoBERTa and SciBERT in the training data of
the ACL-ARC dataset using L3Masking. The masking probability listed in the table is the average of the masking
probability for each token. POS tags that occur less than 10 times have been removed from the table.

Rank L3Masking (RoBERTa) L3Masking (SciBERT)

POS Tag Description Mask Probability POS Tag Description Mask Probability

1 FW Foreign word 0.2023 POS Possessive ending 0.3133
2 ) Closing parenthesis 0.1907 FW Foreign word 0.2131
3 ( Opening parenthesis 0.1883 NNS Noun, plural 0.2017
4 NNS Noun, plural 0.1832 ) Closing parenthesis 0.2009
5 NNP Proper noun, singular 0.1647 ( Opening parenthesis 0.1737

Table 5: Worst 5 POS tags with lowest masking probability for RoBERTa and SciBERT in training data of ACL-ARC
dataset using L3Masking.

Rank L3Masking (RoBERTa) L3Masking (SciBERT)

POS Tag Description Mask Probability POS Tag Description Mask Probability

1 WP Wh-pronoun 0.0265 JJS Adjective, superlative 0.0267
2 VB Verb, base form 0.0465 WP Wh-pronoun 0.0281
3 . Punctuation mark 0.0633 EX Existential there 0.0317
4 CD Cardinal number 0.0664 CD Cardinal number 0.0492
5 VBN Verb, past participle 0.0686 RBS Adverb, superlative 0.0503

learning relevant language patterns while minimiz-
ing the focus on general linguistic features.

Efficiency. We also found that L3Masking is
not only effective for the META-TARTAN frame-
work, but also efficient. Figure 3 illustrates the
differences in the number of training epochs and
accuracy between RTM and L3Masking across
BERT, RoBERTa, SciBERT, and ClinicalBERT. As
shown in Figure 3, L3Masking applied to BERT
and RoBERTa achieved superior or comparable
accuracy in fewer epochs on average than RTM,
reducing training time while maintaining or en-
hancing model performance. This efficiency is par-
ticularly advantageous for language models trained
on general domain documents, such as BERT and
RoBERTa, where computational resources and
time are often constrained.

In contrast, while L3Masking in SciBERT and
ClinicalBERT improved classification performance
over RTM, it did not reduce the number of epochs
required. This discrepancy can be attributed to
the inherent nature of domain-specific LMs like
SciBERT and ClinicalBERT, which are already
finely tuned to their respective domains during pre-
training. As a result, these models benefit more
from L3Masking’s ability to refine domain-specific
knowledge, leading to improved accuracy. How-
ever, because these models are already adapted

to their domains, the room for efficiency gains in
terms of reduced training time is limited.

These results indicate that L3Masking can ef-
fectively decrease training time for models based
on generic corpora, like BERT and RoBERTa.
However, for models like SciBERT and Clinical-
BERT, which are trained on specialized domains,
L3Masking primarily enhances task performance
without reducing training duration.

4.4 Lessons Learned

As shown in the experimental results above,
L3Masking’s ability to selectively mask task- or
domain-specific tokens significantly enhances the
model’s performance and adaptability in text classi-
fication, confirming its effectiveness over RTM in
this context. In summary, questions raised in this
section are answered in the rest of this section.

Q1 — Yes, language models (LMs) that learn
about their own shortcomings (lessons) demon-
strate better classification performance than those
that only focus on downstream tasks. Specifically,
using L3Masking, models actively learn domain-
specific knowledge essential for downstream tasks
by focusing on tokens with low pseudo-likelihood
and masking them. This approach strengthens areas
where the model is underperforming, enabling it to
effectively apply learned knowledge. The method
helps bridge the distributional differences between
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Figure 3: Difference in the number of training epochs for ACL-ARC and Ohsumed using RTM or L3masking for
each language model. The plot is based on the average and standard deviation of 10 experiments.

pre-training and fine-tuning tasks, thereby enhanc-
ing task adaptability. It has been shown that such
learning leads to improved classification perfor-
mance, particularly in specialized domains.

Q2 — Yes, L3Masking adapts more effectively
than Random Token Masking (RTM) and im-
proves classification performance. Notably, in
domain-specific language models such as SciB-
ERT and ClinicalBERT, L3Masking demonstrates
superior accuracy and F1 scores compared to RTM.
L3Masking identifies and prioritizes tokens spe-
cific to the task or domain, leading to more effec-
tive task adaptation. Unlike RTM, where tokens
are treated uniformly, L3Masking overcomes this
limitation by promoting the learning of language
patterns relevant to the task. This targeted masking
strategy enhances the model’s understanding and
application of domain-specific knowledge.

Q3 — Yes, L3Masking masks task or domain-
specific tokens more frequently than RTM, signif-
icantly enhancing the model’s adaptability in text
classification tasks. By prioritizing the masking
of tokens such as foreign words (FW) and plural
nouns (NNS), which are crucial in domain-specific
contexts like those found in the ACL-ARC and
Ohsumed datasets, L3Masking facilitates a deeper
understanding of domain-specific language pat-
terns. This strategic focus enables the model to
capture better essential linguistic features required
for accurate domain-specific classification.

Moreover, this targeted approach enhances the
model’s adaptability by allowing it to concentrate
on tokens that carry significant domain-specific
information. As a result, models equipped with

L3Masking outperform those using RTM in terms
of performance metrics, particularly in domain-
specific classification tasks.

Q4 — Yes, L3Masking improves the efficiency
of training by strategically focusing on masking
important tokens that are crucial for the relevant
domain and downstream tasks. By prioritizing task-
and domain-specific tokens during the masking pro-
cess, L3Masking enables the model to concentrate
its learning on the most relevant and informative
aspects of the data. This targeted approach leads
to a reduction in the number of training epochs re-
quired to achieve comparable or superior accuracy,
particularly in general-domain models like BERT
and RoBERTa.

5 Conclusion

This paper introduced L3Masking as a novel mask-
ing strategy for fine-tuning of Masked Language
Models to text classification. Our method lever-
ages likelihood scores from the vanilla models to
actively mask task- or domain-specific tokens. For
calculating mask probability on the bidirectional
MLMs, token-by-token pseudo-likelihood scores
are used. Our method focuses more on tokens that
are underrepresented in the pre-training corpus but
are crucial for downstream tasks. Through the ex-
perimental evaluation of three text classification
tasks from different domains, we demonstrated that
L3Masking outperforms traditional random token
masking, particularly in domain-specific language
models such as SciBERT and ClinicalBERT.

Future work will focus on refining the token se-
lection algorithm to handle diverse datasets better
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and exploring L3Masking’s potential in other NLP
tasks beyond text classification. Additionally, ap-
plying L3Masking to the continual pre-training of
large language models (LLMs) represents a signif-
icant future direction. By leveraging L3Masking
in LLMs, we aim to achieve more accurate domain
adaptation, task-specific learning, and effective uti-
lization of large-scale datasets, ultimately enhanc-
ing LLMs’ overall performance and applicability
in various specialized and general domains.

Limitations

Despite the promising results, our study has several
limitations. Firstly, our experiments were primar-
ily focused on text classification tasks. Although
these tasks provide a good benchmark for evalu-
ating multi-task classification methods, it remains
to be unveiled how L3Masking performs in other
NLP tasks, such as named entity recognition, ma-
chine translation, or text generation. Future re-
search should extend the evaluation of L3Masking
to a wider range of tasks to fully understand its
capabilities and limitations.

Secondly, the computational overhead associated
with calculating token-by-token pseudo-likelihood
scores can be substantial. However, we empha-
size that the calculation of the mask probability for
L3Masking only needs to be performed once per
dataset. Although L3Masking can still be compu-
tationally expensive, the results presented in this
paper suggest that it is worth considering as a re-
placement for random token masking as an auxil-
iary task.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, and

Others. 2023. GPT-4 Technical Report. Preprint,
arXiv:2303.08774.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT:
A Pretrained Language Model for Scientific Text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, pages 3615–3620. Association for
Computational Linguistics.

Lucio M. Dery, Paul Michel, Mikhail Khodak, Gra-
ham Neubig, and Ameet Talwalkar. 2023. AANG:
Automating auxiliary learning. In The Eleventh Inter-
national Conference on Learning Representations.

Lucio M. Dery, Paul Michel, Ameet Talwalkar, and
Graham Neubig. 2022. Should We Be Pre-training?
An Argument for End-task Aware Training as an

Alternative. In The Tenth International Conference
on Learning Representations.

Suchin Gururangan, Ana Marasović, Swabha
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