Navigate Complex Physical Worlds via Geometrically Constrained LLM
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Abstract

This study investigates the potential of Large
Language Models (LLMs) for reconstructing
and constructing the physical world solely
based on textual knowledge. It explores the
impact of model performance on spatial under-
standing abilities. To enhance the comprehen-
sion of geometric and spatial relationships in
the complex physical world, the study intro-
duces a set of geometric conventions and de-
velops a workflow based on multi-layer graphs
and multi-agent system frameworks. It exam-
ines how LLMs achieve multi-step and multi-
objective geometric inference in a spatial en-
vironment using multi-layer graphs under uni-
fied geometric conventions. Additionally, the
study employs a genetic algorithm, inspired by
large-scale model knowledge, to solve geomet-
ric constraint problems. In summary, this work
innovatively explores the feasibility of using
text-based LLMs as physical world builders
and designs a workflow to enhance their capa-
bilities.

1 Introduction

LLMs acquire extensive world knowledge embed-
ded in textual data through pre-training. This
raises an intriguing question: can LLMs recon-
struct and simulate the physical world using this
textual knowledge? The physical world, charac-
terized by complex geometric and physical con-
straints, can be abstracted into fundamental geo-
metric shapes. Utilizing a custom-designed engine,
we simplify the 3D world’s geometric content into
basic cube combinations. This work pioneers the
exploration of text-only LLMs as potential builders
of the physical world, leveraging their pre-trained
knowledge to understand and generate 3D spatial
representations purely from textual descriptions.
Some preliminary work on world-building has
explored constructing 3D worlds at the image
level. Techniques like 3D-VAE-GAN (Wu et al.,
2016) and Pix2Vox (Xie et al., 2019) combine
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Variational Autoencoders (VAEs) (Kingma and
Welling, 2013) and Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2020) to gener-
ate high-quality 3D models with precise shape and
pose control. AtlasNet (Groueix et al., 2018) ap-
proximates 3D surfaces by learning a set of 2D tex-
tures, effectively handling irregular topologies. De-
spite their impressive quality, these models struggle
with simulating complex physical interactions and
maintaining spatial consistency due to intricate and
dynamic geometric constraints(Li et al., 2024).

Some methods rely on high-precision geometric
libraries or external knowledge bases for human-
level prior knowledge. For instance, Sun et al.
(2023) and Zhou et al. (2024) use LLMs to gener-
ate 3D scene images by calling Blender APIs based
on user requirements. Wu et al. (2024) proposes
combining external knowledge bases to generate
3D scenes from sketches. However, these meth-
ods heavily depend on external libraries and inter-
faces, which lack flexibility and face challenges
like resource maintenance, copyright disputes, and
network security issues(Gao et al., 2014).

We explored how to leverage LLM pre-training
knowledge to autonomously guide complex geo-
metric constraints. Our evaluation compared the
spatial construction and geometric relationship un-
derstanding abilities of GPT-3.5-turbo and GPT-4,
revealing that GPT-4 excels in spatial construction
tasks due to its superior performance. we also intro-
duced an innovative multi-agent approach for 3D
scene construction, establishing geometric conven-
tions at three levels (center, axis, and surface) to
standardize the spatial relationships of 3D objects
as understood by LLMs. This multi-level graph-
driven approach enhances the spatial understanding
and reasoning capabilities of LLMs. The workflow
ensures information consistency and uniformity,
mitigating data silos and redundancy issues, while
enabling LLMs to explore their ability to under-
stand geometric relationships of physical world.
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2 Related Work

2.1 Generation Based On 3D Graphics

The application of GANs and VAEs in 3D scene
generation has made notable progress in recent
years. Chan et al. (2022) provides a method which
can synthesize high-resolution, multi-view consis-
tent images in real-time and also generate high-
quality 3D geometry. Xie et al. (2019) proposes
a context-aware convolutional neural network to
reconstruct 3D voxel models from single and multi-
view images. This method uses GANs to enhance
the detail and structural accuracy of the gener-
ated 3D models. Wu et al. (2016) combines GAN
for generating and controlling 3D objects, produc-
ing high-quality 3D models with shape control.
Groueix et al. (2018) introduces a 3D surface gener-
ation method by learning a collection of 2D maps to
approximate 3D surfaces, handling irregular topolo-
gies.Besides, Tang et al. (2024) find a method to
use 2D diffusion model which can further control
the generated content and inject reference-view in-
formation for unseen views.

These works typically offer high quality and re-
alism, creativity, and diversity in generated content.
However, they also face challenges such as high
data dependency, complexity, and computational
intensity.Moreover, such work often overlooks the
complex geometric relationships between objects
in the physical world.

2.2 Generation Based On External Libraries

The quality and availability of numerous 3D mod-
els have significantly improved. Tang et al. (2024)
provide a large amount of 3D materials. And Zhou
et al. (2018) provide an open-source library that
supports rapid development of software for process-
ing 3D data.It benefits research that utilizes LLMs
to invoke open-source models and achieve scene
graph construction. Sun et al. (2023), based on a
multi-agent system, call the Blender interface to
generate 3D scene images according to user require-
ments. SceneX (Zhou et al., 2024) employs LLMs
to drive procedural modeling, utilizing Blender
APIs and a vast array of procedural assets. Wu
et al. (2024) offer an approach that combines user
sketches with external knowledge, progressively
generating 3D scenes through a scene diffusion
model. Their work demonstrates how these agents
can leverage external tools and model libraries to

automate the construction and understanding of
scene graphs.

Utilizing existing model libraries offers signifi-
cant advantages in terms of efficiency, scalability,
and flexibility in scene generation. However, due to
the heavy reliance on external libraries and external
materials, the work in question exhibits inconsis-
tent material quality, poses high maintenance com-
plexity, demonstrates insufficient flexibility, and
involves copyright challenges.

3 Method

3.1 Graph Runs Through the Entire
Workflow

Multi-agent systems have demonstrated effective
performance in segmenting complex problems
into numerous sub-problems and resolving them
(Grossi et al., 2023), aligning with the step-by-
step decomposition of three-dimensional scene
concepts and the meticulous refinement of gener-
ated content at each stage in this work. And im-
plementing information alignment between proxy
groups is a huge challenge(Han et al., 2024). In-
spired by Qi et al. (2023) and Ranasinghe et al.
(2024), we choose graph database as the medium.
In our work, we use GPT-4 (OpenAl, 2023b) as
the basis for the agent and Neo4j (Neo4j, 2023)
database to store our graph. By employing a graph
database to capture spatial information and repre-
senting shapes and their geometric relationships
with nodes and edges, complex geometric relation-
ships can be managed flexibly. The graph database
records scene information, providing a comprehen-
sive overview of user objectives and scene graphs
throughout the workflow. This ensures that gener-
ated scenes align with predefined spatial constraints
and design specifications by integrating relational
processing with large model generation capabili-
ties, offering a flexible and efficient solution for
managing complex spatial data and scene genera-
tion.

3.1.1 Scenery Designer

Graph databases can stably and comprehensively
record object information in existing scenes,
thereby reducing scene graph generation errors
caused by illusions or memory problems in LLMs,
such as reconstructing existing objects or using non-
existent objects as reference points. By providing
detailed scene information to LLMs, the graphics
database helps to develop plans that are consistent
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Figure 1: The entire workflow is based on geometric conventions and relies on multiple agents to carry out 3D scene
construction work around the graph. The user’s demand information will be refined layer by layer by designers
and used to generate object instances. Finally, the arranger will use the mapping from geometric constraints to
deviations and a genetic algorithm solver to determine the correct placement position of the object.

with the given semantics and do not conflict with
the current scene graph. Based on this, the scene
designer will mobilize their internal world knowl-
edge to design a scene that is semantically consis-
tent with the input, including the main objects in
the scene and the spatial geometric relationships
between objects.

3.1.2 Object Designer

After the scene planning is completed, the object
designer needs to design objects with appropriate
structure and size based on the existing reference
objects in the scene. On the one hand, image
databases are needed to provide background infor-
mation, and on the other hand, LLMs themselves
require a certain level of common sense knowl-
edge and reasoning ability to lay a more detailed
foundation for the next step of object creation.

3.1.3 Object Manufacturer

After completing the object design phase, we pro-
ceed to the construction phase. At this stage, LLMs
require a thorough understanding of the descrip-
tive statements used by object designers, partic-
ularly those describing the interrelationships be-
tween internal modules of the object. This en-
sures alignment between the generated objects and
their descriptive statements. We have observed
that models with weaker performance, such as the
GPT-3.5 turbo(OpenAl, 2023a), often have poor

performance in this step, regardless of the level
of detail provided by the designer. Additionally,
to minimize the risk of spatial divergence when
using genetic algorithms in later permutation calcu-
lations, the initial position of the object should be
proximate to its main reference object, typically ad-
hering to their relative spatial relationships. Here,
a graphical database becomes crucial, as it offers
detailed information about the size and position
of reference objects, as well as their approximate
relative relationships. This information is essential
to guide LLMs in utilizing their internal knowledge
effectively.

3.1.4 Arranger

Following the construction of the object, further op-
timization of its spatial position is required to meet
specific spatial requirements, such as those related
to smaller particle sizes. Initially, the relationship
information between the newly constructed object
and the reference object must be extracted from the
graph database. This information is then used to
perform further inference and to supplement any
missing spatial constraints. Based on these com-
pleted spatial constraints, the appropriate constraint
equations can be selected for positional optimiza-
tion.

The graph database provides a comprehensive
understanding of global scene information at each
layer of the workflow and provides necessary in-



formation for each layer to complete tasks. It can
efficiently manage complex relationships and de-
pendencies, enabling each level to accurately locate
and process relevant information in complex sce-
narios.

3.2 Geometric Conventions

Inspired by the work of Hedau (2011) and Klein
(1998), we recognize that clearly and systemati-
cally representing the relative positions of objects
in space is beneficial for enhancing the spatial rea-
soning capabilities of LLMs. Consequently, we
have devised a spatial convention that encompasses
three levels of constraint relationships: geometric
center, axis, and surface, with varying degrees of
constraint strength.By integrating different spatial
conventions, we can flexibly and accurately deter-
mine the positions of objects within a reasonable
range. This set of spatial conventions is integral
to our entire workflow. Through the implemen-
tation of a unified spatial convention system, we
ensure consistency and standardization throughout
the workflow.

An example of the spatial convention we de-
signed is as follows:

3.2.1 Geometric Center Relationship
Constrain

* Concentric relationship:

C

L =Tr, Yo, =y and z, =z (1)

3.2.2 Axle Relationship Constraint
* x align:
e =af @)

¢ front half:
28 > 2§ 3

3.2.3 Surface Relationship Constraint

¢ front:
2t — xﬁb =d 4)

r
* coplanar front:

zl = al, (5)

To avoid misunderstandings, we briefly declare the
following symbols:

* X, y and z represent the projections of the
corresponding parts of the object on that axis

* In superscripts, f, b and t, etc. respectively
represent the corresponding surfaces of the
object, such as the front, back/bottom, and
top surfaces. And c represents the geometric
center.

* In the subscript, r and m represent the refer-
ence object and the object to be moved, re-
spectively. And d stands for distance.

3.3 Graph Driven LLM Spatial Inference

The final layer of the workflow is called the ar-
ranger, responsible for the spatial arrangement of
generated objects in the scene. Wei et al. (2024 )dis-
cussed Detailed introduction on how to construct
a knowledge graph of geographic spatial data, as
well as how to express and infer spatial relation-
ships. Inspired by this, this work maps the relative
positional relationships of objects to a graphics
database. By setting strong and weak reference ob-
jects, we provide different levels of constraints for
the object to be moved. With the continuous enrich-
ment of graphic information, our framework will
provide increasingly accurate spatial constraints.
After determining the spatial constraints, the LLM
inspired genetic algorithm is used to solve the spa-
tial constraints, which is used to update the spatial
position of the object to be moved and dynami-
cally update the graphic data. This layer utilizes a
graphical database to store entities and their spatial
relationships, establishing and updating spatial con-
straints at the granularity of objects. The process
specifically includes several steps:

3.3.1 Graph Database Interaction

Arranger interacts with graphical databases to gen-
erate more detailed relationship information and
select the correct constraint equation according
to it. Based on the provided rough relationship
pairs, the arranger select the strong reference ob-
ject which will provides 1 to 3 constrains from
the graph database and return the weak reference
objects which provides 0 to 2 constrains and be
associated with the strong reference object. In this
way, the computational complexity of constraints
can be reduced. The LLM agent will obtain various
types of information about the reference object, in-
cluding its dimensions and spatial positions. It will
then infer and add new spatial constraints within the
basic spatial constraint framework and select the
correct constraint equation for genetic algorithm
calculation of accurate spatial positioning.



3.3.2 Genetic Algorithm for Solving
Geometric Relationships

Given the global optimization capabilities of the ge-
netic algorithm and its effective use with heuristic
initialization, we ultimately opted for the genetic
algorithm to address the spatial constraints. When
LLM completes spatial constraints and selects the
correct geometric equation, the permutator pass the
parameters to the genetic algorithm(Shapiro, 1999)
solver to optimize the geometric relationships and
further adjust and update the spatial position of the
objects initialized by LLM.

Each object is composed of multiple blocks, with
each block represented by its centroid coordinates
and three-dimensional dimensions. The specific
representation is as follows:

Single block representation:

bi = {ci, di1, diz, di3}
where ¢; = (x;,¥i,2;) is the centroid coordi-
nates, and d;1, d;2, d;3 represent the length, width,
and height, respectively.
Object representation:

Oz’ = {bih big, . 7bin}

where O; represents an object composed of mul-
tiple blocks b;;. In addition, the spatial information
of objects can also be represented as follows:

O; ={C;, Di1, Di2, Di3}

where C; is the centroid coordinates, and
Di1, Do, D;3 represent the length, width, and
height of O; respectively.

We define various types of spatial constraints to
describe the relative spatial relationships between
objects. Below are examples of above, and upper
half:

above : 22 > 2l +d

upper half : 2z, > 27

To generate appropriate constraint equations, we
abstract the reference object as a block and gen-
erate movable object pairs with reference part re-
lationships for each object. Then, based on the
generated relationship pairs, we generate appro-
priate constraint equations and pass them to the
genetic algorithm for solution.

Assume we have multiple reference ob-
jects R, and a movable object M, each pair

(Rg, relation, M) can be represented as a set of
constraint formations:

(6)

max (0, 25, — 2 + d) , if above
e, =
' max (0, z& — z¢,) , if upper half

The optimization goal is to minimize the total error:

N
min £/ = min E e?
i=1

To determine effective motion vectors, we em-
ployed a genetic algorithm inspired by LLM initial-
ization. Objects are generated at specific positions
based on global and reference content, partially ful-
filling constraint requirements. The algorithm’s ini-
tialization is then refined based on the size of both
the reference object and the object to be moved,
enhancing the optimization process. Each genome
consists of three XYZ coordinates representing mo-
tion vectors. The total error E of each individual
is calculated to assess fitness, with top-performing
individuals selected for crossover and mutation.
During crossover, parent DNA combines to pro-
duce new offspring, and mutations make fine ad-
justments to coordinates. This process iterates until
a set number of generations or error convergence
is achieved, gradually approaching the optimal so-
lution.

4 Experiment

In this section, we will discuss the factors affecting
the quality of the 3D scene graph generated by the
LLM from two aspects. The first influencing factor
is the model’s ability. We test the generation per-
formance of the base models GPT-3.5-Turbo and
GPT-4 without using the framework. The second
influencing factor is the degree of integration with
the work framework. We set up three sets of ex-
periments to explore the complete use of the work
framework, including ablation experiments to ana-
lyze the impact of removing certain components.

4.1 Model Performance Impact

Our experiment found a strong correlation between
LLM performance and spatial understanding. Eval-
uating GPT-3.5-Turbo and GPT-4-0125 on object
and scene generation tasks, we observed that GPT-
3.5 had poor spatial comprehension and simplistic
outputs. In contrast, GPT-4 showed improved spa-
tial concepts and multi-object scene generation but
still used simple blocks with limited detail.



4.1.1 Object Generation
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Figure 2: GPT-4 produces complex structures and de-
tails and achieves better semantic alignment than GPT-
3.5.

4.1.2 Scenery Generation

(e) Living(3.5)

(f) Living(4)

Figure 3: GPT-4 shows better spatial comprehension
and multi-object scene generation than GPT-3.5, but
still uses simple blocks with limited detail.

4.2 Analysis And Comparison

Metric:We choose CLIP (Radford et al., 2021)to
calculate the similarity between the generated ob-
ject and scene images and text, in order to evaluate
the alignment between the text and the generated
content. In addition, during the experimental pro-
cess, there is often a large amount of overlap or
object isolation in the generated failed scene im-
ages. Therefore, for the scene, we additionally
introduced overlap score and isolation score, corre-
sponding to the proportion of overlapping volume
to the total volume of all objects and the proportion
of isolated blocks to the total block, respectively.

GPT-3.5
GPT-4

= 031

2

(73]

Table  Chair Sofa Bed Desk  Shelf Sink v Lamp
Item

Figure 4: In object level generation tasks, the clip index
of agents based on GPT-4 is generally better than ones
based on GPT-3.5.
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Figure 5: In the scenario level generation task, the clip
index of GPT-4 group is 10.1% higher than that of GPT-
3.5 group, and its isolation rate is much better than that
of GPT-3.5 group.

4.3 Framework Impact

Baseline Methods:The baseline we have chosen
is a single agent without designed agents or graph
driven methods, which showed in Figure 3. The
base model of each agent is gpt-4-0125 preview
with default temperature.



4.3.1 Ablation Study
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Figure 6: The ablation group showed detailed structures,
but lacked reasonable spatial planning The non-ablated
group can not only represent details of objects but also
have a reasonable plan for the placement of objects.

In the ablation group experiment, we eliminated the
interaction process between the graphical database
and the workflow, while retaining the workflow of

multi-agent collaboration. The non ablated group
completely retained the graph reasoning frame-
work.

4.4 Analysis And Comparison

The schematic diagram illustrates the performance
of LLM scene graph generation in three modes.
Images produced by the baseline method neglect
object details but exhibit some overall spatial plan-
ning capability. The ablation group attempts to
emphasize object details but lacks spatial planning,
leading to overcrowded scenes. The non-ablated
group excels in both object details and proper ob-
ject placement.

Baseline
ox1 M Ablation
B Graph Driven

0.220

Similarity Overlap Rate

Categories

Isolate Rate

Figure 7: Comparison of metrics across different work
modes indicates the following information: using graph
driven workflows improves the similarity between im-
ages and text, with a decrease in spatial overlap rate but
an increase in isolation rate

According to the above Figure 7, we found that
in terms of clip similarity, the graph driven group
performed better than both the baseline and abla-
tion groups, and was generally better than both in
a single task, with mean values 6.3% and 8.7 %
higher than the baseline and ablation groups, re-
spectively. In terms of object overlap rate, it is
lower than both, but in terms of isolation rate, it is
higher than both.

5 Conclusion And Limitation

Our research provides an intuitive demonstration of
the spatial understanding capabilities of LLMs and
quantitatively evaluates the spatial comprehension
of two distinct models. Additionally, we enhance
the geometric understanding and spatial reason-
ing abilities of LLMs in complex physical envi-
ronments by implementing well-defined geometric
conventions and a graph-driven framework.



This study is conducted using a custom-
developed sandbox platform, designed to present
the spatial concepts understood by LLMs in a more
intuitive and flexible manner. However, due to
resource constraints, we are unable to test higher-
performing models, which limits our ability to fully
showcase the framework’s potential in improving
the spatial understanding of LLMs.
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A Geometric conventions

A.1 Geometric Center Relationship Constrain

1. concentric: Concentric.

e Calculation: The Euclidean distance be-
tween the centers of the two objects.

A.2 Axle Relationship Constraint
A.2.1 Align Relationship
1. x aligned: X-aligned.

* Calculation: The alignment error in the
x direction between the two objects.

2. y aligned: Y-aligned.

 Calculation: The alignment error in the
y direction between the two objects.

3. z aligned: Z-aligned.

¢ Calculation: The alignment error in the
z direction between the two objects.

A.2.2 Half Side Relationship
1. left half: Left half.

* Determine if the ref center object is
in the left half of the mov center object.

2. right half: Right half.

* Determine if the ref center objectis in
the right half of the mov center object.

3. upper half: Upper half.

* Determine if the ref center objectis in
the upper half of the mov center object.

4. lower half: Lower half.

* Determine if the ref center object is in
the lower half of the mov center object.

5. front half: Front half.

* Determine if the ref center objectis in
the front half of the mov center object.

6. back half: Back half.

* Determine if the ref center objectis in
the back half of the mov center object.

A.3 Surface Relationship Constraint
A.3.1 Relative Positioning Relationship

1. left: mov center object is to the left of the
ref center object.

* Calculation: The distance between the
left edge of the ref center object and
the right edge of the mov center object
minus the given distance.

2. right: mov center object is to the right of the
ref center object.

* Calculation: The distance between the
left edge of the mov center object and
the right edge of the ref center object
minus the given distance.

3. above: mov center object is above the ref
center object.

* Calculation: The distance between the
bottom edge of the mov center object
and the top edge of the ref center ob-
ject minus the given distance.

4. below: mov center object is below the ref
center object.

* Calculation: The distance between the
bottom edge of the ref center object
and the top edge of the mov center ob-
ject minus the given distance.

5. front: mov center object is in front of the
ref center object.

* Calculation: The distance between the
back edge of the mov center object and
the front edge of the ref center object
minus the given distance.

6. back: mov center object is behind the ref
center object.

* Calculation: The distance between the
back edge of the ref center object and
the front edge of the mov center object
minus the given distance.

A.3.2 Coplanar Relationship Constrain
1. coplanar top: Coplanar on top.

* Determine if the top edges of the two
objects are coplanar.

2. coplanar bottom: Coplanar on the bottom.


http://arxiv.org/abs/1801.09847

* Determine if the bottom edges of the two
objects are coplanar.

. coplanar left: Coplanar on the left.

* Determine if the left edges of the two
objects are coplanar.

. coplanar right: Coplanar on the right.

* Determine if the right edges of the two
objects are coplanar.

. coplanar front: Coplanar in front.

* Determine if the front edges of the two
objects are coplanar.

. coplanar back: Coplanar in the back.

* Determine if the back edges of the two
objects are coplanar.
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Figure 10: Counter
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Figure 11: Coffee Machine
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Figure 12: Lamp
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Figure 13: Dumbbell Rack
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Figure 14: Espresso Machine
Sink
Front View Side View
Sl wo| =
50 D 50
0 0 —
50 o 5650 -3 50 o 50
Top View Isometric View
-50 0 50, #0
-50
100
0 50
0
50 -50 50

Figure 15: Sink
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Figure 17: TV
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Figure 18: TV Stand



