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Abstract

The paper presents an overview of the third
edition of the shared task on multilingual coref-
erence resolution, held as part of the CRAC
2024 workshop. Similarly to the previous two
editions, the participants were challenged to de-
velop systems capable of identifying mentions
and clustering them based on identity corefer-
ence.

This year’s edition took another step towards
real-world application by not providing partic-
ipants with gold slots for zero anaphora, in-
creasing the task’s complexity and realism. In
addition, the shared task was expanded to in-
clude a more diverse set of languages, with a
particular focus on historical languages. The
training and evaluation data were drawn from
version 1.2 of the multilingual collection of
harmonized coreference resources CorefUD,
encompassing 21 datasets across 15 languages.
6 systems competed in this shared task.

1 Introduction

The concept of a shared task dedicated to multilin-
gual coreference resolution began with SemEval-
2010 (Recasens et al., 2010), which included seven
languages, and CoNLL-2012 (Pradhan et al., 2012),
which featured three languages. In the Multi-
lingual Coreference Resolution Shared Task at
CRAC 2022 (Zabokrtsky et al., 2022), the scope
was expanded to 10 languages, with multiple
datasets for some, using the CorefUD 1.0 collection
(Nedoluzhko et al., 2022). In the second edition
of this shared task, held with CRAC 2023, 12 lan-
guages were involved (Zabokrtsky et al., 2023).
The present paper details the third edition of this
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shared task, organized in 2024, once again in col-
laboration with CRAC.

This year’s shared task introduces two significant
changes compared to the previous edition. First,
there is an increased focus on zero mentions. These
zero mentions appear in 10 datasets for the fol-
lowing languages: Ancient Greek, Catalan, Czech,
Hungarian, Old Church Slavonic, Polish, Spanish,
and Turkish. In the previous two editions of the
shared task, zero mentions were technically present
in the input (like any other mentions), which made
the shared task’s setting a bit artificial. Now, re-
quiring the participants not only to identify corefer-
ence relations but also to generate zeros in places
relevant for coreference, makes the task closer to
real-world scenarios (and harder).

Second, this year’s shared task uses a newer ver-
sion of CorefUD. Compared to the previous version
1.1, CorefUD 1.2 comprises new languages and
corpora. Ancient Greek, Ancient Hebrew, and Old
Church Slavonic have been added, further broaden-
ing the task’s scope beyond Latin-script languages
and toward those with significantly fewer resources.
Additionally, the introduction of LitBank for En-
glish extends the range of available domains by
including novels with substantially longer docu-
ments. These expansions aim to develop more
robust solutions that are better suited for real-world
applications. Furthermore, updated versions of pre-
viously included resources, such as English-GUM
and Turkish-ITCC, have been used. The conver-
sion of zeros in Polish-PCC has been considerably
improved, and the conversion pipelines for multiple
other datasets have been refined too.

Proceedings of the Seventh Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2024), pages 78-96

November 15, 2024. ©2024 Association for Computational Linguistics



The rest of the paper is organized as follows.
Section 2 discusses the changes in the shared task’s
data compared to the previous edition. Section 3
outlines the evaluation metrics used in the task, in-
cluding both the primary and supplementary scores.
Section 4 details the baseline system and other par-
ticipating systems. Section 5 presents a summary
of the results and Section 6 provides the conclu-
sion.

2 Datasets

As in the previous years, the shared task takes its
training and evaluation data from the public part of
the CorefUD collection (Nedoluzhko et al., 2022),!
now in its latest release (1.2).> The public edi-
tion of CorefUD 1.2 consists of 21 datasets for
15 languages (4 language families). Compared to
CorefUD 1.1, which was used last year (Zabokrt-
sky et al., 2023), there are 4 new datasets and 3
new languages including one language (Ancient
Hebrew) from a new language family. The new
datasets are Ancient Greek PROIEL, Old Church
Slavonic PROIEL, Ancient Hebrew PTNK, and En-
glish LitBank. Beside adding these new datasets,
most of the “old” datasets from CorefUD 1.1 were
updated in various ways. Table 1 gives an overview
of the datasets and their sizes.

2.1 New Resources

Ancient Greek PROIEL (grc_proiel; Haug and
Jghndal, 2008) is a collection of New Testament
gospels from the PROIEL treebank. The main goal
of the PROIEL coreference annotation is to catch
givenness, i.e. how readers determine the refer-
ence of nominal phrases. As a result, referential
noun phrases are annotated for identity corefer-
ence and bridging relations, except relative pro-
nouns and appositions. In addition to noun phrases,
zero anaphora for pro-dropped arguments is an-
notated, most often unexpressed subjects. Due
to the texts domain, special attention is paid to
the annotation of generic and other non-specific
references. The original annotation marks only
mention heads, so the mention spans were deter-
mined based on syntactic dependencies. Where
possible, consecutive Bible chapters were kept in
the same document to preserve occasional cross-
chapter coreference links; however, coreference
crossing training/dev/test boundaries is lost. Man-

"https://ufal.mff.cuni.cz/corefud
2http://hdl .handle.net/11234/1-5478
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ual morphosyntactic annotation from PROIEL was
converted to the UD scheme.

Old Church Slavonic PROIEL (cu_proiel;
Haug and Jghndal, 2008) includes Codex Mari-
anus and selected chapters of Suprasliensis from
the PROIEL and TOROT treebanks. Coreference
annotation follows the PROIEL annotation guide-
lines, same as for Ancient Greek (see above). Man-
ual morphosyntactic annotation from PROIEL was
converted to the UD scheme.

Ancient Hebrew PTNK (hbo_ptnk; Swanson
et al., 2024) contains portions of the Hebrew Bible
as digitized and annotated in the Biblia Hebraica
Stuttgartensia. Entity and coreference annotation
follows guidelines similar to those of the English
GUM corpus. Several high-frequency entities have
hundreds of mentions throughout the Bible (e.g.,
God, Abraham, Isaac or Jacob); however, since the
CorefUD 1.2 version of the resource uses chapters
as documents (which are then distributed between
training/dev/test parts of the data), coreference be-
tween chapters is not preserved. The current ver-
sion of the dataset also lacks annotation of zero
mentions (their addition is planned in the future,
as Hebrew is a pro-drop language). Manual mor-
phosyntactic annotation was done natively in the
UD scheme.

English LitBank (en_litbank; Bamman et al.,
2019) contains texts from 100 literary novels of
English-language fiction in LitBank. Compared to
other English corpora, the dataset contains longer
texts with an average length over 2000 words.
Coreference annotation is close to the OntoNotes
coreference annotation style (BBN Technologies,
2006) with several significant changes such as ex-
plicit annotation of singletons and applying coref-
erence annotation to only the ACE categories (peo-
ple, locations, organizations, facilities, geopolit-
ical entities, and vehicles, see Walker and Con-
sortium, 2005). Annotation of literary texts also
demands for more detailed insight into the identity
phenomenon, thus near-identity or the revelation of
identity is paid more attention in the dataset. Mor-
phosyntactic annotation was predicted by UDPipe,
as it was not part of the original resource. A coref-
erence entity has on average 10.8 mentions, which
is the highest number in CorefUD 1.2 (see Table 1).

2.2 Updated Resources

More data The English GUM corpus (en_gum)
is now in its version 10, which has approximately


https://ufal.mff.cuni.cz/corefud
http://hdl.handle.net/11234/1-5478

total number of entities mentions

document total per 1k length total per 1k length

docs sents words emptyn. count words max avg. count words max avg.
Ancient_Greek-PROIEL 19 6475 64,111 6,283 3,215 50 332 6.6 21,354 333 52 1.7
Ancient_Hebrew-PTNK 40 1,161 28,485 0 870 31 102 72 6,247 219 22 15
Catalan-AnCora 1,298 13,613 429,313 6,377 17,558 41 101 3.6 62417 145 141 48
Czech-PCEDT 2,312 49,208 1,155,755 35,654 49,225 43 236 34 168,055 145 79 3.6
Czech-PDT 3,165 49,428 834,720 21,808 46,628 56 172 3.3 154,905 186 99 3.1
English-GUM 217 12,147 211,920 115 8,270 39 131 44 36,733 173 95 26
English-LitBank 100 8,560 210,530 0 2164 10 261 108 23,340 111 129 1.6
English-ParCorFull 19 543 10,798 0 188 17 38 44 835 71 37 21
French-Democrat 126 13,057 284,883 0 7,162 25 895 6.5 46,487 163 71 17
German-ParCorFull 19 543 10,602 0 243 23 43 37 896 85 30 20
German-PotsdamCC 176 2,238 33,222 0 880 26 15 29 2,519 76 34 26
Hungarian-KorKor 94 1,351 24,568 1,988 1,124 46 41 37 4,103 167 42 22
Hungarian-SzegedKoref 400 8,820 123,968 4,857 4,769 38 36 32 15,165 122 36 1.6
Lithuanian-LCC 100 1,714 37,014 0 1,087 29 23 40 4,337 117 19 15
Norwegian-BokmaalNARC 346 15,742 245,515 0 5,658 23 298 47 26,611 108 51 19
Norwegian-NynorskNARC 394 12,481 206,660 0 5,079 25 84 43 21,847 106 57 21
Old_Church_Slavonic-PROIEL 26 6,832 61,759 6,289 3,396 55 134 65 22116 358 52 15
Polish-PCC 1,828 35,874 538,885 18,615 22,143 41 135 3.7 82,706 153 108 1.9
Russian-RuCor 181 9,035 156,636 0 3515 22 141 46 16,193 103 18 1.7
Spanish-AnCora 1,356 14,159 458,418 8,112 19,445 42 110 3.6 70,663 154 101 4.8
Turkish-ITCC 24 4732 55,358 11,584 4,019 73 369 54 21,569 390 31 1.1

Table 1: CorefUD 1.2 data sizes in terms of the total number of documents, sentences, words (i.e. non-empty
nodes), empty nodes (empty words), coreference entities (total count, relative count per 1000 words, average and
maximal length in number of mentions) and coreference mentions (total count, relative count per 1000 words,
average and maximal length in number of words). All the counts are excluding singletons and for the concatenation
of train+dev+test. Train/dev/test splits of these datasets roughly follow the 8/1/1 ratio. See Table ?? for details.

10% more data. All the other datasets are the same
size as before (except for a few minor changes
resulting from annotation corrections).

Substantial changes Re-implementation of con-
version from non-CorefUD formats and/or major
revision of the annotation was applied to French
Democrat (fr_democrat), Polish PCC (pl_pcc),
and Turkish ITCC (ir_itcc). Besides improved
basic coreference annotation, in Polish and Turk-
ish this also involved a significant boost in an-
notation of zero mentions (empty nodes), which
are the theme of the present edition of the shared
task. Many changes were also applied to Czech
(cs_pdt, cs_pcedt), Catalan (ca_ancora) and
Spanish (es_ancora); here the changes affected
both the conversion of coreference and the manual
morphosyntactic annotation in UD.?

New prediction of morphosyntax Finally, for
datasets that do not come with manual morphosyn-
tactic annotation, the UD relations, tags and fea-
tures were predicted with newer models for UD-
Pipe (based on UD release 2.12). This involves all

SMore details on the changes can be found in the
README files of the individual corpora.
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the remaining corpora except for the two Norwe-
gian ones, which did not change and have manual
UD annotation.

2.3 Zero mentions

Zero mention refers to instances where a referent
(typically the subject or object of a sentence) is im-
plied but not explicitly mentioned in the text. Zero
mention is common in pro-drop languages, where
subject pronouns can be omitted because the verb
conjugation often provides enough information to
infer the subject.

In CorefUD, zero mentions are technically repre-
sented by empty nodes, artificially inserted into the
UD trees in places where zero mentions are needed.
Using this representation, a zero mention can be
grouped with other mentions in a coreference chain
to express coreference relations, fully analogously
to overt (non-zero) mentions.

Languages differ substantially in what may be
unexpressed. For example, Czech is considered a
strongly pro-drop language and Russian is a par-
tially pro-drop language, while English is not con-
sidered a pro-drop language. In addition, not only
a subject pronoun but also an object or possessive
pronoun can be dropped in some languages such as



Hungarian. Another level of variability is caused
by different design choices of authors of the orig-
inal coreference resources; for example, some do
annotate nominal ellipsis, while some do not. At
this moment, harmonization of zero mentions is
limited in CorefUD, and zero mentions from the
original data resources are mostly preserved (i.e.,
captured by empty nodes).

In the previous two editions of this shared task,
gold empty nodes (i.e., the slots for zero mentions)
represented as empty nodes were available to par-
ticipants both in the training and test data. That,
however, was rather artificial, as zero mentions are
by definition not overt in input texts. Hence their
presence should be predicted too, as is the case in
the current shared task.

2.4 Data preprocessing and starting points

Compared to the public edition of CorefUD 1.2,
the data provided for the shared task participants
underwent slight adjustments.

Gold data used for training and evaluation re-
ceived a minor technical modification: the forms
of empty nodes were removed. This change was
made to align the data more closely with the output
of the baseline empty node prediction, which does
not predict these forms (see Section 4.1). Apart
from this, the data remained consistent with the
CorefUD 1.2 release, retaining manually annotated
morpho-syntactic features (for datasets that origi-
nally included them), gold empty nodes, and gold
coreference annotations. While we made the gold
train and dev sets available for download, the gold
test set was kept secret and used exclusively within
CodaLab for submissions evaluation.

Input data were intended for processing by par-
ticipants’ systems and subsequent submission. To
better simulate a real-world scenario where no man-
ual linguistic annotation is available, we removed
the forms of empty nodes and replaced the origi-
nal morpho-syntactic features with the outputs of
UD 2.12 models across all datasets, including those
with originally human-annotated features. Addi-
tionally, the gold empty nodes and coreference an-
notations were removed.

Nevertheless, participants could choose from
different starting points for entering the shared
task, with varying degrees of work required. De-
pending on the chosen starting point, participants
were provided with different levels of empty nodes’
and coreference predictions from the baseline sys-
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tems (see Section 4.1). The three available starting
points were:

1. Coreference and zeros from scratch. Partici-
pants were required to develop a system that
resolves both coreference and predicts empty
nodes potentially involved in zero anaphora.
While this starting point is more challenging,
it offers significant potential for gains.

Coreference from scratch. In this scenario,
empty nodes were provided by the baseline
system, allowing participants to focus solely
on developing a coreference resolution system.
Systems submitted in last year’s edition could
be applied to this starting point with some
retraining.

. Refine the baseline. Participants were given
both empty nodes and coreference relations,
as predicted by the baseline systems. This
starting point is the simplest yet less flexible
option.

The input data preprocessing was performed on
the dev and test sets.

3 Evaluation Metrics

The systems participating in the shared task are
evaluated with the CorefUD scorer. Similarly to the
last year’s edition, the primary evaluation score is
the CoNLL F1 score with head mention matching
and singletons excluded. As gold and predicted
zero mentions are no longer guaranteed to match
one-to-one, we introduce the dependency-based
method to align them. Furthermore, we calculate
several other supplementary scores to compare the
shared task submissions.

Official scorer We use the CorefUD scorer? in its
version from May 2024 to evaluate the submissions
of the participants. It has been upgraded to build on
the Universal Anaphora (UA) scorer 2.0 (Yu et al.,
2023) instead of the UA scorer 1.0 (Yu et al., 2022).
Besides the features that had been an integral part
of the older CorefUD scorer and were newly intro-
duced to the UA scorer 2.0, e.g., Mention Overlap
Ratio (MOR; Zabokrtsky et al., 2022), anaphor-
level evaluation of zeros, support for discontinuous
mentions and the CorefUD 1.0 file format, the up-
grade fixed a bug in partial matching method and

*https://github.com/ufal/
corefud-scorer


https://github.com/ufal/corefud-scorer
https://github.com/ufal/corefud-scorer

introduced the linear method of matching zero men-
tions. Naturally, it still allows to take advantage of
the implementations of all generally used corefer-
ential measures with no modifications. Unlike the
UA scorer, the CorefUD scorer provides support
for head match and newly for dependency-based
method of matching zero mentions.

Mention matching Due to shortcomings of us-
ing exact and partial mention matching (see
Zabokrtsk}’/ et al. (2023) for details), we arrived
at the decision to use the head match method in
the primary metrics last year. Gold and predicted
mentions are considered matching if their heads’
correspond to identical tokens. Full spans are ig-
nored, except for the case of multiple mentions with
the same head in order to disambiguate between
them.

Matching of zeros However, none of the match-
ing methods can be any longer applied to empty
nodes. As in this year the participants are expected
to predict empty nodes involved in zero anaphora,
they are not guaranteed to align one-to-one with the
gold empty nodes. They can be missing, spurious,
or predicted at different surface positions within
the sentence, yet playing the same role.

We thus introduce the dependency-based method
of matching zero mentions. It looks for the match-
ing of zeros within the same sentence that maxi-
mizes the F-score of predicting dependencies of
zeros in the enhanced dependency graph.® Specifi-
cally, the task is cast as searching for a one-to-one
matching in a weighted bipartite graph (with gold
and predicted mentions as the two partitions) to
maximize the total sum of weights in the matching.
Each candidate pair (gold zero mention — predicted
zero mention) is weighed with a non-zero score
only if the two mentions belong to the same sen-
tence. The score is then calculated as a weighted
sum of two features:

* the F-score of the gold zero dependencies
recognized in the predicted zero, considering
both parent and dependency type assignments
(weighted by a factor of 10);

* the F-score of the gold zero dependencies
recognized in the predicted zero, considering

>Note that gold mention heads in the CorefUD data were
determined from the dependency tree using the Udapi block
corefud.MoveHead.

8Stored in the DEPS field of the CoONLL-U format.
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only parent assignments (weighed by a factor
of 1).

The scoring mechanism prioritizes the exact as-
signment of both parents and types. Nevertheless,
it is ensured to sufficiently work even if the predic-
tions contain no dependency type assignments.

This matching strategy differs to the linear
matching of zeros presented by Yu et al. (2023),
which aligns the zeros only if their word indices’
are identical. Such matching may thus fail if the
zero is predicted at different surface position or if
only one of the multiple zeros with the same parent
is predicted.

Primary score Following the best practices for
coreference resolution, we utilize the CoNLL F}
score (Denis and Baldridge, 2009; Pradhan et al.,
2014) as the primary evaluation score. It is an un-
weighted average of the F scores of three corefer-
ence metrics: MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998) and CEAF-e (Luo, 2005). The
final ranking of participating submissions is then
based on a macro-average of CoNLL F} scores
over all datasets in the CorefUD test collection.

Supplementary scores Besides the primary
CoNLL F} score, we report alternative versions of
this score using different ways of mention match-
ing: partial match® and exact match. Furthermore,
we calculate the primary metrics using the head-
match for all mentions including singletons.

We also report the systems’ performance in
terms of the coreference metrics that contribute
to the CoNLL score as well as other standard mea-
sures, e.g. BLANC (Recasens and Hovy, 2011)
and LEA (Moosavi and Strube, 2016). We employ
the MOR score to evaluate the quality of mention
matching, while ignoring the assignment of men-
tions to coreferential entities. Moreover, this year,
it is particularly interesting to analyze the perfor-
mance of the systems on zero anaphora. To this
end, we use the anaphor-decomposable score for
zeros (Zabokrtsky et al., 2022), which is an applica-
tion of the scoring schema proposed by Tuggener
(2014).

"Stored in the ID field of the CONLL-U format.
8The partial-match setup was used in the primary metrics
in the first edition of the shared task (Zabokrtsk)’/ et al., 2022).



4 Participating Systems

4.1 Baseline

This year, two baseline systems are provided:
one for predicting empty nodes as slots for zero
anaphora, and another for coreference resolution.

Empty Nodes Prediction Baseline Predicting
empty nodes is a novel task in this year’s shared
task. To accommodate participants who want to
focus solely on coreference resolution, we provide
a baseline for predicting empty nodes. We release
the source code,’ the trained multilingual model,'°
and development and testing data with predicted
empty nodes.

The baseline model architecture is as follows.
Every sentence is processed independently, and
its words are split into subwords by the XLM-
RoBERTa tokenizer (Conneau et al., 2020). The
subwords are passed through the XLM-RoBERTa
large pretrained model, and the embeddings of the
first subword of every word are utilized as the word
representations. Then, two candidate representa-
tions for every word are generated, by (1) passing
the word representations through a ReLU-activated
2k-unit dense layer, a dropout layer and a 768-unit
dense layer; (2) concatenating the described out-
puts with the original word representations and
passed through an analogous dense-dropout-dense
module. Each candidate representation might gen-
erate an empty node, whose dependency head
would be the word generating the candidate. The
candidate representations are processed by three
heads, each first applying a 2k-unit dense layer,
ReLU, and dropout: (1) a binary classification head
predicting whether the candidate is an empty node
or not, (2) word-order prediction head implemented
using self-attention selecting the word after which
the empty node should be added, and (3) depen-
dency relation prediction head, which first concate-
nates the candidate representation and the represen-
tation of the word most probable according to the
word-order prediction head, and then predicts the
dependency relation.

The model was trained on a combination of all
languages containing empty nodes, sampling every
language proportionally to the square root of its
size. Further details and used hyperparameters are
available in the source code repository.’

‘https://github.com/ufal/crac2024_
zero_nodes_baseline

Ohttps://www.kaggle.com/models/
ufal-mff/crac2024_zero_nodes_baseline/
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Language  Recall Precision F1

ca_ancora 91.01 92.32 91.66
cs_pcedt 59.84 78.22 67.81
cs_pdt 71.56 81.47 76.19
cu_proiel 78.76 81.61 80.16
es_ancora 91.92 92.04 91.98
grc_proiel  86.58 90.29 88.39
hu_korkor  60.21 74.68 66.67
hu_szeged 89.52 91.93 90.71
pl_pcc 91.61 8750  89.51
tr_itcc 93.81 79.05 85.80

Table 2: Empty nodes prediction baseline performance
on the development sets of CorefUD 1.2 languages con-
taining empty nodes. An empty node is considered
correct if it has the correct dependency head, depen-
dency relation, and word order.

The performance of the empty nodes prediction
baseline is quantified in Table 2 using precision,
recall, and F1 score, where a predicted empty node
is considered correct if its dependency head, depen-
dency relation, and word order are all correct.

Coreference Resolution Baseline The baseline
for coreference resolution is the same as in the two
previous years. It is a multilingual end-to-end neu-
ral coreference resolution by (Prazék et al., 2021).
The model is the adaptation of the standard end-to-
end neural coreference resolution system originally
proposed by Lee et al. (2017). The model iterates
over all possible spans up to the maximum length
and predicts the antecedent for each potential span
directly. Because it does not predict the mentions
in the separate step, it should be sufficient for the
datasets where singletons are not annotated. The
baseline coreference model uses mBERT base as
an encoder.

4.2 System Submissions

This year, six systems were submitted to the shared
task by the following four teams: DFKI_TR,!!

"DFKI = Deutsches Forschungszentrum fiir Kiinstliche In-
telligenz (German Research Center for Artificial Intelligence).
The DFKI-CorefGen system was submitted to CodaLab by
user “natalia_s”.
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https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/
https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/

UFAL CorPipe,'> UWB'? and Ritwikmishra.'*
Some of the files produced by the Ritwikmishra
system were not valid CoNLL-U and the scorer
failed, thus resulting in zero F1 for these datasets
(see Table 6). We applied an automatic correction'>
and call the resulting system RitwikmishraFix. The
tables with results in Section 5 also include the
baseline system (BASELINE) as described in Sec-
tion 4.1 and the same baseline system applied on
gold empty nodes (BASELINE-GZ). The total num-
ber of systems compared is thus 9.

The following descriptions are based on the in-
formation provided by the respective participants
in an online questionnaire. Basic properties of the
systems are also summarized in Table 3.

DFKI-CorefGen The DFKI-CorefGen system
performs mention identification and co-reference
resolution jointly, treating both tasks as text genera-
tion. Given a piece of text, the system identifies all
mentions and groups them into clusters by mark-
ing the mentions with square brackets accompa-
nied by cluster identifiers. The approach resolves
co-reference incrementally, processing each new
sentence to find mentions and cluster them, while
also correcting cluster assignments in the previous
context if needed.

To train the model, DFKI-CorefGen applies pre-
fix tuning using OpenPrompt (Ding et al., 2021).
The system utilizes multilingual TS base (Xue et al.,
2021) as the foundation model. During training,
the pre-trained model is kept frozen, and only the
prefix component is tuned.

CorPipe-2stage CorPipe-2stage is a minor evo-
lution of the system implemented in the previous
year (Straka and Strakové, 2022). It combines the
baseline provided by the shared task organizers
for the prediction of zeros, followed by the last
year’s version of CorPipe, which first predicts the
mentions and then the links among them using
a single pre-trained Transformer encoder. Three
model variants are trained, based on either mT5-

2UFAL = Ustay formalni a aplikované lingvistiky (Institute
of Formal and Applied Linguistics). The UFAL CorPipe team
submitted 3 systems: CorPipe, CorPipe-2stage and CorPipe-
single, by Codalab users “straka”, “straka-twostage” and
“straka-single-multilingual-model”, respectively.

BUWB = University of West Bohemia. The Ondfa system
was submitted to Codalab by user “ondfa”.

“The Ritwikmishra system was submitted to CodaLab by
user “ritwikmishra”.

SMostly moving Entity annotations from multi-word to-
kens (where they are forbidden) to the words.
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large, InfoXLM-large, or mT5-x1. For every vari-
ant, 7 multilingual models are trained on a combi-
nation of all the treebanks, differing only in random
initialization. The treebanks are sampled propor-
tionally to the square root of their size, and most
hyperparameters are taken from the last year’s Cor-
Pipe. Then, for each treebank, the best-performing
checkpoints are selected from the shared pool of
checkpoints and ensembled.

CorPipe Contrary to the CorPipe-2stage submis-
sion using two Transformer encoders, the submis-
sion CorPipe predicts the zero mentions directly
from the words, jointly with the nonzero mention
prediction and the link prediction. It uses the same
approach of 3 Transformer encoder variants, 7 mul-
tilingual models per variant, and ensemble selec-
tion for each treebank.

CorPipe-single CorPipe-single uses the same
checkpoint pool as the CorPipe system, but it
chooses a single mT5-large-based model for pre-
diction on all treebanks.

Ondfa The Ondfa system extends the baseline
system and participant systems from previous years
(Prazdk and Konopik, 2022). The approach in-
volves initially training a joint cross-lingual model
(XLM-R-large, mT5-xx1) for all datasets. Subse-
quently, the model is fine-tuned for each dataset
separately, using LORA in the case of mTS5.
Mentions are newly represented only with their
headwords (except for cs_pcedt and It_Icc, where
multiword mentions were allowed), which has been
shown to improve the primary metric (head-match)
results on the dev sets. Syntax trees are also incor-
porated as features into the model. The UWB team
also modified their model to handle singletons.

Ritwikmishra This submission reuses the Trans-
MuCoRes system from (Mishra et al., 2024), which
is a fine-tuned wl-coref architecture (Dobrovolskii,
2021) built on top of the XLM-R-base model. This
system is applied in a zero-shot manner on both the
development and test sets.

4.3 System Comparison

Most of the systems, including DFKI-CorefGen
and the CorPipe variants, developed their ap-
proaches completely from scratch. However,
CorPipe-2stage, Ritwikmishra, and Ondfa utilized
the provided baseline predictions of empty nodes
(the Coreference from scratch starting point). Addi-
tionally, Ondfa built upon the baseline coreference



Name Baseline Starting point Official data
DFKI-TR No From scratch Yes
CorPipe No From scratch Yes
CorPipe-single No From scratch Yes
CorPipe-2stage  Prediction of zeros Coreference from scratch ~ Yes
Ondfa Coref. resolution Coreference from scratch  Yes
Ritwikmishra No Coreference from scratch  No (TransMuCoRes)
Name Pretrained model Model size Seq. length
DFKI-TR mT5-base 580M + 3.4M 512 subwords
CorPipe mT5-large, 3.7B+280M (3-model 2560 for mTS5,
mT5-x1, ensemble, 512 for InfoXLLM,
InfoXLM-large average) 512 during training
CorPipe-single mT5-large 538M+57M 2560 during prediction,
512 during training
CorPipe-2stage  mT5-large, 5.1B+400M (5-model 2560 for mTS5,
mT5-x1, ensemble, 512 for InfoXLLM,
InfoXLM-large average) 512 during training
Ondfa XLM-R-large, 550M + 20M (xlmr), 512, 2048, 4096
mT5-xx1 5.7B + 70-400M (mt5) 2048, 4096
Ritwikmishra XLM-R-base 270M + 4.3M variable
Name Tuned per lang.? Batch size Tuned hyperparameters
DFKI-TR No 1 Not specified
CorPipe Yes (21 models) 8,12 Model variant (rest taken from 2023)
CorPipe-single No 8 Taken from 2023
CorPipe-2stage  Yes (21 models) 8, 12 Model variant (rest taken from 2023)
Ondfa Yes 1 doc LORA rank (rest taken from 2023)
Ritwikmishra No 8 None

Table 3: The table compares properties of systems participating in the task. The systems are ordered alphabetically.
The shortcuts in the headings are defined as follows: Name is the name of the submission, Baseline: what type of
baseline the system builds on (see Section 4.1). Starting point: the chosen starting level out of the three possible
ones as listed in Section 2.4, From scratch denotes the Coreference and zeros from scratch starting point. Official
data: Use of CorefUD 1.2 public edition for training, Tuned per lang.? indicates whether participants tuned their
model for each language or not. Model size: The model size is split between the Pretrained model size and the size
of the added head. variable means various settings depending on features and architecture.

resolution system, but no submission was based
solely on the baseline predictions (the Refine the
baseline starting point).

The systems leveraged various pre-trained mod-
els: DFKI-CorefGen employed mT5-base (Xue
et al., 2021); the CorPipe variants used combi-
nations of encoder blocks from mT5-large, mT5-
xl (Xue et al., 2021), and InfoXLM-large (Chi
et al., 2021); Ondfa utilized XLM-R-large (Con-
neau et al., 2020) and mT5-xx1 (Xue et al., 2021);
and Ritwikmishra opted for XLM-R-base (Con-
neau et al., 2020).

Model sizes varied significantly, ranging from
around 600M parameters for DFKI-CorefGen and
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Ritwikmishra to 6.1B for Ondfa’s mT5-xx1 model.
The CorPipe systems distinguished themselves by
employing ensemble methods with multiple mod-
els. Language-specific tuning was another point
of differentiation: CorPipe, CorPipe-2stage, and
Ondfa fine-tuned their models for individual lan-
guages, while DFKI-CorefGen, CorPipe-single,
and Ritwikmishra maintained a single multilingual
model approach.

Regarding training data, most systems utilized
the official CorefUD 1.2 public edition. Ritwik-
mishra, however, diverged from this trend by using
the TransMuCoRes dataset (Mishra et al., 2024).



5 Results and Comparison

5.1

The main results are summarized in Table 4. The
CorPipe-2stage system is the best one according to
the official primary metric (head-match excluding
singletons) as well as according to three alterna-
tive metrics: partial-match excluding singletons
(which was the primary metric in 2022), exact-
match excluding singletons and head-match includ-
ing singletons. All four metrics result in the same
ordering of systems with a single exception of the
Ondfa system, which is the sixth best according
to exact-match, but the fourth best according to
other metrics. This is caused by the fact that for
all but two datasets (cf. description of Ondfa in
Section 4.2), Ondfa predicted only the head word
and the span was always just this single word.

The third edition of the shared task is also a good
time to look into how the state of the art in multi-
lingual coreference resolution develops. However,
the results are not directly comparable across the
years as the CorefUD collection has grown and
some details of the shared task have changed over
the years. The baseline system has not fundamen-
tally changed, set aside that it has been trained on
slightly different data. We can thus compare the
relative improvement of the best system over the
baseline. As shown in Table 4, while the gain over
the baseline was 31% last year, this year it is 39%.

Table 5 shows recall, precision, and F1 for six
metrics. The F1 scores of the first five metrics
(MUC. B3, BLANC, and LEA) result in the same
ordering of systems (same as the primary metric)
except for RitwikmishraFix, which is slightly better
than DFKI-CorefGen in BLANC and LEA. Most
of the systems have higher precision than recall for
all the metrics, but the highest disbalance is in the
BASELINE system. CorPipe* are the only systems
that have higher recall than precision at least for
CEAF-¢e (but other metrics have similar precision
and recall).

The MOR metric (mention overlap ratio) mea-
sures only the mention matching quality, while ig-
noring the coreference, but even then the ordering
of systems is similar to the primary metric (Ondfa is
the fourth worst according to MOR, again because
it does not predict full spans for most datasets).

Table 6 shows the primary metric (CoNLL F1
head-match) for individual datasets. The winner
(CorPipe-2stage) is the best system for 15 out of 21
datasets, so the results are more diverse than last

Main Results
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year, when the winner (CorPipe) was the best sys-
tem across all datasets and languages. Interestingly,
there is a substantial improvement of all systems
on tr_itcc relative to the last year (BASELINE-GZ
51.16% this year vs. BASELINE-2023=22.75%
last year; the winner has 68.18 this year vs. 55.63
last year). This is due to the fixes in the dataset
and possibly because zero anaphora was newly in-
troduced in the source corpus (Pamay and Eryigit,
2024).

5.2 Evaluation of Zeros

Table 7 shows the performance of the systems on
zero anaphora resolution on datasets with anno-
tated zeros. Let us start with a comparison of the
BASELINE and BASELINE-GZ systems, which dif-
fer only in the nature of the empty nodes (predicted
vs. gold).'® It confirms that by moving to the re-
alistic setup for zeros the task became much more
challenging, illustrated by the performance drop in
the F1 score by 5-19 points for most of the datasets.
Note that for some datasets (cs_pdt, cs_pcedt,
pl_pcc) the task is so challenging that none of the
systems was able to outperform BASELINE-GZ.
If we ignore the results of BASELINE-GZ, the
winning CorPipe-2stage system dominates the per-
formance on zeros across most of the languages,
being outperformed by the Ondfa systems on 4
datasets. This correlates with the CoNLL scores
across languages observed in Table 6. Interest-
ingly, we observe huge disproportion in the perfor-
mance changes between the winning system and
the BASELINE-GZ across the datasets of the same
language. Whereas the BASELINE-GZ is better
by 3 points on cs_pdt, it is better by 14 points
on CS_pcedt. Similarly, while the BASELINE-GZ
is worse by 2 points on hu_korkor, it is better by
19 points on hu_szeged. It suggests significant
differences in the guidelines for zero annotation
across the datasets, even of the same language.
Annual comparison of the results performed by
baselines run in the gold zero setup (BASELINE-
GZ and BASELINE-2023) shows similar scores on
zeros, which confirms that these baselines are com-
parable. The only exception is pl_pcc, on which
BASELINE-GZ improved by 25 percentage points.
This can be explained by the fixes in the CorefUD
conversion pipeline from the source corpus that fo-

!%The gold empty nodes in the testset were not available to
the participants, thus BASELINE-GZ is not directly compara-
ble with the other systems; it serves as a comparison with the
previous year, when all empty nodes were gold.



excluding singletons with singletons

system head-match partial-match  exact-match head-match
CorPipe-2stage 7390 7219 (-1.71) 69.86 (-4.04) 75.65 (+1.75)
CorPipe 7275 70.30 (-2.45) 68.36 (-4.39) 74.65 (+1.90)
CorPipe-single 70.18 68.02 (-2.16) 66.07 (-4.11)  71.96 (+1.78)
Ondfa 69.97 69.82 (-0.15) 40.25 (-29.72) 70.67 (+0.69)
BASELINE-GZ 54.60 53.95 (-0.65) 52.63 (-1.97) 47.89 (-6.71)
BASELINE 53.16 5248 (-0.68) 51.26 (-1.90) 46.45 (-6.71)
DFKI-CorefGen 33.38 3236 (-1.02) 30.71 (-2.68)  38.65 (+5.26)
RitwikmishraFix 30.63 3221 (+1.58) 28.27 (-2.35) 27.05 (-3.58)
Ritwikmishra 16.47 16.65 (+0.17) 14.16 (-2.31) 1542 (-1.06)
WINNER-2023 7490 73.33 (-1.57) 7146 (-3.44) 76.82 (+1.91)
BASELINE-2023 56.96 56.28 (-0.68) 54.75 (-2.21) 49.32 (-7.64)

Table 4: Main results: the CoONLL metric macro-averaged over all datasets. The table shows the primary metric
(head-match excluding singletons) and three alternative metrics: partial-match excluding singletons, exact-match
excluding singletons and head-match with singletons. A difference relative to the primary metric is reported in
parenthesis. The best score in each column is in bold. The systems are ordered by the primary metric. The last two
rows showing the winner and baseline results from CRAC 2023 are copied from the last year Findings (Zabokrtsky
et al., 2023), and thus are not directly comparable with the rest of the table because both the test and training data
have been changed (CorefUD 1.1 vs. 1.2). Similar notes apply to the following tables.

system MUC B3 CEAF-e BLANC LEA MOR
CorPipe-2stage  79/81/80 69/74/71 71/70/70 67/73/70 66/71/68 78/82/80
CorPipe 79/80/79 69/72/70 71/68/69 67/72/69 65/69/67 78/80/79
CorPipe-single ~ 77/76/77 68/67/67 69/66/67 66/66/66 64/63/64 79/77/77
Ondfa 75/81/78 64/72/67 64/67/65 62/71/65 61/69/64 41/87/54
BASELINE-GZ  56/75/63 43/63/50 46/57/50 41/63/48 39/58/46 49/86/61
BASELINE 54/73/62 41/62/49 44/56/49 39/62/46 37/57/44 48/85/60
DFKI-CorefGen 37/52/41 26/38/29 25/42/30 21/39/23 21/31/23 43/71/50
RitwikmishraFix 33/50/36 26/43/28 27/37/29 24/39/24 24/39/25 30/65/36
Ritwikmishra 18/31/18 15/27/15 15/22/16 13/23/12 13/25/13 17/38/20

Table 5: Recall / Precision / F1 for individual secondary metrics. All scores macro-averaged over all datasets.
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CorPipe-2stage 8222 74.85 77.18 61.58 69.53 71.79 75.66 79.60 68.89 82.46 68.16 71.34 72.02 63.17 69.97 75.79 79.81 78.01 78.50 83.22 68.18
CorPipe 81.02 73.71 75.84 60.72 71.68 71.45 74.61 79.10 69.75 80.98 68.77 68.53 70.86 60.32 68.12 75.78 79.55 77.52 77.03 83.09 59.37
CorPipe-single 80.42 72.82 74.82 57.11 61.62 67.02 74.39 78.08 58.61 79.75 67.89 66.01 67.18 60.09 67.32 75.19 78.92 76.60 75.20 81.21 53.43
Ondfa 82.46 70.82 75.80 54.97 71.40 7191 70.53 74.15 55.58 81.94 62.69 61.64 61.56 64.86 69.26 71.97 74.51 72.07 76.34 80.47 64.49
BASELINE-GZ 69.59 68.93 66.15 27.56 47.21 55.65 63.18 63.54 33.08 70.64 53.62 31.87 24.60 41.65 54.64 62.00 64.96 63.70 67.00 65.83 51.16
BASELINE 68.32 64.06 63.83 24.51 47.21 55.65 63.19 63.54 33.08 69.58 53.62 28.76 24.60 35.14 54.51 62.00 64.96 63.70 66.24 65.83 44.05
DFKI-CorefGen 3477 32.89 30.88 22.52 23.07 45.85 35.49 46.59 32.69 37.76 36.34 25.87 37.96 23.53 33.85 42.73 37.92 35.69 27.19 47.79 9.65
RitwikmishraFix 27.05 0.00 0.00 6.79 2535 4890 48.64 61.47 53.12 30.04 43.63 5.60 0.12 33.40 30.28 44.31 56.41 53.17 0.00 53.89 20.97
Ritwikmishra 0.00 0.00 0.00 6.79 2535 4890 0.00 0.00 53.12 0.00 43.72 5.60 0.09 33.40 30.32 44.78 0.00 0.00 0.00 53.88 0.00
BASELINE-2023 65.26 67.72 65.22 — 44.11 57.13 63.08 — 35.19 66.93 5531 - — 40.71 5532 63.57 65.10 65.78 66.08 69.03 22.75

Table 6: Results for individual languages in the primary metric (CoNLL).

87



©

5 5 3 g 3 o 2,
= 5 8 o 2 g S 2 8 9
S o 9 9 i o < 2 g 2
[ (7] (7] 3 7] = > > — |
system o 3] 8] o o) ) < < [} =
CorPipe-2stage 88/85/86 77/82/80 59/74/66 75/78/76 90/92/91 84/88/86 56/75/64 83/68/75 90/84/87 83/80/82
CorPipe 83/78/81 T71/76/74 62/63/62 75/74/75 84/84/84 79/83/81 55/74/63 71/68/70 85/78/82 70/68/69
CorPipe-single 81/77/79 72/72/72 63/58/60 75/72/73 83/83/83 80/77/78 52/71/60 72/65/68 83/75/79 66/60/63
Ondfa 88/86/87 75/84/79 55/81/66 71/74/72 90/91/90 78/85/81 57/78/66 83/72/77 90/83/86 82/82/82
BASELINE-GZ 82/82/82 82/84/83 78/82/80 60/72/66 87/87/87 64/66/65 60/65/62 53/59/56 89/86/87 75/82/78
BASELINE 79/76/77 70/74/72 55/69/61 52/62/56 83/83/83 63/70/66 41/61/49 49/57/53 85/78/82 68/71/70
DFKI-CorefGen 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
RitwikmishraFix 0/50/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
Ritwikmishra 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
WINNER-2023 93/92/92 91/92/92 87/88/87 — 94/95/95 — 82/89/85 88/70/78 75/69/72 -
BASELINE-2023 82/82/82 81/84/82 77/81/79 — 87/88/87 - 60/68/64 61/57/59 50/80/62 -

Table 7: Recall / Precision / F1 for anaphor-decomposable score of coreference resolution on zero anaphors across
individual languages. Only datasets containing anaphoric zeros are listed (en_gum excluded as all zeros in its
test set are non-anaphoric). Note that these scores are directly comparable to neither the CoNLL score nor the
supplementary scores calculated with respect to whole entities in Table 5.

cused on zeros. The annual comparison of relative
improvements of the best systems over these base-
lines in terms of the zero anaphora score reveals
that the improvements are much lower than they
were last year, again confirming the more difficult
nature of this year’s setup for zeros.

5.3 Further analysis

Similarly to previous years, we provide several ad-
ditional tables in the appendices to shed more light
on the differences between the submitted systems.

Tables 8-9 show results factorized according to
the different universal part of speech tags (UPOS)
in the mention heads. Table 8 contains results on
datasets where all entities without any mention with
a given UPOS as head were deleted. Table 9 con-
tains results on datasets where all mentions without
a given UPOS as head were deleted, so these results
may be a bit misleading because e.g. the PRON
column does not consider all pronominal coref-
erence, but only pronoun-to-pronoun coreference.
An entity with one pronoun and one noun mention
is excluded from this table (because it becomes a
singleton after deleting noun or pronoun mentions
and singletons are excluded from the evaluation in
these tables).

Tables 10-13 show various statistics on the enti-
ties and mentions in a concatenation of all the test
sets. Note that such statistics are mostly influenced
by larger datasets.

Table 14 shows the distribution of error types
based on the methodology of Kummerfeld and
Klein (2013) and reveals that even systems with
similar final F1 scores have different strengths and
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weaknesses.

6 Conclusions and Future Work

The paper summarizes the 2024 edition of the
shared task on multilingual coreference resolution.
Given that it is the third edition already, let us ex-
plore some generalizations.

First, the set of covered languages keeps grow-
ing: 11 languages in 2022, 13 languages in 2023,
and 16 languages in 2024. Maintaining the pace
of adding a few new languages each year seems
realistic in the near future.

Second, in terms of the number of participating
systems, the picture is mixed: 8 systems (5 teams)
in 2022, 9 systems (7 teams) in 2023, and 6 systems
(4 teams) in 2024. The relatively limited amount
of participating teams can be partially attributed to
the fact that the coreference resolution community
is much smaller than e.g. the dependency parsing
community. But still, it is an open question why
the shared task has not attracted more coreference
research teams.

Third, although there is a great variance in perfor-
mance both among individual systems and across
languages, the ordering of the systems remains rel-
atively stable. However, it is not straightforward
to quantify the growth of the state of the art along
the individual shared task’s editions; comparing
simply the absolute values of the primary score
would not make sense. The main reason is that the
data collection gradually became bigger and more
diverse (e.g., by including typologically different
languages, with different scripts and different data
sizes). At the same time, the task itself differed



slightly too, moving closer to real-world scenarios
(by not providing the participants with gold mor-
phosyntactic annotation and gold zero mentions in
the input), which makes the task harder too.

One of the possible approaches to isolating the
state-of-the-art growth trend is to use the baseline
system’s performance as the point of reference
because the baseline’s architecture remained un-
changed throughout the three years. The winner
system outperformed the baseline’s primary score
by 21 % relative in 2022, by 31 % relative in 2023,
and by 39 % relative in 2024. This indicates that
the task of multilingual coreference resolution is
still in a quickly progressing phase. We believe that
the existence of this shared task series was one of
the most influential factors behind this growth.

For future iterations of this shared task, we plan
to provide a sequence-to-sequence (text-to-text)
format for the training, evaluation and testing data.
This new format will be designed to simplify the
use of large language models (LLMs) like GPT,
LLaMA, or Claude for the coreference resolution
task.

The text-to-text format is particularly well suited
for prompting approaches, which have shown sig-
nificant promise in various NLP tasks. By offering
data in this format, we aim to encourage more di-
verse approaches to the problem, potentially lead-
ing to novel solutions and improved performance.

We will release this new data format alongside
the existing CoNLL-U format, giving participants
the flexibility to choose the most suitable format
for their systems.
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A CorefUD 1.2 Details

Ancient Greek PROIEL grc_proiel (Haug and Jghndal, 2008)

Ancient Hebrew PTNK hbo_ptnk (Swanson et al., 2024)

Catalan AnCora ca_ancora (Taulé et al., 2008; Recasens and Marti, 2010)
Czech PCEDT cs_pcedt (Nedoluzhko et al., 2016)

Czech PDT cs_pdt (Haji¢ et al., 2020)

English GUM en_gum (Zeldes, 2017)

English ParCorFull en_parcorfull (Lapshinova-Koltunski et al., 2018)
English LitBank en_litbank (Bamman et al., 2019)

French Democrat fr_democrat (Landragin, 2021)

German ParCorFull de_parcorfull (Lapshinova-Koltunski et al., 2018)
German PotsdamCC de_potsdam (Bourgonje and Stede, 2020)
Hungarian KorKor hu_korkor (Vadiész, 2022)

Hungarian SzegedKoref hu_szeged (Vincze et al., 2018)

Lithuanian LCC It lcc (Zitkus and Butkien¢, 2018)
Norwegian Bokmal NARC no_bokmaalnarc (Mahlum et al., 2022)

Norwegian Nynorsk NARC no_nynorsknarc ~ (Mahlum et al., 2022)

Old Church Slavonic PROIEL cu_proiel (Haug and Jghndal, 2008)

Polish PCC pl_pcc (Ogrodniczuk et al., 2013, 2015)
Russian RuCor ru_rucor (Toldova et al., 2014)

Spanish AnCora es_ancora (Taulé et al., 2008; Recasens and Marti, 2010)
Turkish ITCC tr_itcc (Pamay and Eryigit, 2018)

B CoNLL results by head UPOS

system NOUN PRON PROPN DET ADJ VERB ADV NUM
CorPipe-2stage 70.23  69.93 76.23 49.20 42.45 33.64 28.70 38.39
CorPipe 69.06  69.66 75.07 5235 4299 35.02 33.04 37.49
CorPipe-single 66.69  66.90 71.72 53.18 36.57 30.95 27.74 37.06
Ondfa 66.79  66.54 69.18 49.08 33.61 2690 29.98 34.18
BASELINE-GZ 48.49 55.58 52.18 3239 25.05 11.34 17.67 28.09
BASELINE 46.77 49.73 51.51 33.08 23.65 10.83 16.89 26.66

DFKI-CorefGen 30.49 33.97 31.54 18.50 10.11 2772 856 10.57
RitwikmishraFix 2731 29.17 31.28 17.76 12.07 7.59 625 8.57
Ritwikmishra 15.92  16.67 16.64 1297 8.4l 549 481 6.48

Table 8: CoNLL F1 score (head-match) evaluated only on entities with heads of a given UPOS. In both the gold
and prediction files we deleted some entities before running the evaluation. We kept only entities with at least one
mention with a given head UPOS (universal part of speech tag). For the purpose of this analysis, if the head node
had deprel=flat children, their UPOS tags were considered as well, so for example in “Mr./NOUN Brown/PROPN”
both NOUN and PROPN were taken as head UPOS, so the entity with this mention will be reported in both columns
NOUN and PROPN. Otherwise, the CONLL F1 scores are the same as in the primary metric, i.e. an unweighted
average over all datasets, head-match, without singletons. Note that when distinguishing entities into events and
nominal entities, the VERB column can be considered as an approximation of the performance on events. One of
the limitations of this approach is that copula is not treated as head in the Universal Dependencies, so, e.g., phrase
She is nice is not considered for the VERB column, but for the ADJ column (head of the phrase is nice).
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system NOUN PRON PROPN DET ADJ VERB ADV NUM
CorPipe-2stage 60.43 60.00 61.33 49.58 47.09 47.07 48.05 46.82

CorPipe 59.37 58.26 60.22 47.00 4431 43.99 44.53 44.31
CorPipe-single 55.50 55.25 54.64 43.08 40.28 39.77 39.77 3991
Ondfa 57.22  54.58 56.04 4421 41.65 41.28 41.34 41.42
BASELINE-GZ 38.50 4545 39.85 28.88 26.23 26.06 26.29 26.06
BASELINE 37.30  39.46 39.46 27.84 25.52 25.12 25.56 25.30

DFKI-CorefGen 20.99 26.05 22771 16.68 14.24 14.04 1446 14.20
RitwikmishraFix 25.26  26.08 25.53 18.06 17.01 16.27 1643 16.49
Ritwikmishra 1429  14.05 12.74 10.38 9.56 8.89 9.12 9.3

Table 9: CoNLL F1 score (head-match) evaluated only on mentions with heads of a given UPOS. In both the gold
and prediction files we deleted some mentions before running the evaluation. We kept only mentions with a given
head UPOS (again considering also deprel=flat children).

C Statistics of the submitted systems on concatenation of all test sets

The systems are sorted alphabetically in tables in this section. The predictions of the Ritwikmishra system
were not valid CoNLL-U and thus are excluded in these tables (the script collecting the statistics failed),
see the numbers of the RitwikmishraFix system instead.

entities distribution of lengths
system total per 1k length 1 2 3 4 5+
count words max avg. [%] [%] (%] [%] [%]
gold 47,680 102 509 22 61.0 219 68 33 70
BASELINE 15,168 33 154 39 00 574 170 7.7 179
BASELINE-GZ 15,534 33 154 39 00 574 171 78 177
CorPipe 49,943 107 288 2.1 621 205 7.1 33 7.0

CorPipe-2stage 49,980 107 299 21 624 207 69 32 638
CorPipe-single 50,179 108 573 21 624 202 70 34 7.1
DFKI-CorefGen 33,188 71 191 21 703 149 57 26 64
Ondfa 48,739 105 203 21 635 201 64 31 69
RitwikmishraFix 6,703 14 637 35 292 373 13.0 6.0 145

Table 10: Statistics on coreference entities. The total number of entities and the average number of entities per 1000
tokens in the running text. The maximum and average entity “length”, i.e., the number of mentions in the entity.
Distribution of entity lengths (singletons have length = 1). The four best systems (CorPipe* and Ondfa) have the
statistics similar to the gold data (although they all slightly overgenerate, i.e. predicts more entities than in the gold
data). The remaining systems undergenerate and the two baselines and RitwikmishraFix also predict on average
longer entities (i.e. with more mentions) than in the gold data.
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mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]
gold 74,305 159 100 29 126 440 181 73 3.6 143
BASELINE 59,859 128 27 21 148 474 178 6.6 3.1 10.2
BASELINE-GZ 61,277 131 27 2.1 148 470 179 6.8 3.1 105
CorPipe 74,076 159 100 29 125 446 181 7.3 35 14.0
CorPipe-2stage 73,239 157 116 28 124 449 181 173 35 137
CorPipe-single 75,350 162 145 28 129 443 181 74 35 138
DFKI-CorefGen 44,731 96 65 26 00 574 205 70 33 118
Ondfa 71,531 153 22 1.1 123 821 21 1.1 05 20
RitwikmishraFix 21,458 46 16 15 00 665 226 70 21 1.8

Table 11: Statistics on non-singleton mentions. The total number of mentions and the average number of mentions
per 1000 words of running text. The maximum and average mention length, i.e., the number of nonempty nodes
(words) in the mention. Distribution of mention lengths (zeros have length = 0). The four best systems (CorPipe*
and Ondfa) generate a similar number of non-singleton mentions as in the gold data (although last year, the three
best systems overgenerated mentions). The average length of mentions predicted by Ondfa is notably lower than in
the gold data because Ondfa predicted single-word mentions only in all datasets except for cs_pcedt and It_lcc. No
system predicts long mentions (4 and 5+ words) more frequently than in the gold data, although CorPipe is near to

the gold distribution.

mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]
gold 29,087 62 81 34 18 308 247 137 75 216
BASELINE 0 0 0 00 00 00 00 00 00 00
BASELINE-GZ 0 0 0 00 00 00 00 00 00 00
CorPipe 31,030 67 163 35 20 29.7 257 138 7.6 214
CorPipe-2stage 31,164 67 163 35 21 299 259 139 7.5 207
CorPipe-single 31,309 67 93 35 1.7 298 256 139 76 214
DFKI-CorefGen 23,342 50 71 29 00 355 285 134 6.7 159
Ondfa 30,971 66 19 10 21 93 05 03 02 05
RitwikmishraFix 1,959 4 13 18 00 456 400 104 26 14

Table 12: Statistics on singleton mentions. See the caption of Table 11 for details. The two baseline systems do not
attempt to predict singletons at all. Interestingly, last year all systems predicted 7-9 times less singletons than in the
gold data. This year, the four best systems (CorPipe* and Ondfa) predict slightly more singletons than in the gold

data. Note that singletons are not annotated in all the (gold) datasets.
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mention type [%]

distribution of head UPOS [%]

system w/empty w/gap non-tree NOUN PRON PROPN DET ADJ VERB ADV NUM  _ other
gold 147 0.7 1.6 402 286 147 67 25 22 11 05 28 06
BASELINE 159 0.0 1.6 36.6 203 156 75 23 09 11 03149 05
BASELINE-GZ 16.0 0.0 1.7 371 314 154 75 22 10 1.1 04 34 05
CorPipe 14.0 0.0 1.8 404 190 149 69 23 1.8 1.1 04125 0.7
CorPipe-2stage 13.8 0.0 1.9 403 19.1 150 69 24 16 1.1 05125 0.6
CorPipe-single 144 0.0 1.8 405 1838 147 6.8 23 1.7 1.1 05129 0.6
DFKI-CorefGen 0.0 0.0 39 407 278 163 100 14 10 12 04 00 12
Ondfa 126 0.0 0.2 40.6 192 148 69 25 1.6 12 05123 05
RitwikmishraFix 0.1 0.0 0.8 289 313 277 57 18 23 08 08 00 0.6

Table 13: Detailed statistics on non-singleton mentions. The left part of the table shows the percentage of: mentions
with at least one empty node (w/empty); mentions with at least one gap, i.e. discontinuous mentions (w/gap); and
non-treelet mentions, i.e. mentions not forming a connected subgraph (catena) in the dependency tree (non-tree).
Note that these three types of mentions may be overlapping. We can see that none of the systems attempts to predict
discontinuous mentions. DFKI-CorefGen has a notably higher percentage (3.9%) of non-treelet mention spans. The
right part of the table shows the distribution of mentions based on the universal part-of-speech tag (UPOS) of the
head word. Note that this distribution has to be interpreted with the total number of non-singleton mentions predicted
(as reported in Table 11) in mind. For example, 31.4% of non-singleton mentions predicted by BASELINE-GZ
are pronominal (head=PRON), while there are only 28.6% of pronominal non-singleton mentions in the gold data.
However, BASELINE-GZ predicts actually less pronominal non-singleton mentions (61277%31.4%=19241) than
in the gold data (74305%28.6%=21251). Note that the same word may be assigned a different UPOS tag in the
predicted and gold data (in case of empty nodes or if the gold data includes manual annotation). The empty UPOS
tag (_) is present only in the empty nodes and none of the systems attempts to predict the actual UPOS tag of empty
nodes (they all keep the empty tag from the baseline predictor of empty nodes, although about 78% of the empty
nodes in the gold devset are pronouns).

Extra Extra Conflated  Missing  Missing Divided
Span . . . . . .

System Errors Entity Mention Entities Entity Mention Entity

Errors Errors Errors Errors Errors Errors
BASELINE [ | I N Ll I I I
BaseLiNe-GZ [ ] ] N | N m | ] .
CorPipe I | N N I ] Il N |
CorPipe-2stage [ ] ] W I | | ] |
CorPipe-single 1] I N I ] ] N
DFKI-CorefGen [ | N | N | . Il | . I
Ondfa B BN N I ] H 1
RitwikmishraFix [ ] HN ] K| L . o ]
Most Errors 22120 2711 10709 3570 15095 20088 2493

Table 14: Distribution of error types based on the methodology of Kummerfeld and Klein (2013). By gradually
transforming the prediction files into gold data, we can classify several types of transformations, which then map to
types of errors. The number in the last row is the maximal total number of errors (summed over all datasets) of
the given type, that any of the predictions made. The partially filled bars display the percentage of the maximal
number of errors in the given column. The table should be viewed column-wise to compare individual prediction
systems. The Span Errors column shows once again that Ondfa does not attempt to predict the whole span (only the
head). CorPipe-single and CorPipe are the two worst systems in the number of Extra Entity and Extra Mention
errors. However, according to Table 5, these systems have recall as high as precision, while other systems (e.g.
Ondfa) have recall much lower; thus the high number of extra entities and mentions seems to be a good trade-off.
Interestingly, CorPipe-2stage has the same recall as CorPipe (in almost all metric), but a slightly higher precision in
Table 5, which corresponds to the relatively lower number of Extra Entity and especially Extra Mention errors.
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