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Abstract

In this article, we analyse coreference resolu-
tion in encoder- and decoder-based approaches
in the Polish language. We convert the Pol-
ish Coreference Corpus into the instructions
suitable for training language models and cre-
ate supplementary data based on examples that
are difficult for encoder-based models, analyse
them and create additional questions for more
precise mention boundary detection and other
ambiguities found.

We propose an evaluation framework for our
instructions. The best closed model, Claude
3 Sonnet, achieves 44.52 CoNLL Fj in
instruction following, zero-shot setting, which
is surpassed by the fine-tuned Llama 3.1 8B
model, which achieves 46.54 F.

1 Introduction

Coreference resolution (CR) is traditionally a part
of classical natural language processing (NLP)
pipeline tasks, treated as a discriminative prob-
lem. Until recently, most of the solutions were
encoder-based architectures (Liu et al., 2023; Mar-
tinelli et al., 2024). Generative approach has been
discussed as an alternative, starting with the for-
mulation of coreference resolution as a question
answering task (Wu et al., 2020) and the advance-
ments in language models. Thus, a comparison
between these two approaches is needed.

A broad focus on large language models with
a high number of parameters (Touvron et al.,
2023; Dubey et al., 2024), which can be easily
trained using human-readable formats of training
data, provides an opportunity to reframe the CR
problem and improve results. Improvements in
encoder-based solutions, which are in exchange
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much faster (thanks to smaller models), may lead
to easier applicability of CR in NLP pipelines.

In this article, we analyse coreference resolu-
tion in encoder- and decoder-based approaches
and discuss the possible advantages of generative
modelling in coreference resolution. Our research
case is the Polish language.

For this task, both groups of models are evalu-
ated, an error analysis is conducted, and the poten-
tial of providing supplemental Winograd-like fine-
tuning for LLMs is explored.

Smaller LLMs, such as Llama 3.1 8B, fine-
tuned on our instructions achieve results compa-
rable to bigger, commercial, closed models such
as Claude 3 Opus. However, these results are far
below the levels of custom architectures. These re-
sults support the focus of further research on build-
ing of new training resources for the Polish lan-

guage.
2 Related Work

The following Section analyses elements of coref-
erence resolution evaluation related to comparing
encoder and decoder approaches.

2.1 Coreference Evaluation

The main resource for CR in the Polish language
is the Polish Coreference Corpus (PCC) (Ogrod-
niczuk et al., 2016) which has been included
in the multilingual coreference dataset, CorefUD
(Nedoluzhko et al., 2022). The most commonly
compared CR metric is the CoNLL F} score. This
metric, along with others, can be calculated by the
coreference scorer (Yu et al., 2023) which evalu-
ates coreference predictions in the CorefUD for-
mat and has been used in CR challenges (Zabokrt-
sky et al., 2022, 2023).
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2.2 Language Models in Coreference
Resolution

There have been multiple LLM-based coreference
resolution systems proposed recently that can be
grouped into two categories: (1) LLMs usage is
limited to annotating texts in a specific format as
in (Hicke and Mimno, 2024; Le and Ritter, 2023;
Gan et al., 2024), (2) LLM is incorporated into
processing framework as a part of an algorithm
e.g. controlling the incremental input to LLM and
decoding it (Bohnet et al., 2023), extracting men-
tions via LM (Skachkova et al., 2023). This sys-
tem is considered the best known to us solution for
the English language.

The first approach (1) requires fewer steps of
work. There is no custom data modelling, archi-
tecture, or optimisation needed, only supervised
fine-tuning of a language model. The annotation
schema in this approach can be not expressive
enough. For example, the approach of Hicke and
Mimno (2024) does not include any texts with mi-
nor text alterations in the evaluation, only evalu-
ates exact match scores and requires strict match-
ing of index clusters. Gan et al. (2024) does not
analyse the detection of mentions and uses gold
mentions instead.

The second approach (2) gives state of the art
results thanks to language models’ great common
sense reasoning about language and world knowl-
edge. Bigger pre-trained models tend to score
higher in CR benchmarks (Hicke and Mimno,
2024), as in other tasks. However, in this sec-
ond approach, there is still a custom architecture
needed and coreference reasoning cannot be used
directly to improve the general LM performance.

2.3 Encoder-based Solutions

Best-performing solutions for coreference resolu-
tions have moved to an end-to-end, encoder-based
approach (Lee et al., 2017), which has been fur-
ther improved (Kirstain et al., 2021). The Maver-
ick system (Martinelli et al., 2024) presents sev-
eral improvements to the state-of-the-art encoder-
based end-to-end architecture for the English lan-
guage. Most importantly, it sets the maximum
mention span length as a sentence level parame-
ter based on sentence length!.

'Tt should be noted that the Polish Coreference Corpus
contains multi-sentence mentions which are not detected by
this architectural approach. The inclusion of longer mentions
in the training set, which are more numerous (372 mentions
with more than 35 tokens), could yield comparable advan-
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These improvements lead Maverick to achieve
scores comparable to decoder-based solutions but
with a much shorter inference time. However,
the benchmark results for coreference resolution
plateaued at slightly above 80% CoNLL F} score.
An encoder-based approach requires modelling of
all edge cases in data structures and model archi-
tecture. The gains from corrections and inclu-
sion of new edge-cases are small. For example,
the CAW system (D’Oosterlinck et al., 2023) im-
proves the score of the earlier model for the 0.9
CoNLL Fj score.

2.4 Polish Language

Previous attempts to evaluate coreference resolu-
tion in the Polish language have been outlined
by Saputa (2022) who compares the transformer-
based end-to-end approaches with previous sys-
tems and discusses dataset-specific modelling for
Polish. The performance of models in the Polish
language was also discussed as a part of multi-
lingual systems in recent Shared Tasks on Multi-
lingual Coreference Resolution (Zabokrtsky et al.,
2022, 2023).

3 Challenges for Current Coreference
Resolution Systems

3.1 Beyond Annotation in Coreference
Resolution

Due to the typical formulation of the task, a pre-
diction of a set of clusters of coreferential men-
tions, the error analysis of the models is difficult
in both qualitative and quantitative way. This was
addressed by developing different CR metrics and
tools for error analysis, e.g., the taxonomy of er-
rors (Kummerfeld and Klein, 2013). Most impor-
tantly, the score of coreference resolution (the cor-
rect grouping of mentions into coreferential clus-
ters) cannot be higher than the mention detection
score (the correct recognition of all mentions in
the text with their proper span limits). This means
that mention detection (and the definition of a
mention) has a strong impact on the overall coref-
erence resolution score.

tages as in the case of multi-sentence mentions (223 men-
tions) from a modelling perspective. There is a 91-mention
overlap between these two categories: multi-sentence, very
long mentions. However, reducing memory overhead is of
substantial benefit to the training process.



3.2 Sentence-level Reasoning

One of the frequently occurring errors in mention
recognition involves subject clauses, both subordi-
nate (Example 1) and coordinate (Example 2):

(1) Zresztq fundacje musiatyby rozbudowywad
do tych celow jakies specjalne aparaty
urzedniczo-sledcze, co jest absurdem.
‘Besides, NGOs would have to develop some
special clerical and investigative apparatus
for these purposes, which is absurd.’

(2) Wydtuzyta sie droga dzieci do szkot i to takze
budzi powszechne niezadowolenie.

“The journey of children to school has length-
ened and this, too, is causing widespread dis-

satisfaction.’

Mentions were often not detected in similar con-
texts where mention coreferentiality answers the
questions of who? or what?, as in the examples
above. The effectiveness of the algorithm is sim-
ilarly low in the case of mentions in adverbial
clauses. Thus, these types of problems were ad-
dressed in Section 4.2.

4 Dataset

We convert the Polish Coreference Corpus
(Ogrodniczuk et al., 2016) into the instruction
format for the evaluation of language models
that is suitable for training coreference resolu-
tion in the generative approach. The dataset
consists of the converted, annotated texts, and
two types of supplementary data. The addi-
tional data taken from the original collection
that is inspired by Winograd-like challenge and
post-training approaches to language models: (1)
question-answering datasets of examples that are
difficult for encoder-based CR model to answer
correctly, (2) preferences for answer style and rea-
soning between models. These supplementary
data are motivated by the problems described in
Section 3.

4.1 Conversions of PCC into Instructions

The instructions use two formats: bracket-style
and list-style. In brackets format, the answer
should include the original text of the prompts
with mentions annotated in brackets referring to
the cluster id (Appendix B.1) e.g.: [Man]:1. In
list format, the model is asked to construct in its
answer a list of clusters with all mentions listed
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for each cluster (Appendix B.2). The second for-
mat is resembling a chain-of-thought, incremen-
tally focusing on next entity in the text. Table 1
presents the number of instructions of each type.

) Examples
Instructions Train Dev Test
Brackets-style 1463 183 182
List-style 1463 183 182
QA-style 59 7 8
Preferences 59 7 8
Table 1: Details of the instructions provided for LM

training. Examples are the entire texts (Brackets/List-
style) or sentences (QA-style and Preferences).

4.2 Extracting Difficult Examples from the
Corpus

Difficult examples for encoder-based models were
selected from the dataset after evaluating the
encoder-based model at the sentence level. The
sentences with the lowest CoNLL F} score were
analysed and used to create additional questions
for more precise mention boundary detection and
more context for other ambiguities found.
QA-style supplemental data (1) is aimed at im-
proving the detection of correct mention bound-
aries and reasoning about unclear examples in the
style of Winograd questions, which require the
model to behave as if it was performing common-
sense reasoning and possessed knowledge (Coz-
man and Munhoz, 2020). Preference-style supple-
mentary data (2) is meant to improve the reasoning
and explanatory coherence of the model answers,
especially when there are multiple possible inter-
pretations, that are resolved by annotators agree-
ment, about which there is no information in a
dataset used by encoder-based models. In this con-
text, we refer to the discussion of examples in Sec-
tion 3.1. In Appendix B.4, an example question
is shown with a gold answer and GPT-40 answer
that shows both the importance of correct mention
boundary detection and coreference reasoning.

4.3 Generating Artificial Examples with
LLMs

We used the available language models, GPT 3.5
and LLama 3.1 8B, to generate answers for the
prepared questions and assess the preferences be-
tween models in terms of correct answer, justifica-
tion of the answer, precision of citation, and use of
appropriate vocabulary.



System Open FT IF rate MD F; CONLL Fi Precision
partial match  exact match
GPT-40 X X 89.80 32.00 24.60 51.06
GPT-40-mini X X 64.00 19.32 14.68 23.85
Claude 3 Sonnet X X 100.00 47.88 44.52 62.22
Claude 3 Opus X X 100.00 48.30 36.70 69.13
Claude 3 Haiku X X 84.62 25.94 30.36 38.12
Llama-3.1-70B v X 26.32 2.99 0.81 3.72
Llama-3.1-8B v X 1.78 0.56 0.34 0.00
Llama-3.1-8B-FT v v 100.00 57.80 46.54 62.89
s2e-herbert-large v v — 78.40 69.91 73.21
s2e-herbert-base v v — 75.53 62.85 70.27

Table 2: Instruction following results of coreference resolution evaluation: Instruction Following (IF) rate, mention
detection F; (MD), CoNLL F} measure on the PCC development set. The following instruction does not apply
to s2e models as the correct output is asserted by their custom architecture. Evaluation concerns commercial

models, open models, and fine-tuned (FT) open models.

5 Evaluation

5.1 Generative Answers Parsing and
Alignment

We first tested several prompts on a small devel-
opment set and then chose one instruction (Ap-
pendix B.3) that produced the highest prompt
follow-up rate in the tests. This prompt was used
in the evaluation of language models in generative
coreference resolution.

The text alignment technique (Boyd et al,
2024) was used to match the fragment of each
model’s generative response to text from the PCC
dataset. This is an effective algorithm that allows
the modified text (answer) to be matched with the
original on the level of individual tokens. Thus,
allowing for different tokenization and modifica-
tions. Even if the generative answer has a modified
version of the texts, the mentions, provided they
are intact, should be matched with the original text
tokens. This makes it possible to evaluate corefer-
ence resolution in general not fine-tuned models
whose answers typically include other comments
and reasoning in addition to machine-annotated
text and have error-prone and alterations-prone
evaluation pipelines. This approach also takes into
account all possible comments from the model at
the beginning and at the end of the text.

The annotation format (Appendix B.1) presents
a bracketed format to annotate coreference rela-
tions. Such annotated spans are extracted us-
ing a regular expression and grouped by cluster
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id ([mention_span] :cluster_id). Text
alignment allows for comparison of span indices
in each cluster with indices in gold clusters in the
dataset, and it also enables writing the prediction
back to the conllu file, preserving the original to-
kenisation. Such conllu files are then evaluated us-
ing the coreference scorer.

5.2 Instruction Following

The following instruction is a type of task that
does not involve fine-tuning of a model, with only
the prompt instructing the model about the task
(Zhou et al., 2023). The prompt does not include
an example of a complete solution, so it can be
described as a zero-shot setting.

The instruction following (IF) rate is a measure
of the compliance of a language model with the
instructional requirements. We measure IF rate as
the correct use of the annotation schema, i.e. non-
zero results in the mention detection score. This
allows for errors, but reflects at least one correct
application of the schema described in the instruc-
tion.

In Table 2. we present the results of the evalua-
tion. The IF rate ranges from 26.32% for Llama
3.1 70B to 100% for Claude Opus. Precision
scores have been included to demonstrate that the
models typically annotate a smaller number of
coreference relations than the gold standard anno-
tations, but the predictions are more accurate than
the CoNLL F} score would suggest. This reflects
the issue of task modelling discussed in Section



3.1, which considers the challenge of annotating a
large number of relations for each text.

5.3 Instruction Fine-Tuning

We tested the smallest LLama 3.1 model (8B
parameters) with supervised fine-tuning for 4
epochs using SFTTrainer? from the Hugging-
face ecosystem accustomed to the training infras-
tructure (see Acknowledgements).

The training used the following default param-
eters: BF16 precision, batch size of 1, AdamW
optimiser, WarmupDecayLR scheduler, maximum
sequence length of 8192 tokens, and automatic
gradient accumulation. We did not perform
any kind of hyper-parameter optimisation apart
from tests of prompt instruction formulation (Ap-
pendix B.3) that were evaluated on not-tuned mod-
els for only a few texts from the training part of the
dataset.

In Table 2, we describe results from the de-
velopment part of the CorefUD Polish dataset, as
there is a publicly available gold standard for this
part. The fine-tuned model performed better than
the best non-tuned model, Claude 3 Sonnet. How-
ever, its results are much lower than our repro-
duction of the results of the start-to-end architec-
ture (Kirstain et al., 2021) that was adapted for the
Polish language by Saputa (2022). Table 2 shows
scores of non-tuned models, fine-tuned Llama and
s2e results’.

6 Conclusions and Future Work

We proposed a conversion of the Polish Corefer-
ence Corpus (PCC) into instructions suitable for
generative training, as an adaptation of the coref-
erence resolution for generative models, as well
as the evaluation framework for bracket-style an-
swers. There potential for further ablation studies
and interaction studies of the proposed resources;
for example, we did not provide here an exten-
sive analysis of the difference between training on
bracket- and list-style instructions and training on
the preferences data. These resources are aimed at
reformulation of the coreference resolution dataset
format and going beyond standard annotations to

https://huggingface.co/docs/trl/sft_
trainer

31t is worth to note that the encoder-based results obtained
here are slightly lower than the Shared Tasks state-of-the-
art results for Polish. However, since the difference between
the performance of the generative modelling is more than 20
points, we did not focus on the improvements.
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handle more fuzziness than is possible using exist-
ing available resources.

The first results of the fine-tuning are better than
the available commercial and open-source mod-
els. The differences in results between open mod-
els, commercial models, and the fine-tuned model
indicate that commercial models may have been
trained on similar types of instructions. Thus, it is
important to develop non-commercial datasets and
models as alternatives for further advancements
of natural language processing in the Polish lan-
guage.

However, the highest score is much lower than
the encoder-based approach discussed for Polish
and the decoder-based approaches discussed for
English. It means that: (1) custom encoder ar-
chitectures should be used in specific applications
that require coreference resolution, and (2) solving
multiple coreference chains during text generation
is difficult in the setting proposed in our research.
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A Other methods

A.1 Adaptation of English Winograd Schema

Translating the English Winograd Schema into
Polish proved unsuccessful in most respects due
to structural differences between the languages.
Those differences do not concern the English-
Polish pair exclusively. Emelin and Sennrich
(2021), working with German, French, and Rus-
sian, found "that not all WinoGrande samples are
suitable for the inclusion in Wino-X, as replacing
the "gap" [token in place of an ambiguous pronoun
in each schema, which can be filled by one of two
preceding nouns] with "it" can yield ungrammati-
cal or disfluent sequences" (p. 8518)

Emelin and Sennrich also used certain heuris-
tics to filter out cases that would be difficult to
translate, but most of those heuristics, however,
do not apply to the Polish language. Moreover,
the WinoMT dataset was quality checked with the
use of Python grammar checker, also known as
OpenOffice spellchecker, and it proved to be in-
sensitive to syntax and stylistic errors, which usu-
ally disqualify most Polish translations of Wino-
grad Schema Challenge examples.

Translation attempts revealed that only a hand-
ful of ambiguous structures present in the original
schema are in fact ambiguous and both grammati-
cally and stylistically correct in Polish.

In our search for difficult examples of corefer-
ence, we also carried out a literature review, aimed
specifically at finding sentences and texts contain-
ing mentions that should be ambiguous for the lan-
guage model but should not pose a challenge for a
human. This method also gave unsatisfactory re-
sults.

A.2 Creating New Examples based on
Samples Found in Previous Efforts

We got a handful of examples that proved difficult
for an existing model, but there was no apparent
pattern connecting those instances.

B Instruction Details

B.1 Generative Answer Schema

This is a fragment of text with id 307 (with original
punctuation). Mentions with cluster index appear-
ing only once appear later in the text. Singletons
(mentions appearing only once, not coreferential)
are omitted.
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kompletnie nie [zgadzam]:0 si¢ z ta interpre-
tacja ze ruch. To wskazanie [Marka Belki]:1
jest obliczone na pozyskanie przez [Bro-
nistawa Komorowskiego]:2 [elektoratu cen-
trolewicowego]:3 wszystkie badania pokazuja
ze [ten elektorat centrolewicowy]:3 jest zde-
cydowany gtosowaé na. [Komorowskiego]:2.
SLD z catym szacunkiem ma te miedzy
pie¢ a siedem procent twardego elektor elek-
toratu lewicowego a nie [centrolewicowego]:3
to po pierwsze po drugie wydaje [mi]:0

si¢ ze. akurat [mam]:0. prawo bronié
[decyzji. [marszatka Komorowskiego]:2
zeby juz teraz zglasza¢ [kandydata na

[prezesa [banku]:7]:6]:5]:4 bo po pierwsze
od poczatku [méwitem]:0 ze akurat [ta insty-
tucja]:7 w przeciwiefistwie do niektérych in-
nych.

Following English translation of the above frag-
ment:

[I]:0 completely disagree with this interpre-
tation that the movement. This indication
of [Marek Belka]:1 is calculated to win over
[Bronistaw Komorowski]:2 [the centre-left
electorate]:3 all polls show that [this centre-
left electorate]:3 is determined to vote for.
[Komorowski]:2. The SLD with all due re-
spect has those between five and seven per-
cent of the hard left electorate and not [centre-
left electorate]:3 this is first of all, secondly
it seems to [me]:0 that. just [I]:0 have. the
right to defend [the decision of. [Speaker Ko-
morowski]:2 to announce [a candidate for [the
president of the [bank]:7]:6]:5]:4 already now
because firstly from the beginning [I]:0 said
that exactly [this institution]:7 unlike some
others.

B.2 List-style Instruction

This is fragment of the list-style answer generated
for text 307. Singletons (mentions appearing only
once, not coreferential) are omitted.

grupa (1): zgadzam, mi, mam, mowitem, ja,
moja, ja, przyjmowatem, mi

grupa (2): Marka Belki, Marek Belka

grupa (3): Bronistawa Komorowskiego,




Komorowskiego, marszatka Komorowskiego,
marszatka Komorowskiego, marszatek

grupa (4): elektoratu centrolewicowego, ten
elektorat centrolewicowy, centrolewicowego

grupa (5): decyzji marszatka Komorowskiego

Following English translation of the above frag-
ment:

Mark the coreference relations in the fol-
lowing text using square brackets and sub-
scripts of the common reference - [mention
range] :index_group e.g. [son of

Zeby juz teraz zgtaszaé kandydata na prezesa

banku, ta decyzja [one of [Poles]:3]:2]:1. Note the

exact boundaries of the mentions and their or-

grupa (6): kandydata na prezesa banku,
der. Text:

jakiejs kandydatury

grupa (7): prezesa banku, tym prezesem

grupa (8): banku, ta instytucja, ta instytucja, B.4  Winograd-like Questions

bank, on Below we include one exemplary sentence-level
question in the Winograd style from the develop-
ment part of the QA-style dataset that has a wrong

answer from the GPT-40 model.

Following English translation of the above frag-
ment:

group (1): I, me, I have, I said, I, my, I, I
accepted, me

group (2): Mark Belka, Marek Belka
group (3): Bronislaw Komorowski,

Komorowski, marshal Komorowski, marshal
Komorowski, marshal

group (4): centre-left electorate, this
centre-left electorate, centre-left

group (5): the decision of Marshal
Komorowski to already put forward a
candidate for bank president, this decision

group (6): a candidate for bank president,
some candidacy

group (7): the bank president, this president

group (8): the bank, this institution, this
institution, the bank, it

B.3 Instruction Following Prompt

Zaznacz relacje koreferencji w ponizszym
tekScie za pomocg nawiaséw kwadratowych
i indekséw wspdlnej referencji - [zakres
wzmianki] :indeks_grupy np. [syn
[Jedne] z [Polek]:3]:2]:1. Zwrdé
uwage na doktadne granice wzmianek i ich
kolejnosé. Tekst:
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Question: Odpowiedz na ponizsze pytanie.
Napisz wylacznie sama odpowiedZ lub przy-
najmniej powtérz doktadna odpowiedZ os-
obno w ostatniej linii. Zacytuj doktadny
fragment, do ktérego odnosi si¢ 'to’ w
zdaniu: "Wprawdzie juz zapoznal si¢ z
naszymi broszurami, ale to mu nie wystar-
cza, chciatby przeprowadzi¢ wywiady z dos-
tojnikami, przyjrze¢ si¢ naszemu zyciu z
bliska". Odpowiedz wytacznie cytatem z tek-
stu.

GPT-40 answer: ...ale to mu nie wystarcza...

Gold answer: zapoznatl si¢ z naszymi broszu-
rami

Following English translation of the above frag-
ment:

Question:. Answer the following question.
Write only the answer itself or at least repeat
the exact answer separately on the last line.
Quote the exact passage to which ‘it’ refers in
the sentence: ‘Although he has already famil-
iarised himself with our brochures, but this is
not enough for him, he would like to interview
the dignitaries, take a close look at our life’.
Respond with a quote from the text only.

GPT-40 answer: ...but that is not enough for
him...

Gold answer: has familiarised himself with
our brochures




