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Abstract

This paper presents a multilingual coreference
resolution system DFKI-CorefGen submitted
for the CRAC Shared Task 2024. We cast the
task as text generation and use mT5-base as
the pre-trained model. Our system takes the
sixth place out of seven in the competition. We
analyze the reasons for poor performance and
suggest possible improvements.

1 Introduction

Coreference resolution is an important part of many
natural language processing (NLP) tasks like ques-
tion answering, information extraction, text summa-
rization, etc. CRAC 2024 focuses on multilingual
coreference resolution, which is less researched
than the English one. It is also more challenging
than monolingual coreference resolution, as the
training data typically come from different sources
and may be characterized by large variability in
size, domain, the definition of markables, annota-
tion consistency, completeness and quality. Ideally,
a good multilingual coreference resolution system
should be able to deal with these challenges with-
out a significant performance loss.

Currently, many state-of-the-art (multilingual)
coreference resolution systems are modifications
of the model first introduced by Lee et al. (2017).
They are typically characterized by rather complex
architectures based on pre-trained large language
models and require careful data preprocessing. One
needs to have not only novel ideas, but also very
good programming skills and mathematical knowl-
edge to modify such architectures. Additionally,
the approach has some inherent limitations, e.g., it
is tricky to use to identify discontinuous mentions
or split antecedents.

On the other hand, one is always searching
for easier ways to solve a task. Such possibil-
ity is offered nowadays by large language mod-

els 1 (LLMs). They are generative models, which
demonstrate an excellent performance in many
NLP tasks (e.g., see Zhao et al., 2023; Minaee
et al., 2024; Chang et al., 2024) and are relatively
easy to use for inference. However, they have their
shortcomings too, the most important being a huge
number of parameters, so that one needs a lot of
computational resources to use them.

The aim of this work is to check if we can cast
multilingual coreference resolution as a text gener-
ation task using a much smaller model, like mT5-
base (Xue et al., 2021).We try to keep the task as
simple as possible. No careful pre-processing is
required – the input is the raw text and the output
is the same text marked with coreference clusters.
To summarize, our contributions are as follows.

• We investigate how multilingual coreference
resolution can be represented as a purely
generative end-to-end task, and discuss chal-
lenges and limitations of the approach.

• We show that mT5-base is to certain extent
capable of the task, but obviously not large
enough to achieve good scores and compete
with the baseline.

2 Related Work

One of the seminal and most successful coreference
resolution models is the one by Lee et al. (2017). It
is a span-based mention-ranking model. Namely,
all spans in a document are treated as potential men-
tions and represented as context-depending embed-
dings. These spans are ranked and paired with the
most likely antecedent spans.

A lot of the state-of-the-art coreference resolu-
tion models, no matter multilingual or not, inherit
this architecture with some modifications. E.g., it
is the case for all the systems whose descriptions

1We use this term to refer to all models that have ≥ 13B
parameters.
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were submitted for CRAC 2023 (Žabokrtský et al.,
2023).

There also exist works casting coreference reso-
lution as a sequence-to-sequence problem. Some
early experiments are conducted by Raffel et al.
(2020), who apply the T5 model to resolve ambigu-
ous pronouns in the WNLI, WSC (Levesque et al.,
2012) and DPR (Rahman and Ng, 2012) data. They
focus on separate pronouns and do not build any
coreference chains or clusters, as the main goal is
to evaluate the model’s commonsense reasoning
ability. Similar experiments (often on the same
data), but with LLMs and few-shot prompting are
presented by Perez et al. (2021), Min et al. (2022)
and Lin et al. (2022).

Some researchers cast coreference resolution as
a question answering task and use LLMs to gener-
ate answers. E.g., Wu et al. (2020) generate a list of
coreferent mentions, given a question about an en-
tity, Yang et al. (2022) generate "yes/no" answers,
given a mention pair, Agrawal et al. (2022) gener-
ate the most likely antecedent, given an anaphor,
and Le et al. (2022) - a chain of antecedents.

Another generative coreference resolution model
is presented by Bohnet et al. (2023). It is a "link-
append" transition system based on mT5-xl. It is
multilingual and was successfully tested on En-
glish, Arabic, Chinese, Dutch, Catalan, German,
Italian and Spanish data. As input it takes an en-
coding of the previous sentences annotated with
coreference clusters, followed by the new sentence.
As output, the system produces links from men-
tions in the new sentence to either previously cre-
ated coreference clusters or to previous singleton
mentions.

Other recent sequence-to-sequence approaches
are introduced, e.g., by Urbizu et al. (2020), Paolini
et al. (2021), Liu et al. (2022) and Zhang et al.
(2023), who focus on English and generate coref-
erence annotation, i.e. mentions and clusters they
belong to, within the given text, typically using a
fine-tuned encoder-decoder model.

Our approach DFKI-CorefGen falls into the lat-
ter category, but has the following differences.
First, it is multilingual. Second, we keep the pre-
trained model frozen, and do prefix tuning (Li and
Liang, 2021) instead. Third, we process the input
text incrementally and teach our model to correct
clustering mistakes in the previous sentences as
well. Fourth, we create training data by corrupting
the coreference annotations.

3 Method

We perform multilingual mention identification 2

and coreference resolution jointly and treat the task
as text generation. Thus, given a piece of text, we
want to find all mentions and group them into clus-
ters by marking them in this text with square brack-
ets and cluster identifiers. Example 3.1 demon-
strates the idea on a short text sequence from the
en_parcorfull corpus.

Example 3.1. Gold model output
[0 [1 The victim 1] ’s brother 0] , [0 Louis Galicia
0] , told ABC station KGO in San Francisco that
[1 Frank 1] , previously a line cook in Boston , had
landed [1 his 1] dream job as line chef at [2 San
Francisco ’s Sons & Daughters 2] restaurant six
months ago . [3 A spokesperson for [2 Sons &
Daughters 2] 3] said [2 they 2] were “ shocked
and devastated ” by [1 his 1] death .

The approach is implemented as a prefix tuning
using OpenPrompt (Ding et al., 2022) with mT5-
base as the core model. We apply prefix tuning,
because mT5-base is relatively small (580M pa-
rameters) and thus not designed for inference in a
zero- or few-shot manner. To save computational
resources, we keep mT5-base frozen and tune only
the prefix of 100 randomly initialized tokens. The
input for the model, as shown in Example 3.2, con-
tains a [TEXT] sequence, a task tag "coreference",
and a [MASK] token, instead of which the model is
to generate the [TEXT] with coreference clusters.
No instructions or demonstrations are given to the
model.

Example 3.2. Model input
[TEXT] Task: "coreference" [MASK]

We train one model for all the languages, using
the official training data only. It is done on one
NVIDIA GeForce GTX TITAN X GPU with 12
GB memory for five epochs with the batch size 1,
the AdamW optimizer, learning rate of 5e-5 and a
linear schedule with warm-up.

3.1 Input data

As the input length of mT5-base is limited by 1024
sub-tokens, we have to split each document into
several pieces. In addition, our initial experiments
showed that the model struggles finding the correct
clusters, if it receives the whole raw piece of text

2Discontinuous mentions are discarded. Empty tokens
(zero anaphora), represented as an underscore "_" in the data,
are treated like all other tokens.
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as input, especially if this piece is long. We deal
with this challenge as follows.

First, we limit the length of each input piece by
five sentences that can have various lengths but are
no longer than 512 sub-tokens. Second, the task
becomes easier, if some clusters (not necessarily
always correctly marked) are already identified.
Therefore, we proceed with the task incrementally,
i.e., we start with giving the model the very first
sentence and asking to find the clusters there, then
we add the second sentence and ask the model to
do the same task, revising its initial predictions,
and so on until the five-sentence text piece is over.

To teach our model to do that, we create input
data by splitting the five-sentence pieces into over-
lapping sub-pieces of 1-5 sentences long and cor-
rupting the gold annotations in them. Now, if a
sub-piece consists of a single sentence only, we
remove all the clusters’ annotations from it, if there
are any. If the sub-piece is longer, we completely
remove the annotations from the very last sentence,
and either keep or (partially) corrupt the annota-
tions in the previous ones. Keeping sub-pieces
with correct clusters is needed to create examples
which help the model differentiate between "good"
and "bad" cluster annotations. If a gold text piece
does not contain any clusters at all, we keep it as it
is and consider it a negative example, as the model
does not need to annotate anything there at all.

Theoretically, we can create an infinite number
of training examples by corrupting the gold anno-
tations in all possible ways. However, as we are
limited by time and computational resources, we
want to pick out only the most useful ones. To do
so, we first conduct some experiments, where our
model has to deal with the raw pieces without any
clusters (wrong or correct) marked in them. Based
on these experiments’ results, we collect the most
frequent generation error types and come up with
the following modifications of the gold clusters.

First, we discard the annotations of half of the
clusters in the sub-piece. Second, we merge half
of the clusters together. Namely, we first divide all
the clusters in the sub-piece in two groups, then
merge them pairwise randomly. Third, we split half
of the non-singleton clusters. Each one is picked
out randomly and split in two. Fourth, we mix non-
singleton clusters so that the number of mentions in
each cluster stays the same, but half of the mentions
in them is wrong. Fifth, we violate some mentions’
boundaries.

Additionally, we have to deal with all sorts of

repetitions that are a problem of many generative
models including mT5 (Holtzman et al., 2020, Fu
et al., 2021). Our initial experiments show that
mT5-base has a tendency to generate excessively
the cluster markers with or without mentions in-
side, as well as duplicates of marked mentions. To
deal with these issues, we adopt two more types of
corrupted training examples.

First, we append / prepend excessive cluster iden-
tifiers to some mentions. We also insert empty ones,
i.e., opening and closing brackets with indices not
marking any mentions, like ‘[4 4]’. Second, given
some randomly chosen marked mentions, we ex-
tend the original text with their duplicates. The
number of duplicates typically varies from two to
five.

Finally, we address two more generation prob-
lems. Namely, mT5-base tends to excessively
generate either empty square brackets, or just se-
quences of numbers with or without square brack-
ets. And sometimes mT5 refuses to generate any
cluster markers at all. We deal with these problems
as follows.

Based on the observation that the sequences
of ’[’, ’]’, ’[0]’, ’[1]’, ’0’, ’[ 0 ]’ and ’[ 1 ]’ are
among the most frequent generation errors, we cre-
ate training examples by randomly inserting such
sequences into gold sub-pieces. To make the model
learn that it should not just copy the input text, but
mark some clusters, we create additional training
examples by simply removing all the gold anno-
tations from the sub-pieces. Appendix A.3 gives
examples of the main modification types discussed
above.

Importantly, we noticed that it is easier for the
model to perform the task, if the clusters’ identi-
fiers are consecutive, i.e., they should be assigned
depending on the order in which the corresponding
mentions occur. Therefore, to create each training
example we always re-index all the mentions in the
given sub-piece.

As a result, given one gold sub-piece, we make
from one to twelve training examples, depending
on the sub-piece length. Each example contains
only a single modification. We first create training
and development data from each official dataset.
Next, we randomly sample 2,000 training and 70
development examples from the respective parts
of each set, regardless of the fact that some lan-
guages, e.g., English and German, are represented
by several datasets. The distribution of positive and
negative examples in the data is shown in Table 1.
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Data
Negative

(w/o clusters)
Positive

Total
correct corrupted

train 172 (0.4%) 5,220 (12.4%) 36,608 (87.2%) 42,000
dev 4 (0.3%) 173 (11.8%) 1,293 (87.9%) 1,470

Table 1: Distribution of positive and negative examples
in the data

3.2 Inference
As mentioned earlier, the main idea is to process the
given document incrementally, annotating clusters
in each new sentence and correcting the annota-
tions in previous context. During training DFKI-
CorefGen learns to deal with sequences up to five
sentences long. However, we cannot simply split
each document into pieces of five (or less) sen-
tences, because in this case it will be impossible to
merge the clusters stretching across several pieces.
Therefore, we process the given document using
a sliding window of five sentences which moves
with a step of two sentences, so that each window
contains two new sentences. Because our model ex-
pects only one “raw” (i.e., unannotated) sentence,
these new sentences are also processed incremen-
tally, one by one. We re-index the clusters in each
piece.

Despite having special training examples aimed
at dealing with repetitions, hallucinations, or trun-
cation of text, these errors are still very common.
Therefore, after having processed a piece, we have
to align the generated and gold sequences (see ex-
ample in Appendix A.4). To avoid cumbersome
token level sequence matching, in the future we
may switch to generation of dummy tokens instead
of the real ones, similarly to Urbizu et al. (2020)
and Zhang et al. (2023). Finally, to get clusters for
the whole document, we merge clusters found in
each piece based on mentions overlap.

4 Results and discussion

DFKI-CorefGen takes the sixth place out of seven
with an average 33.38 F1 score. It is far below the
53.16 F1 score achieved by the baseline (Pražák
et al., 2021). The results for separate datasets are
given in Appendix A.1.

To large extent, bad scores can be explained by
the nature of our approach. It resolves coreference
incrementally, thus, during inference it is important
to (at least partially) correctly identify clusters in
the very first sentence. Otherwise, the errors accu-
mulate with each new sentence, so that there are
too many of them for the model to correct. We

found out that our model is not really good at this
task - it achieves the F1 score of only 42.59 when
applied on 1,996 single sentences sampled from
the gold development data. One possible reason
for that is the lack of training examples consisting
of one sentence only, as our focus is on clustering
and correction of previously assigned clusters in a
larger context. In total we only have 1,133 (2.7%)
and 33 (2.4%) training and development examples
consisting of single sentences that may or may not
have gold clusters.

However, we hypothesize that the main reason
for such an unsatisfactory performance is that mT5-
base is simply not large enough for the task. Small
model size also causes difficulties in performing the
task for longer inputs, and very persistent hallucina-
tions and repetitions in the output. E.g., currently
we limit the sub-piece length by five sentences,
which is sub-optimal, as we loose too many clus-
ters by doing so (see Appendix A.2).

Another important negative factor is a small
training data size - due to time constraint and lim-
ited computational resources we take only 2,000
training samples from each dataset.

Finally, our current method of corrupting the
gold annotations may also be sub-optimal. Further
experiments are required to decide how many and
which clusters are better to mix, merge or split, how
many duplicates to insert, how long they should be
and so on. Also, different generation errors may be
typical for different datasets, languages and script
systems.

5 Conclusion

In this paper we introduce a simple and purely gen-
erative end-to-end approach to multilingual coref-
erence resolution. We show that it is capable of
the task, but suffers from certain limitations, like
a small size of the pre-trained model and a lack of
training data, that prevent it from achieving good
scores. We believe that replacing mT5-base with
a LLM of much larger size can help reach better
results and avoid complicated post-processing. We
leave such experiments along with a proper abla-
tion study for future work.
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A Appendix

A.1 Results

Table 2 presents official F1 scores on 21 test sets in
comparison with the scores achieved by the base-
line and the winning straka-twostage 3 model.

Data Ours Bsl. Best

avg. (place) 33.38 (6) 53.16 (5) 73.90 (1)
ca_ancora 34.77 68.32 82.22
cs_pcedt 32.89 64.06 74.85
cs_pdt 30.88 63.83 77.18
cu_proiel 22.52 24.51 61.58
de_parcorfull 23.07 47.21 69.53
de_potsdamcc 45.85 55.65 71.79
en_gum 35.49 63.19 75.66
en_litbank 46.59 63.54 79.60
en_parcorfull 32.69 33.08 68.89
es_ancora 37.76 69.58 82.46
fr_democrat 36.34 53.62 68.16
grc_proiel 25.87 28.76 71.34
hbo_ptnk 37.96 24.60 72.02
hu_korkor 23.53 35.14 63.17
hu_szegedkoref 33.85 54.51 69.97
lt_lcc 42.73 62.00 75.79
no_bokmaalnarc 37.92 64.96 79.81
no_nynorsknarc 35.69 63.70 78.01
pl_pcc 27.19 66.24 78.50
ru_rucor 47.79 65.83 83.22
tr_itcc 9.65 44.05 68.18

Table 2: F1 scores on the test data.

A.2 Input length impact

As our approach struggles with cluster assignment
in longer text sequences, we limit the input length
by five sentences up to 512 sub-tokens in total.
This leads to the following problems. First, long
distance coreference cannot be recovered. Second,
certain clusters get split into two or more clusters.
Third, the number of singletons grows. To see
how many clusters get lost due to such document
splitting, we perform an experiment, where we
first split the gold data into pieces keeping all the
annotations, and then merge them back trying to
restore the clusters. Table 3 shows the results for
eight development datasets out of 21 official ones.
The numbers clearly indicate that even the perfect
system will be able to achieve only 84.58 F1 score
on average, if its input is limited by five sentences.

3It is an updated version of the model presented in Straka
(2023)

Data w sngl. w/o sngl.

avg. 84.58 82.89
ca_ancora 89.29 90.97
en_gum 89.34 81.67
hbo_ptnk 91.77 82.72
hu_korkor 86.07 86.86
lt_lcc 83.63 86.68
pl_pcc 92.77 85.86
ru_rucor 73.38 76.73
tr_itcc 70.40 71.63

Table 3: F1 scores on the gold development data with
and without singleton clusters.

One of the obvious solutions to the problem
would be to use a larger pre-trained model that
is capable of processing longer inputs. Also, it is
important to set the number of sub-tokens as the
main constraint, and not the number of sentences,
as sentences can be very short in some datasets.

A.3 Data augmentation

The examples below illustrate how we modify the
gold coreference annotations in order to create our
training data. The gold annotation examples are
taken from the en_gum corpus.
Gold annotations: Thus , [0 the time [1 it 1] takes
0] and [2 the ways of visually exploring [3 an art-
work 3] 2] can inform about [4 [3 its 3] relevance
4] , [5 interestingness 5] , and even [6 [3 its 3]
aesthetic appeal 6] . [7 This paper 7] describes
[8 a collaborative pilot project 8] focusing on [9
a unique collection of [10 [11 17th Century 11]
[12 Zurbarán 12] paintings 10] 9] . [9 The [13
Jacob 13] cycle at [14 [15 Auckland 15] Castle
14] 9] is [9 the only [16 UK 16] example of [17
a continental collection preserved in situ in [18
purpose - built surroundings 18] 17] 9] .

Example A.1. Discarding clusters
Thus , the time [0 it 0] takes and the ways of visually
exploring [1 an artwork 1] can inform about [2 [1
its 1] relevance 2] , [3 interestingness 3] , and even
[1 its 1] aesthetic appeal .

Example A.2. Merging clusters
Thus , [0 the time [1 it 1] takes 0] and [0 the ways of
visually exploring [3 an artwork 3] 0] can inform
about [1 [3 its 3] relevance 1] , [5 interestingness
5] , and even [3 [3 its 3] aesthetic appeal 3] .

Example A.3. Splitting clusters
Thus , [0 the time [1 it 1] takes 0] and [2 the ways of
visually exploring [3 an artwork 3] 2] can inform
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about [4 [7 its 7] relevance 4] , [5 interestingness
5] , and even [6 [7 its 7] aesthetic appeal 6] .
Example A.4. Mixing clusters
Thus , [0 the time [1 it 1] takes 0] and [2 the ways of
visually exploring [9 an artwork 9] 2] can inform
about [4 [9 its 9] relevance 4] , [5 interestingness
5] , and even [6 [9 its 9] aesthetic appeal 6] . [7
This paper 7] describes [8 a collaborative pilot
project 8] focusing on [3 a unique collection of [10
[11 17th Century 11] [12 Zurbarán 12] paintings
10] 3] . [3 The [13 Jacob 13] cycle at [14 [15 Auck-
land 15] Castle 14] 3] is [3 the only [16 UK 16]
example of [17 a continental collection preserved
in situ in [18 purpose - built surroundings 18] 17]
3] .
Example A.5. Inserting lonely cluster IDs
Thus , [0 the [0 0] time [1 it 1] 1] [0 0] takes 0]
and [0 0] [2 the ways of visually exploring [3 an
artwork [3 3] 3] 2] 2] [3 3] can inform about [4 [3
its 3] [3 3] relevance 4] 4] , [5 [2 2] interestingness
5] , and even [6 [4 [3 its 3] [4 4] aesthetic appeal
6] .
Example A.6. Inserting repetitions
Thus , [0 the time [1 it 1] [1 it 1] [1 it 1] takes
0] and [2 the ways of visually exploring [3 an
artwork 3] 2] can inform about [4 [3 its 3] [3 its 3]
relevance 4] , [5 interestingness 5] , and even [6 [3
its 3] [3 its 3] [3 its 3] [3 its 3] [3 its 3] aesthetic
appeal 6] .
Example A.7. Violating mention boundaries
Thus , [0 [1 the time it 1] takes and [2 0] the ways of
[3 visually exploring an artwork 3] 2] can inform
about [4 [3 its 3] relevance [5 4] , interestingness
5] , and even [6 [3 its 3] aesthetic appeal 6] .
This paper describes a collaborative pilot project
focusing on a unique collection of 17th Century
Zurbarán paintings .

Additionally, we modify original coreference
annotations in short text sequences (containing up
to three sentences) inserting empty brackets.
Gold: [0 Aesthetic Appreciation 0] and [1 Spanish
Art 1] : [2 Insights from [3 [4 Eye 4] - Tracking 3]
2]
Example A.8. Adding empty brackets
[0 Aesthetic Appreciation [ [ [ [ [ [ [ [ [ [ [ [ [ [
[ [ [ [ [ [ [ [ [ [ [ [ [ [ 0] and [1 Spanish Art 1] :
Insights from Eye - Tracking

A.4 Alignment
A generated sequence with cluster identifiers may
differ a lot from the original string. It can contain

hallucinated tokens, unnecessary repetitions, or be
truncated. Such problems are especially frequent
when smaller models like mT5-base are used. In
such cases it is impossible to extract the correct
mention indices, even if certain mentions were cor-
rectly identified and clustered. To solve this prob-
lem, we try to transform the generated text into the
gold one, keeping the cluster indices.

We use the difflib library for this task. The al-
gorithm splits the generated string into parts and
suggests one of the four actions, namely ’insert’,

’delete’, ’replace’ and ’equal’, to be performed for
each part. If ’delete’ or ’replace’ actions are chosen,
we follow the commands, but keep all the cluster
identifiers, no matter wrong or correct. We show
how a generated text can be aligned with the gold
one below. Example A.9 illustrates the steps of the
sequence matcher from difflib.
Generated text: Thus , [0 [1 the time it 1] takes and
[2 0] the ways of [3 visually exploring an artwork
3] 2] can inform about [4 [3 its 3] relevance [5
4] relevance [5 4] relevance [5 4] relevance [5 4]
relevance [5 4]
Gold text: Thus , the time it takes and the ways of
visually exploring an artwork can inform about its
relevance , interestingness , and even its aesthetic
appeal .

Example A.9. Alignment
equal "Thus ," → "Thus ,"
delete "[0 [1" → ""
equal "the time it" → "the time it"
delete "1]" → ""
equal "takes and" → "takes and"
delete "[2 0]" → ""
equal "the ways of" → "the ways of"
delete "[3" → ""
equal "visually exploring an artwork" → "vi-

sually exploring an artwork"
delete "3] 2]" → ""
equal "can inform about" → "can inform

about"
delete "[4 [3" → ""
equal "its" → "its"
delete "3]" → ""
equal "relevance" → "relevance"
replace "[5 4] relevance [5 4] relevance [5 4]

relevance [5 4] relevance [5 4]" → ",
interestingness , and even its aesthetic
appeal ."

Aligned result: Thus , [0 [1 the time it 1] takes and
[2 0] the ways of [3 visually exploring an artwork
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3] 2] can inform about [4 [3 its 3] relevance [5 4]
[5 4] [5 4] [5 4] [5 4] , interestingness , and even
its aesthetic appeal .

Note that the aligned text above contains some
excessive cluster identifiers, and certain mention
boundaries are wrong. We discard all the opening
brackets that cannot be properly closed later during
the post-processing.
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