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Abstract

This paper describes our approach to the CRAC
2024 Shared Task on Multilingual Coreference
Resolution. Our model is based on an end-
to-end coreference resolution system. Apart
from joined multilingual training, we improved
our results with headword mention representa-
tion and training large model mT5-xxl through
LORA. We provide an analysis of the perfor-
mance of our model. Our system ended up
in 4th place. Moreover, we reached the best
performance on three datasets out of 21.

1 Introduction

Coreference resolution is the task of finding lan-
guage expressions that refer to the same real-world
entity (antecedent) within a given text. These coref-
erential expressions can either originate from a
single sentence or be separated by one or more
sentences. In some challenging cases, it is neces-
sary to consider the entire document to determine
whether two expressions refer to the same entity ac-
curately. This task can be divided into two subtasks.
Identify entity mentions and group them together
according to the real-world entity they refer to. The
task of coreference resolution is closely related to
anaphora resolution – see (Sukthanker et al., 2020)
to compare these two tasks.

This paper describes our approach to the CRAC
2024 Shared Task on Multilingual Coreference Res-
olution (Novák et al., 2024), which is the third edi-
tion of this shared task. The task is based on the
CorefUD dataset (Nedoluzhko et al., 2022). The
CorefUD corpus, currently at version 1.2, com-
prises 21 different datasets across 15 languages in
a harmonized scheme. Table 1 shows basic statis-
tics of the corpus As CorefUD is meant to be the
extension of Universal Dependencies for corefer-
ence annotation, all the datasets in CorefUD are
treebanks. In the current version of the dataset, all
dependency relations were obtained from an auto-
matic parser. The coreference annotation is built

upon the dependencies. This means that the men-
tions are subtrees in the dependency tree and can
be represented with the head. In fact, in some of
the datasets, there are non-treelet mentions – those
that do not form a single subtree. But even for
these non-treelet mentions, a single headword is
selected. Non-tree mentions arise because some
datasets were not annotated in a treebank form -
the annotators were asked to find mentions as con-
tinuous spans, and the syntactic information was
added during the harmonization. Notable differ-
ences exist among the datasets. One of the most
prominent ones is the presence of singletons. Sin-
gletons are clusters that contain only one mention;
therefore, they are not part of any coreference re-
lation, yet they are annotated as mentions. Please
see Nedoluzhko et al. (2022) or Nedoluzhko et al.
(2021) for details about the dataset. The task was
simplified to predict only non-singleton mentions
and group them into entity clusters.

For evaluation, the CorefUD scorer1 is provided.
The primary evaluation score is the CoNLL F1

score with head matching and singletons excluded.
In the CorefUD scorer, a system mention matches a
gold mention only if they share the same headword.

Participants should also predict the empty nodes
for zero mentions this year. In previous years
(Žabokrtský et al., 2022; Žabokrtský et al., 2023),
gold empty nodes were provided. However, the
organizers provide a baseline for predicting empty
nodes. Due to time limitations, we focused just on
coreference resolution, and we used empty nodes
predicted by a baseline system.

2 Related Work

Since many of the datasets in the CorefUD col-
lection do not contain singletons annotation, we
believe that the end-to-end approach is the best

1https://github.com/ufal/
corefud-scorer

https://github.com/ufal/corefud-scorer
https://github.com/ufal/corefud-scorer
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CorefUD dataset
Total size

docs sents words empty singletons

Ancient Greek-PROIEL 19 6,475 64,111 6,283 0,0%
Ancient Hebrew-PTNK 40 1,161 28,485 0 57.9%
Catalan-AnCora 1550 16,678 488,379 6,377 74.6%
Czech-PDT 3165 49,428 834,721 33,086 35.3%
Czech-PCEDT 2312 49,208 1,155,755 45,158 1.4%
English-GUM 150 7,408 134,474 0 75%
English-LitBank 100 8,560 210,530 0 72.8%
English-ParCorFull 19 543 10,798 0 6.1%
French-Democrat 126 13,054 284,823 0 81.8%
German-ParCorFull 19 543 10,602 0 5.8%
German-PotsdamCC 176 2,238 33,222 0 76.5%
Hungarian-KorKor 94 1,351 24,568 1,988 0.9%
Hungarian-SzegedKoref 400 8,820 123,976 4,849 7.9%
Lithuanian-LCC 100 1,714 37,014 0 11.2%
Norwegian-BokmaalNARC 346 15,742 245,515 0 89.4%
Norwegian-NynorskNARC 394 12,481 206,660 0 88.7%
Old Church Slavonic-PROIEL 26 6,832 61,759 6,289 0,0%
Polish-PCC 1828 35,874 538,891 864 82.6%
Russian-RuCor 181 9,035 156,636 0 2.5%
Spanish-AnCora 1635 17,662 517,258 8,111 73.4%
Turkish-ITCC 24 4,733 55,341 0 1.0%

Table 1: Dataset Statistics

choice. On the other hand, the best system in the
previous year (Straka, 2023) is a two-stage model
using extended BIO schema for mention identifica-
tion.

Most of the end-to-end approaches are built upon
Lee et al. (2017) who originally proposed to go over
all possible spans and classify coreferences directly
on these spans. As our model is also based on this,
we will describe more details later. Many modifi-
cations of this model have been proposed mainly
focusing on better text encoding (span representa-
tion), model optimization and higher-order model
(Lee et al., 2018; Joshi et al., 2019; Xu and Choi,
2020; Joshi et al., 2020).

Dobrovolskii (2021) proposed to reduce mention
space be selecting a single word to represent each
mention. They use the syntactic head as mention
representative. They perform experiments on the
English OntoNotes corpus. To reconstruct the origi-
nal mentions, they use a CNN-based span predictor
in a subsequent step after antecedent prediction.

Hu et al. (2022) proposed low-rank adaptation
as one of the most common techniques for efficient
fine-tuning by reducing the number of trainable

Pretrained 
Weights𝑊 ∈ ℝ𝑑×𝑑

x

h

𝐵 = 0
𝐴 = 𝒩(0, 𝜎2)𝑑

𝑟

Figure 1: LoRA schema, taken from Hu et al. (2022)

parameters with factorization. The original idea
to use this in Transformer fine-tuning comes from
Adapters (Houlsby et al., 2019). The schema of
LORA is shown in Figure 1. We reduce the num-
ber of trainable parameters by freezing the original
model and adding a small layer between all fully
connected layers. The first weight matrix is ini-
tialized randomly, and the second is set to zero
to preserve the original output at the initial step.
By reducing the number of trainable parameters,
LoRA reduces memory requirements and prevents
overfitting but preserves a lot of original computa-
tional capability since weights on every layer can
be changed during finetuning.
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Model Pretrained params New params

mBERT 180M 15M
XLM-R 555M 20M
mT5 5.7B 70-400M

Table 2: Number of trainable parameters of the models

3 Model

Our model builds on the official transformer-based
end-to-end baseline (Pražák et al., 2021). It is based
on the CRAC 2022 participating system (Pražák
and Konopik, 2022) and its extension (Pražák and
Konopı́k, 2024) with all the proposed modifications.
The underlying neural end-to-end coreference reso-
lution model was originally proposed by Lee et al.
(2017). The model predicts the antecedents directly
from all possible mention spans without a previous
discrete decision about mentions. In the training
phase, it maximizes the marginal log-likelihood of
all correct antecedents:

J(D) = log

N∏
i=1

∑
ŷ∈Y (i)∩GOLD(i)

P (ŷ) (1)

where GOLD(i) is the set of spans in the training
data that are antecedents.

The model performs well on the OntoNotes
dataset, where singletons are not annotated. We be-
lieve the model is optimal for the CorefUD dataset
as well since some of the CorefUD datasets do not
contain singletons. Moreover, the primary evalua-
tion metric ignores singletons, so it does not matter
that the model is not able to predict them. However,
employing singletons in the model can improve
mention identification capabilities of the model on
the datasets where some singletons are annotated.

Here, we just describe the most significant exten-
sions of the basic model. For a detailed description
of all the extensions together with a deep analysis
of their benefits, please refer to Pražák and Konopı́k
(2024).

Employed Models We based our model on two
encoders of different sizes; XLM Roberta large
(Conneau et al., 2020), and mT5-xxl (Xue et al.,
2021) (only the encoder part). Both models are
significantly larger than the original BERT (Devlin
et al., 2018) The number of parameters is provided
in Table 2.

Joined Model Pretraining As you can see from
Table 2, approximately 17 million parameters are
trained from scratch for XLM-R and 70M for
mT5 (the upper bound 400M is including adapter
weights which are technically trained from scratch,
but the original pretrained parameters makes them
much easier to train). For smaller datasets, training
so many random parameters is practically impossi-
ble. To solve this issue, we first pre-train the model
on the joined dataset and then fine-tune the model
for a specific language.

Heads Mention Representation As mentioned
above, the official scorer uses head-match evalu-
ation. Inspired by word-level coreference resolu-
tion (Dobrovolskii, 2021), we decided to use only
headwords for mention representation. Since the
mentions are considered the same if they have the
same head, we do not need the span reconstruction
step as in Dobrovolskii (2021). As pointed out by
(Dobrovolskii, 2021), a single-word representation
reduces the mention space from quadratic to linear,
and the model is learning more effectively. There
are also much fewer potential false-positive men-
tions. Moreover, we believe that for very long men-
tions, the standard representation (sum of the start
token, end token, and attended sum of all tokens)
becomes insufficient. The syntactic information
should be even more beneficial in case of heads
mention representation. for the model, so we use it
for all the datasets.

The whole model stays practically the same, we
just change the span extraction step where we con-
sider all words in the document as potential men-
tions.

Singletons Some datasets in the CorefUD col-
lection have singletons annotated, and others do
not. Specifically, in CorefUD 1.2, 10 out of 21
datasets have more than 10% singletons, and 8
of these have more than 70% singletons, which is
probably a sign of consistent entity annotation inde-
pendent of the coreference annotation. The original
model by Lee et al. (2017) completely ignores sin-
gletons during training2. As a result, for these eight
singleton-including datasets, we discard more than
70% of training data for mention identification task.
To leverage this data, Pražák and Konopı́k (2024)
incorporated singleton modeling into the model.
They modify the loss function to model mentions

2The loss is the sum over all correct antecedents, and since
singletons have no gold antecedents, they do not affect the
loss
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independently of coreference relations. In this ap-
proach, we simply add a binary cross-entropy of
each span being a mention to the loss function. In
other words, we add another classification head for
the mention classification as formalized in Equa-
tion 2. where y(i)m is 1 if span i corresponds to gold
mention, 0 otherwise.

In the prediction step, the mention score is evalu-
ated only for potential singletons. If a mention has
no real antecedent, we look at the mention score. If
it is likely to be a mention we make it a singleton,
otherwise it is not a mention at all.

Large Model For Training the large model (mT5-
xxl) we suggest using LORA. We propose two vari-
ants. In the first we use LORA for both joined pre-
training and fine-tuning on individual datasets. In
the second variant, we use traditional training of all
the parameters in the joined pretraining phase and
LORA only for fine-tuning on individual datasets.
We tried several different values for LORA rank
(size of the adapter layer) from 8 to 128

4 Training

We trained all the models on NVIDIA A40 graphic
cards using online learning (batch size 1 document).
We limit the maximum sequence length to 8 seg-
ments of 512 tokens. During training, if the doc-
ument is longer than 8 × 512 tokens, a random
segment offset is sampled to take a random contin-
uous block of 8 segments, and the rest of them are
discarded. During prediction, longer documents
are split into sub-documents overlapping in one
segment, which is then used to merge the corefer-
ence clusters from all the sub-documents. More
details can be found in Pražák and Konopı́k (2024).
We use 80k steps for model pre-training on all the
datasets and approximately 30k for fine-tuning on
each dataset. Pretraining took 24 hours and fine-
tuning 2-6 hours.

5 Results & Discussion

Results of several variants of our model are pre-
sented in Table 3.

The table is divided into four sections, the first
two comparing the results of different encoders
(XLMR Roberta large and mT5-xxl). XLMR col-
umn has two variants, one using headwords as
mention representations and the other using the
whole spans. mT5 column contains two variants
described in Section 3, full weights updating from

pretraining and LORA even for pretraining. The
third section contains results when selecting the
best model on dev data. It contains the version
submitted to the shared task and the version with
optimal hyperparameter setting according to Pražák
and Konopı́k (2024). The last section describes the
same settings as the third one evaluated on Core-
fUD 1.1 (from CRAC 2023).

When we compare the first two sections, we
can see that XLM-R achieves better results for
some datasets than mT5; for others, it is the op-
posite. Generally, we can say that XLM-R is bet-
ter for smaller datasets and mT5 for larger ones.
This trend would suggest that mT5 is overfitted on
smaller datasets. We tried many different values of
the LORA factor and all the regularization param-
eters, but it did not yield better results. The larger
model is harder to train, and we might not find the
best combination of hyperparameters.

Full joined pretraining of mT5 is better than the
LORA variant for all the datasets except for en-
parcorfull, which we consider an anomaly.

FullSpan is surprisingly better than heads-only
representation on de-parcorfull dataset. Again, we
consider this an anomaly. ParCor datasets are the
smallest ones in the collection and results on these
datasets are very noisy. On average, FullSpan is
almost 3% below heads-only. It is actually better
for more datasets but this is caused by a mistake.
We trained the model in the configuration from
Pražák and Konopı́k (2024), so the model is not
directly comparable to XLMR-heads column, but it
is comparable to BEST-dev-paper24 column. We
did not have enough time to rerun the experiment.

We can compare the results for individual
datasets between CorefUD 1.1 and CorefUD 1.2
from the last two sections of the Table. As ex-
pected, we can observe a performance drop from 1-
4% for all datasets with empty nodes. On the other
hand, we can see improvement for some datasets.
It is known that there were mistakes in the Turkish
dataset, where the improvement is most signifi-
cant. Another significant improvement is there for
Lithuanian.

One more thing worth noticing. Our model is
much worse for newly added ancient languages
than for the rest of the datasets (compared to Cor-
Pipe). We believed this was caused by a bug in
the submitted version where we forgot to add new
languages into joined pretraining. However, after
fixing this, the results are very similar. We won-
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Dataset/Model
XLMR mT5 BEST-dev CRAC23

FullSpan heads Full LORA submited paper24 Submited paper24

ca ancora 75.29 80.58 82.18 80.11 82.37 81.29 75.49 82.57
cs pcedt 68.96 71.13 67.67 62.46 71.13 73.5 77.37 78.46
cs pdt 74.72 77.14 74.58 69.19 77.14 77.1 76.67 80.09
cu proiel 43.23 54.24 44.53 44.61 54.24 53.2
de parcorfull 81.23 79.44 79.9 77.83 81.61 78.34 80.45 80.25
de potsdamcc 76.77 76.76 79.23 75.08 79.23 77.41 78.17 77.95
en gum 73.72 74.36 75.98 71.31 75.98 75.66 73.67 76
en litbank 66.44 71.17 73.31 68.04 74.47 71.29
en parcorfull 76.89 70.81 69.84 70.32 70.81 70.51 67.92 67.41
es ancora 76.81 81.4 81.94 79.63 82.08 81.61 77.62 82.92
fr democrat 66.47 65.72 65.41 61.95 66.57 69.31 64.47 70.35
grc proiel 58.22 64.54 60.25 59.18 64.54 63.1
hbo ptnk 46.25 59.68 61.83 59.8 63.44 56.93
hu korkor 65.58 70.04 70.01 65.22 70.69 69.9 70.55 74.01
hu szegedkoref 68.03 69.89 69.53 69.2 70.25 70.08 68.82 70.9
lt lcc 78.44 76.68 76.3 74.46 76.3 78.99 76.41 76.91
no bokmaalnarc 76.64 77.25 78 74.77 79.21 78.02 76.48 78.62
no nynorsknarc 77.88 78.72 78.41 75.06 78.72 78.59 77.55 80.41
pl pcc 75.04 74.88 76.07 73.8 76.25 75.14 75.67 76.16
ru rucor 74.31 73.45 74.24 71.69 75.03 75.96 70.03 77.56
tr itcc 55 55.07 54.9 47.26 58.35 59.77 43.9 53.72

avg 69.33 71.57 71.15 68.14 72.78 72.18 72.43 75.55

Table 3: Results
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CorPipe-2stage 82.22 74.85 77.18 61.58 69.53 71.79 75.66 79.60 68.89 82.46 68.16 71.34 72.02 63.17 69.97 75.79 79.81 78.01 78.50 83.22 68.18 73.90
CorPipe 81.02 73.71 75.84 60.72 71.68 71.45 74.61 79.10 69.75 80.98 68.77 68.53 70.86 60.32 68.12 75.78 79.55 77.52 77.03 83.09 59.37 72.75
CorPipe-single 80.42 72.82 74.82 57.11 61.62 67.02 74.39 78.08 58.61 79.75 67.89 66.01 67.18 60.09 67.32 75.19 78.92 76.60 75.20 81.21 53.43 70.18
Ours 82.46 70.82 75.80 54.97 71.40 71.91 70.53 74.15 55.58 81.94 62.69 61.64 61.56 64.86 69.26 71.97 74.51 72.07 76.34 80.47 64.49 69.97
baseline 68.32 64.06 63.83 24.51 47.21 55.65 63.19 63.54 33.08 69.58 53.62 28.76 24.60 35.14 54.51 62.00 64.96 63.70 66.24 65.83 44.05 53.16

Table 4: Results on test set.
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J(D) = log
N∏
i=1

∑
ŷ∈Y (i)∩GOLD(i)

P (ŷ) + y(i)m · σ(sm(i)) + (1− y(i)m ) · σ(−sm(i))︸ ︷︷ ︸
singletons binary cross-entropy

(2)

der if CorPipe uses any specific improvements to
handle these languages better. Another possible ex-
planation is that they were able to train large model
models better, and large model handles these an-
cient languages with very little data available better.

5.1 Comparison To Other Systems

The comparison to other participating systems is
shown in Table 4. Our system ended up in 4th place
(2nd team). Surprisingly, although the winning sys-
tem outperformed ours by a large margin on av-
erage, our system reached the best performance
for three datasets (german potsdam, catalan, and
hungarian-korkor). It would be interesting to ex-
amine the differences between the two systems to
find out why.

6 Conclusion

We further extended our system from CRAC 2022
and 2023 with the usage of mT5 through LORA
training. We provide the analysis of different model
configurations. We found out that for approxi-
mately half of the datasets, using a larger model
does not help anymore. We also analyzed a drop
caused by losing the gold annotation of empty
nodes. Unfortunately, we did not have enough
time to add zero nodes prediction into our model.
Our results suggest that there is a lot of space for
improvement. Our system ended up in 4th place.
Moreover, we reached the best performance on
three datasets out of 21.
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Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Vladimir Dobrovolskii. 2021. Word-level coreference
resolution. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7670–7675, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel S Weld. 2019. Bert for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2021.emnlp-main.605
https://doi.org/10.18653/v1/2021.emnlp-main.605
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018


113

Anna Nedoluzhko, Michal Novák, Martin Popel,
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Popel, Ondřej Pražák, Jakub Sido, Milan Straka,
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