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Abstract

This work explores alternative gating
systems in simple Recurrent Neural
Networks (RNNs) with the intent to induce
linguistically motivated biases during
training, ultimately affecting models’
performance on the BLiMP task. Here we
focus on the BabyLM 10M training corpus
only (Strict-Small Track). Our experiments
reveal that: (i) standard RNN variants—
LSTMs and GRUs—are insufficient for
properly learning the relevant set of
linguistic constraints; (ii) quality and size of
the training corpus have little impact on
these networks since we observed
comparable performance of LSTMs trained
exclusively on the child-directed speech
portion of the corpus; (iii) increasing the
size of the embedding and hidden layers
does not significantly improve
performance. In contrast, specifically gated
RNNs (eMG-RNNs), inspired by certain
Minimalist Grammar intuitions, exhibit
advantages in both training loss and BLiMP
accuracy although their performance is not
yet comparable to that of humans.

1 Introduction!

Despite their impressive performance,
transformers-based architectures (Vaswani et al.,
2017) provide limited insight from a theoretical
linguistic perspective and tend to perform poorly
when trained on small datasets, unless ad-hoc
optimizations are applied (Charpentier and Samuel,
2023; Xu et al., 2024). In this paper, we focus on
simple recurrent architectures to explore the effect
of linguistic biases potentially induced by specific

1 Preprocessing, tokenization, models’ architecture, training

procedure and results are available at:
https://github.com/cristianochesi/babylm-2024

1

gating systems on both cross-entropy loss and
performance in forced-choice tasks such as BLiMP
(Warstadt et al., 2020). The goal is to preserve the
role of incremental processing, which is obfuscated
by the attention mechanism in transformers while
retaining the self-supervised (autoregressive)
training approach. Such obfuscation arises from the
fact that, while human linguistic processing
operates in a strictly incremental manner (Bever,
1970), the computation of gradients required to
minimize model loss during LLM training must be
performed in parallel for computational efficiency.
This legitimate pursuit of reducing computational
complexity has led, on one hand, to attention-based
approaches that operate in parallel on the full input
vector, composed of a fixed-length sequence of
tokens, and, on the other hand, to simplifications in
RNNs—such as removing any time-dependent
interaction between the hidden state and the input.
This last approach ultimately transfers the
computational burden from the inefficient
backward propagation through time (BPTT)
approach to the need for additional layers (Feng et
al., 2024). A relevant challenge to the Poverty of
Stimulus hypothesis (Yang et al., 2017) can then be
formulated in the following terms: Can a Small
Language Model (SLM)—trained with a limited
amount of data and under ecological exposure
comparable to that of young learners—attain an
adult level of linguistic competence (Chomsky,
1965)? From this perspective, linguistic
competence is measured simply by the model's
performance on each BLiMP subtest: a SLM will
be considered consistent—i.e., displaying adult-like
linguistic competence—if it systematically selects
(> 72-80% of the times?, sentences like “Susan

2 This is a prudential threshold obtained from the average
human performance reported on BLiMP (~88%, Warstadt et
al., 2020) minus 1 or 2 standard deviations (~8%).
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revealed herself”, which satisfy anaphoric binding
(Condition A or similar generalization predicting
that an anaphor like Aerself must be bound within
the relevant domain, Chomsky, 1981) over the
minimally different alternative “Susan revealed
themselves,” despite irrelevant lexical variations.
We focus our analysis solely on the BLiMP
minimal pair decision task to avoid complex issues
related to general acceptability and coherence
considerations required to interpret raw probability
outputs (Lau et al., 2017).

To preserve the cognitively plausible, albeit
computationally inefficient, incremental approach,
we adapted Recurrent Neural Network (RNN)
models (Elman, 1990) and made minimal
modifications to the standard LSTM (Hochreiter
and Schmidhuber, 1997) and GRU (Cho et al.,
2014) architectures through gating alterations. We
recorded the effects of these modifications on
training loss and accuracy, and we compared the
models’ performance on the BLiMP task. For
comparison, we also report the performance of
well-studied LSTM and GRU architectures
(Gulordava et al., 2018; Chowdhury and
Zamparelli, 2018) after training on the 10M tokens
dataset provided for the BabyLM Challenge 2024
Strict-Small Track. We hypothesized that by
modifying the information flow within the
network, we could provide architectural scaffolding
for C-command constraints, as defined in §3
(Reinhart, 1976). We then considered two distinct
computational pathways: one for preserving part of
the memory content, whenever an indication that an
unsatisfied dependency is present (Move gate), and
the other for deciding whether to keep expanding
the previous constituent—the “sequential phase”,
Bianchi and Chesi, 2014—or instantiating a nested
constituent—embeddings. We then selectively
simplify one pathway or the other to measure the
impact of these alterations on various structural
aspects. The paper is organized as follows: we first
present the basic preprocessing steps adopted to
clean the 10M-token corpus (§2.1). We then
discuss the BLIMP dataset, focusing on the specific
grammatical constraints necessary to correctly
evaluate the relevant contrasts (§2.2). We conclude
the introductory section by discussing the
computational graphs representing standard LSTM
and GRU architectures, finally speculating on the
relevance of certain gating solutions from a
linguistic perspective. Section 3 introduces the core

linguistic intuitions we aim to model, along with
attempts to rephrase these intuitions in simple,
albeit potentially simplistic, combinatorial terms.
Section 4 describes the basic architecture we tested,
dubbed expectation-Based Minimalist Grammar
Recurrent Neural Network—eMG-RNN—,
loosely inspired by an unorthodox interpretation
(Chesi, 2022) of Minimalist Grammars (Stabler,
2013; Chomsky et al., 2023). Section 5 presents the
results of our tests, showing that the gating
proposals effectively capture certain linguistic
constraints but not others. Overall, the performance
of eMG-RNNs is higher compared to that of
LSTMs and GRUs. More importantly, unlike any
LSTM and GRU architecture, eMG-RNNs
consistently show biases towards one item of the
minimal pairs (73% of the time for the correct item,
27% of the times for the incorrect one) in various
phenomena (44% of the BLiMP filtered subtasks).
We conclude with a general discussion on how
different regimens have impacted these results and
outline the next steps toward achieving a more
precise implementation of the relevant linguistic
biases that remain unresolved in the current
experiments.

2 Training data, benchmarks, and RNN
architectures

In this section, we present the preprocessing
routines we adopted to prepare the training data for
our models (§2.1). We then discuss some
fundamental linguistic aspects related to the
BLiMP task used to assess the linguistic
performance of our models (§2.2). Finally, we
introduce the standard RNN architectures—LSTM
and GRU—used as starting points for our
experiments (§2.3).

2.1 Corpus preprocessing

The original corpus provided with the Strict-Small
Track of the BabyLM 2024 challenge consists of
roughly 10M words. Six different sections are
included: child-directed speech from CHILDES
(MacWhinney, 2000), movie subtitles from
OpenSubtitles (Lison and Tiedemann, 2016), the
dialogue portion of the British National Corpus
(BNC Consortium, 2007), telephone conversations
from the Switchboard Dialog Act Corpus (Godfrey
et al., 1992; Stolcke et al., 2000), written English
from the Standardized Project Gutenberg Corpus
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(Gerlach and Font-Clos, 2020), and from Simple
Wikipedia (simplewiki/20221201). Because of
similar preprocessing necessities, we grouped
together under the label ‘conversations’ the BNC
and Switchboard sections. Table 1 reports some
details on corpus size and richness (Type-Token
Ratio, TTR) before and after preprocessing.

Section Before | After
Tokens (TTR)
CHILDES 1,920,655 (0.02) 1,913,959 (0.01)
SUBTITLES 2,041,868 (0.06) 2,399,780 (0.02)
CONVERSATIONS 1,079,286 (0.04) 1,211,618 (0.02)
GUTENBERG 2,539,489 (0.05) 2,895,199 (0.02)
WIKIPEDIA 1,453,539 (0.09) 1,546,763 (0.05)
ALL 9,034,837 (0.04) 9,967,319 (0.01)

Table 1: BabyLM 10M Corpus profile.

A uniform preprocessing pipeline is applied across
all sections. This step includes converting text to
lowercase, normalizing punctuation (e.g., adding
spacing around punctuation, splitting lines after
strong punctuation), removing extra spaces and line
breaks, and preventing the incorrect splitting of
abbreviations like mr. and mrs. by removing the dot
after them. We relied solely on punctuation to
segment sentences. After processing, the average
word per sentence was 9 and 85% of sentences
consisted of less than 75 words. Minor adjustments
were made to accommodate the specific formatting
characteristics of each section. These variations
ensured that the preprocessing remained etfective
and adapted to the unique aspects of the data, while
still adhering to a broadly uniform approach. For
example, in the CHILDES and Switchboard
sections, we removed metalinguistic information
(e.g., speaker labels like A: ... B: ... or *CHI:) and
transcription symbols (e.g., &-, &+). Additionally,
we made other minor adjustments specific to the
corpus format, such as normalizing quotes,
handling acronyms, and removing brackets. The
goal of the preprocessing step was to remove any
metalinguistic information and retain only the
relevant phonological information (essentially
pauses and rough intonation as indicated by
question and exclamation marks). Obviously,
removing speaker labels and converting everything
to lowercase significantly undermines the model's
performance on the GLUE, BLiMP Supplement,
and EWoK tasks. However, as we have stated from
the beginning, achieving better performance on
these tasks was not our main goal.

2.2 The BLiMP dataset

The Benchmark of Linguistic Minimal Pairs for
English (BLiMP, Warstadt et al., 2020) is a test set
designed to assess the grammatical knowledge
expressed by LLMs in English. It includes 67
groups of phenomena, each consisting of 1,000
minimal pairs of sentences that sharply contrast in
grammatical acceptability. The phenomena are
categorized into 12 distinct areas, such as anaphor
agreement, binding, control/raising, determiner-
noun agreement, ellipsis, filler-gap dependencies,
irregular forms, and island effects. The pairs are
generated using grammatical templates and the
estimated individual human agreement with the
judgments is 88.6% overall (based on judgments on
100 annotations from each paradigm). N-gram,
LSTM, and Transformer language models are
evaluated by assessing whether they assign a higher
probability to the grammatically correct sentence in
each minimal pair. To mitigate issues arising from
sentence length differences (as models that sum the
log probability of each token may simply penalize
longer sentences), the length of the minimal pairs
was kept constant. However, this approach limits
the minimal contrasts that can be tested. For
instance, we cannot infer from the test whether
simply filling a proper gap in a wh-question
influences the returned probability (e.g., “who do
you believe X criticized _wio?” vs. “who do you
believe X criticized Y?”). In such cases, the
legitimate option adopted in BLiMP is to alternate
a wh- item like who with the complementizer that,
as in “X figured out that Y appreciates Z” vs. "X
figured out who Y appreciates Z"—see §3.

2.3  Models’ architecture: RNNSs strike back

Although RNNs have been largely surpassed by
transformers in nearly all NLP tasks, their cognitive
transparency remains commendable. A recent
resurgence, in the past couple of years, has also
shown that both training efficiency and state-of-
the-art performance can still be achieved (Feng et
al., 2024; Gu and Dao, 2024). The simple idea that
learning can be reduced to improving next-token
prediction using word-by-word self-supervision is
sufficiently ecological in the sense that it fits with
the observation that children do not use adults’
supervision in language acquisition (Yang et al.,
2017). Importantly, research has demonstrated that
pre-trained  transformer-based LMs  exhibit
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significant differences from human performance,
for instance, in correlation with reading times
(Steuer et al, 2023) and in how they handle
negation (Ettinger, 2020) and word order (Pham et
al., 2021). More generally, the fact that transformers
process all words in a sentence simultaneously
(using self-attention) does not allow us to capture
the incremental processing typical of human
language understanding.’ This process plays in fact
a crucial role in the cognitive parsing of syntactic
dependences (Frazier, 1987). Linguistic intuition
often involves building up meaning incrementally,
which RNNs inherently capture through their
sequential processing. The LSTM architecture, for
instance, centers around a sequence of gates and
states that regulate information flow, possibly
mirroring some relevant cognitive notion of short-
term and long-term memory in language
comprehension. This interpretability enables us to
gain insights into how linguistic properties are
represented and handled. Conversely, the (self-
)attention mechanism is more opaque, involving
multiple layers of attention heads that can be
challenging to interpret from a linguistic
perspective. We think it is then important to explore
further the gating system at least in LSTM and
GRU standard architectures.

231 LSTM

In all computational graphs that follow, x represents
the input, / the hidden layer—or the main output—
, and ¢ an additional contextual output—if present;
E represents the “embedding” consolidation—a
simple linear transformation from one-hot encoded
input to a lower dimensionality vector. The symbol
" denotes the concatenation operation, while o
and fanh refer to the sigmoid and tanh
transformations respectively. (O represents the
Hadamard product and + the summation. Adopting
these conventions, a standard LSTM network is
described in Figure 1. One of the crucial gates in
this architecture is the so-called forget gate,
denoted as f. Due to the sigmoid transformation,
when the result is multiplied (©) by the cell
activation c¢,, certain components in ¢, are deleted,
or “forgotten”, whenever the f activation output
values close to 0.

3 On our limited capacity to process tokens “in parallel” one
might be interested in the rapid parallel visual presentation
(RPVP) task (Snell and Grainger, 2017) and on the relevant

4

Figure 1: LSTM computational graph

In fact, the intent of the LSTM gating system was
exactly to create a double pathway to process, on
the one hand, the local contribution of each input
component (i pathway), on the other, the long-
distance contribution of ¢, Linguistically speaking,
while the concept of “forgetting” seems transparent
and powerful to us, both the formation of the output
(o) and the contribution of the context to this
output—a fanh transformation multiplied (®©) by
o—seem linguistically too unconstrained: Aside
from the sigmoid transformation, a crucial decision
must be made based on the simple concatenation of
the hidden state and the input in both the fand o
gates.

As far as the BLiMP test is concerned, the
performance of the best-performing LSTM
architecture—consisting of 650 embedding units
(henceforth abbreviated as E650) and 650-units in
each of the two hidden layers (henceforth
abbreviated as H650) (Gulordava et al., 2018)—
trained with 90M tokens from English Wikipedia
(Warstadt et al., 2020) is reported in Table 2 below.

LSTM Human
Overall 68.9 88.6
Ana. agr 91.7 97.5
Arg str 73.2 90
Binding 73.5 87.3
Ctrl. raising 67 83.9
D-N agr 85.4 922
Ellipsis 67.6 85
Filler. gap 72.5 86.9
Irregular 89.1 97
Island 42.9 84.9
Npi 51.7 88.1
Quantifiers 64.5 86.6
S-Vagr 80.1 90.9

Table 2. LSTM and Human performance on BLIMP
(Warstadt et al., 2020)

restrictions observed during this task (Fallon and
Pylkkénen, 2024).
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Kuncoro et al. (2018), among others, examined
the impact of incorporating syntactic information
into LSTM models, using syntax-sensitive
dependencies like subject-verb agreement. They
adapted Recurrent Neural Network Grammars
(RNNGs), which utilize hierarchical phrase-
structure trees, and found that while LSTMs can
learn syntax-sensitive dependencies when given
sufficient capacity, their accuracy declines as the
number of attractors increases due to a bias toward
more recent sequential information. RNNGs,
which explicitly model syntactic structures through
hierarchical representations, performed better than
LSTMs, highlighting the importance of how
syntactic structures are integrated into a model.

2.3.2 GRU

Gated recurrent units (Cho et al., 2014) can be
interpreted as simplified LSTM networks that
avoid storing information on an independent
context output and attempt to control non-local
information by means of a clever Update gate (u),
as illustrated in Figure 2.

Figure 2: GRU computational graph

The output of each cell (/) is conditioned by the
contribution of the update gate (u): the higher u, the
greater the contribution of the previous hidden
activation passed through the new gate information
(n)—this is because 4 is multiplied (©) by 1-u; the
lower u, the greater the contribution of the—
modified—previous activation h—the input
elaboration is simply multiplied () by u. The
linguistic interest for this specific mechanism will
be explained in the next section.

;hﬁl

3 Core linguistic constraints and gates

According to Minimalism (Chomsky et al., 2023),
Merge (M) is the fundamental structure-building
operation. It is recursive, in the sense it applies to
the result of other Merge operations, it is binary
since it always takes two arguments, and it is local
since the elements that Merge must be adjacent.
Suppose a, b, c, d, and e are lexical items, then:

(1) MM(e, M(c, d)), M(a, b))) =
{{e {cd}} {ab}}

That is, the structure obtained after the application
of four M operations in this exact order—i. M(a, b),
i. M(c, d), 1ii. M(e, {c d}),iv. M({e {cd}}, {a b})—
yields a nested constituent {c¢ d} that cannot enter
into any relevant structural relation with the
constituent {a b} (e.g., anaphor binding, as in “[,
the patient; [, of [; the doctor]]] [, blames [,
himself+;]]”). Although this approach offers
significant descriptive advantages, little attention
has been given to how structure-building operations
can be executed in real-time. A relatively lively
debate suggests that real-time considerations may
be important, both supporting behavioral evidence
(Zaccarella and Friederici, 2015; Chesi and Canal,
2019) and computational predictions (Kobele et al.,
2013). Especially from the language acquisition
perspective, we might expect fundamental
constraints that operate on structure building to
induce learning biases. The two key constraints we
consider here are C(onstituent)-command and
Locality.

C-command is a relation that can be defined
between constituents (i.e., nodes) that are merged.
Adapting Reinhart’s (1976) original definition to
Minimalism:

(2) A node A C-commands a node B iff

i. A is merged with X, and

ii. B is merged within X

Considering the structure described in (1), e C-

commands all other nodes, while ¢ and d none. C-
command is a fundamental property for various
linguistic phenomena, such as agreement (3), gap
licensing (4), and pronominal binding (5):

(3) [The friends [of John]] perform/*-s well.

(4)  Joel discovered [the vase]; [that Patricia
might take _;]. / *Joel discovered [what;
Patricia might take _; the vase].
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(5)  [A guy]; [that has seen [the wheelbarrow];]
notices himself; /*itself;.

Examples (4) and (5) are taken from BLiMP, but
while (5) correctly illustrates our point—the
referent a guy C-commands the anaphor himself,
while the wheelbarrow does not C-command itself,
despite being closer to the potential anaphor— the
contrast illustrated by the minimal pair (4) is a bit
misleading. The ungrammatical version in the
minimal pair (4) is Joel discovered what Patricia
might take the vase. This is an example of a “doubly
filled gap”: the gap position in (4) is not only filled
with a DP—the vase—but it must also be
interpreted as the legitimate argumental position in
which the wh- item—what—should have been
originally merged. Notice that in this contrast, no
C-command violation arises. (3), on the other hand,
perfectly illustrates that a closer DP John that does
not C-command—/{{the friends {of {John}}}
perform }—the relevant predicate perform cannot
agree with it.

Locality selectively restricts the span of a re-Merge
(aka  Move) operation (Rizzi, 2013). A
straightforward example is illustrated by the
intervention effects (“superiority effect”, in the case
of (6), Chomsky, 1973): a dependency between two
nodes is blocked or disturbed by the presence of an
intervening constituent, which is itself a potential
participant in that dependency—e.g. it C-
commands the gap, that is, the position where the
relevant wh- item must be interpreted. Observe how
ungrammaticality ensues when the wh-element
who blocks the movement of the wh-element what,
which is “moved” from/to its argumental position:

(6) a. What, could Alan discover he has run

around _;?
*What could Alan discover who has
run around _;?

More constraints. Other contrasts are illustrated in
BLiMP that adhere to C-command and Locality but
also involve additional considerations and
constraints that we cannot address here. These
considerations and constraints are relevant to
Ellipsis, Control, and Raising phenomena, which,
despite notable attempts to describe them under a
unified account, remain empirically resistant to
unification.
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3.1 Computational Considerations on C-

command and Locality

Our core idea was to modify the gating system of
a RNN to allow the network to decide whether to
merge items sequentially—{a x}, where a and x are
two tokens processed in this order <a, x>—or to
instantiate a nested constituent—{a {x}}. When
processing an embedded constituent, the
superordinate phrasal information must be retained
in memory and preserved for further merge
operations that might occur once the embedded
constituent initialized by x will be completed—{a
{x ...} v}, where y is the next token merged with a,
after the closure of the constituent x. Moreover, any
ittem merged within a nested phrase should be
“ignored” at the superordinate level, meaning that
any relevant structural relations (e.g., agreement or
gap licensing) in the higher phrase should fall
outside the scope of the nested items.

The RNN architecture we adopted—Iloosely
inspired by  expectation-based = Minimalist

Grammar formalism (Chesi, 2022)—is dubbed
eMG-RNN and implements two pathways, as in
standard LSTMs: one for “movement”—non-local
dependencies sensitive to locality and C-command,
(the ¢ output in the graph in Figure 3)—, the other
for “Merge” that finally affects the output 4.

Figure 3: eMG-RNN computational graph

The gating system is slightly more complex
compared to the one of LSTMs and GRUs: to
contribute to the non-local activation ¢, the
incoming token is first combined with the previous
activation A, then transformed (sigmoid) before
being applied (©) to the input to decide if any



relevant dependency is fully satisfied or not (move
gate); on the other pathway, the input and the
previous output /z are combined (merge gate). As in
the update GRUs gate, if the merge gate activation
is robust, the incoming input will be favored
(nesting condition); on the other hand, smaller
merge activation will favor a continuation with ¢
activation (sequential processing). The non-local c-
activation is further transformed (fanh) before
being passed to the next layer/output, in order to
stabilize the output and model short memory decay
(Lewis and Vasishth, 2005).
More precisely:

(1) move=c(Wax, Wihi—1) © Wix,
merge=o(Wyx,  Wihi-1)
cr1=tanh(c; + move;)
heei=(1-merge) O Wux, + merge, (O ¢+

As an anonymous reviewer observed, those
modifications do not guarantee at all that what we
are modeling here as move and merge gates are, in
fact, the Minimalist Move and Merge operations.
The simple gating mechanisms employed merely
assume that these operations are unification
processes (Shieber, 1986; Chesi, 2022), where
extracted features are combined and the result of
unification—whether after Merge or Move—is
the outcome of a simple combination of the
original vectors. We propose that point-wise
multiplication () between the concatenation of
hidden input vectors and the input vector itself,
resulting from embedding (E) is the simplest way
to test this intuition. In the following experiments,
we selectively modify one component (move gate)
or the other (merge gate) to verify whether the
reduction in accuracy resulting from these
alterations aligns with the linguistic predictions
that motivated this gating system.

4 Methodology

To test the new gating system, we built various
RNN architectures in PyTorch (v2.4). We first
implemented very simple LSTM and GRU
networks, similar to the ones discussed in literature
(Gulordava et al.,, 2018; Warstadt et al., 2020,
Chowdhury and Zamparelli, 2018). Input and
hidden layer(s) normalization has been evaluated
and produced a slight improvement in accuracy

(+.02%) and a decrease in training loss (-.2) on
average when compared to unnormalized layers.
Various dropout options at the input level have been
tested as well but removed to reduce training loss
and increase accuracy—with a dropout=.2 the
average cross entropy loss increased of .6 and a
11% accuracy reduction was observed, which is
coherent with the small size of the networks used.
We trained these architectures with the 10M corpus
for a maximum of 20 epochs—all architecture
reached a plateau at worst after 12 epochs. Both
symmetrical—same number of units for the
embedding layer and for the hidden layers, and
asymmetrical  structures—lower  embedding
dimensions, higher number of units in the hidden
layers (Chowdhury and Zamparelli, 2018) have
been tested. Following Lau et al. (2017), the model
output is the negative sum of the token-by-token log
likelihood—cross entropy loss—, normalized by
the input length. All models used a BPE tokenizer
(Sennrich et al., 2016) trained on the corpus with
min_freq set to 3 to reduce lexicon size and speed-
up training (no significant improvements are
observed removing this frequency constraint). The
lexicon obtained consisted of 67,328 tokens. For all
experiments, the maximum sequence length was
74, batch size = 64 and learning rate = 0.002. We
used torch.optim.lr_scheduler with step_size=5,
gamma=0.1. We also used three different data
batching regimens for training. We refer to the
default maximum sequence length approach as the
redundant regimen: the corpus was divided into

overlapping sequences of 74 tokens each,
disregarding sentence segmentation—[[foken,,
token,, ... tokenz), [token,, tokens, ... tokenss), ...].

This produces an exposure to ~740M tokens per
epoch, which is about ten times the exposure
received by 7 y.o. children. We also tested two
alternative regimens, which we consider more
ecological. The first is the naturalistic regimen,
which involves line-by-line batching with no

sentence  segmentation special tokens, or
overlapping—{[foken;, token,, ... token,), [token,,
token,.z, ... tokeny], ...], resulting in an exposure

to ~10M tokens per epoch. The second is the
conversational regimen, where batches consist of
two lines of variable length from the preprocessed
text with no sentence segmentation tokens, but with
one line/sentence overlapping to include minimal
contextual  information—{[tokenized_sentence;,
tokenized_sentence;], [tokenized_sentence;,
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tokenized_sentences], ...]. This doubles the
exposure of the naturalistic regimen, while
remaining within the order of magnitude of a 7-
year-old's linguistic exposure. Training was
performed on a High-Performance Cluster with 2
GPU nodes, each equipped with 64 CPU cores, 4
NVIDIA A100 cards with a dedicated 1GB RAM
each. Each iteration required from ~1 (single-layer
GRU) to ~20 hours (4-layer eMG-RNN).

4.1 Two ways of forgetting

One crucial experiment was to simplify the move
and the merge gates to verify the effects of these
simplifications both on training and BLiMP task
performance. In the “forget nesting” condition (F-
N), %;.; became:

®)

In the “forget moving” condition (F-M), the move

her=merge, (D Creg

gate became:

©)

Our predictions are summarized below:

Prediction 1. If the gating system is sufficient to
express C-command and Locality, all BLiMP
pairs contrasting these aspects should be
captured by eMG-RNN, but not by standard
GRU or LSTM.

Prediction 2. Because of the sufficiently complex

move=o(Wux, Whyhi-1)

gating system, no improvement is expected
building eMG-RNNs with multiple hidden
layers.

Prediction 3. Selectively removing one gate or the
other should affect performance; however,
alteration of the move gate is expected to
produce a more significant performance

deterioration—this is because the simplification

of the nesting mechanism will simply privilege

sequential processing.

5 Results

Because of the low performance of GRUs (training
results with 650 units for 1-, 2- or 3-layer
respectively:  accuracy=.3649, .3376, .3271,
loss=3.1619, 3.3312, 3.4313; BLiMP
supplement=.4410, .4426, .4390, filtered=.5162,
5161, .5362), we report here only the comparisons
between eMG-RNNs and standard LSTMs.

113

Training performance. All architectures trained
under the naturalistic and conversational regimen
obtained low loss value (1.98 on average) and very
high accuracy (90% on average) since the first
epoch—plateau after 2-3 epochs. With the
redundant regimen, more variegate results are
obtained but all architectures reached ceiling
performance after ten or twelve training epochs—
see Figure 4 for the best performances with this last
training regimen. Asymmetric architectures
(E256_H1500) achieved better training
performances (higher accuracy, lower losscg). This
higher training performance is comparable with the
one obtained with symmetric LSTM (E650, H650)
when only the CHILDES section was used for
training (child-directed speech only regimen). No
significant differences have been found adding
extra layers in both architectures (ceiling
performance reached with 2-3 layers in LSTMs,
with 1 layer in eMG-RNNSs).

Training performance
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Figure 4: Best results under the redundant regimen with
various LSTM architectures (labels represent
architectures: Em_HnXo = LSTM with m nodes as
input, n nodes at the hidden layer and o layers) eMG-
RNN with 1, 2 or 3 layers, eMG-RNN with deficient
Move gate (F-Move) or nesting gate (F-Nest).
BLiMP accuracy. Redundant regimen produced
the best results—naturalistic and conversational
regimens induced a performance drop for the best
architecture of ~10% and a dramatic reduction in
consistency—calculated as in footnote 2. A
significant lower performance is observed with
LSTMs trained on 10M corpus with respect to the
LSTM trained on 90M tokens Wikipedia corpus
reported in the original study —Table 1. The
cumulative results are reported in Table 3. The best
performing LSTM architecture was the E650 H650
(Gulordava et al., 2018). Overall, the performance



of this LSTM model trained only on the CHILDES
section was not significantly different (overall
performance on BLiMP  supplement=0.47,
filtered=0.54). All eMG-RNNs, outperform
LSTMs on BLiMP filtered (0.55-0.59) but the
performance on BLiMP supplement is lower (0.45-
0.46). Even though the cumulative performance
remains low, eMG-RNN models show much more
polarized preferences and very low standard
errors—Appendix A. That is, accuracy on wh-
islands and other wh-dependency ranges from .80
to .96, while NPI licensing goes from .02 to .11,
clearly indicating a preference for the
ungrammatical sentence in the pair.
eMG-RNN
LSTM | 1 2 3 FM _FN
Ana. agr 0.67 082 0.76 0.77 0.88 0.81
Arg. str 0.56 065 0.64 063 0.64 0.66

Binding 54 | 069 066 063 057 065
Ctrl. /
Rais. 059 | 058 059 060 058  0.60

D-Nagr o057 | 067 063 067 068 068
Ellipsis | 041 | 024 030 021 | 042 039
Filler.gap ~ 055 | 0.64 060 047 048 | 065
Irregular 054 | 058 | 069 060 060 058
Island 054 | 058 054 053 050 | 0.62

Npi | 045 | 033 050 055 032 031
Quantifiers | 957 | 055 053 053 053 057
S-Vagr  os0 | 052 052 052 055 053

Overall 054 | 058 058 057 055 | 059
Table 3. Aggregated performance on BLIMP. LSTM is a
2 hidden-layer network (E650-H650), eMG-RNN
networks are respectively 1, 2 and 3 layers, 1-layer
simplified Move (F-M) and Merge/Nesting gate (F-N)

No significant difference is observed in
performance adding extra layers to the eMG-RNN
models, though eMG-RNN with three layers,
perform randomly on NPIs, filler-gap dependencies
and islands. As far as islands are concerned, it is
important to notice that the aggregate results are
little informative: while 1-leyer eMG-RNN
performance is random on adjunct islands, it is
systematically correct on wh-islands. Lastly,
simplifying the Move gate produces a significant
performance drop, while even better results are
obtained by “forgetting” about nesting—Merge
gate simplification.

6 Discussion

Once again (Feng et al, 2024), re-exploring
RNN architectures produced some noteworthy
outcomes. First, we observed that with simple
architectures and limited training data, classic
LSTMs and GRUs are insufficient to capture
meaningful linguistic generalizations. On the other
hand, adopting a different gating approach,
designed to support structural biases during
training, leads to an improvement in forced-choice
linguistic tasks. While overall accuracy remains
low, this average performance conceals the
interesting fact that the eMG-RNN models
consistently prefer (up to 44% of the phenomena vs.
0.04% with the best performant LSTM) one option
over the other—Appendix A for details. Even when
the chosen option is incorrect—as in the case of
NPIs—this indicates that structural biases are
operative. Furthermore, as evidenced by the low
standard error, lexical perturbation is marginal
compared to structural inference. This point is
further supported by the very low accuracy on
semantic tasks, such as those required when the
BLiMP supplement is performed: eMG-RNNs
produce insufficient semantic generalizations.
Since the goal of these experiments was to explore
the transparency of simple gating options in relation
to certain relevant linguistic intuitions, we conclude
that our attempt is partially successful even though
the gating system must be improved to capture
phenomena such as control, operator-variable
licensing and ellipsis. Regarding the original
predictions, our experiments confirm that: (i) the
gating system adopted significantly outperforms
both LSTM and GRU architectures in terms of
structural inferences; (ii) additional hidden layers
do not improve the models' performance on
structural contrasts—these architectures exhibit a
very low semantic/lexical bias; and (iii) the Move
gate appears to be much more fundamental than
nesting control. This result may be consistent with
the fact that, in the proposed contrasts, nesting
resolution is required only in a small number of
cases—something we also tend to avoid in spoken
language. Lastly, the redundant regimen is the only
one that produces effective improvement on BLIMP
tasks, independent of training performance. This
confirms that, despite their cognitive plausibility,
these architectures do not yet challenge the Poverty
of Stimulus hypothesis.
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A Appendice — Detailed BLiMP results

LSTM eMG-RNN
E650_H650X2 650x1 650x2 F-C E-N
categories acc stderr | acc stderr  acc stderr  acc stderr  acc stderr
BLiMP supplement 0.56 0.01 046  0.01 045 0.01 045  0.01 047  0.01
- hypernym 0.54 0.02 054 002 0.51 0.02 049  0.02 052 002
- ga congruence easy 0.42 0.06 033 006 031 006 039 006 036  0.06
- qa congruence tricky 0.50 0.04 031 004 034 0.04 030  0.04 030  0.04
- subject aux inversion 0.57 0.01 059 001 054 001 054 001 066 001
- turn taking 0.49 0.03 053  0.03 055 003 055  0.03 050  0.03
BLiMP filtered 0.54 0.00 0.58 0.00 0.58 0.00 0.55 0.00 0.59 0.00
- adjunct island filtered 0.45 0.02 049  0.02 035 002 043  0.02 0.51 0.02
- anaphor gender agreement filtered 0.68 0.01 0.77 001 070  0.01 082 001 0.80 001
- anaphor number agreement filtered 0.65 0.02 087 001 081 001 10948 0.01 081 001
- animate subject passive filtered 0.58 0.02 058  0.02 059  0.02 062  0.02 0.60  0.02
- animate subject trans filtered 0.75 0.01 087 001 088 001 087 001 087 001
- causative filtered 0.45 0.02 054  0.02 052 002 050  0.02 059  0.02
- complex NP island filtered 045 0.02 050  0.02 042  0.02 0.60  0.02 0.55  0.02
- coordinate structure constraint complex left branch filtered 0.62 0.02 057  0.02 061  0.02 0.68 0.2 092 001
- coordinate structure constraint object extraction filtered 042 0.02 037  0.02 034  0.02 031  0.02 025 001
- determiner noun agreement 1 filtered 0.55 0.02 0.68 0.2 065  0.02 067  0.02 067  0.02
- determiner noun agreement 2 filtered 0.58 0.02 069  0.02 066  0.02 073 001 066  0.02
- determiner noun agreement irregular 1 filtered 0.57 0.02 0.64  0.02 060  0.02 0.60  0.02 069  0.02
- determiner noun agreement irregular 2 filtered 0.65 0.02 073  0.02 070  0.02 080 001 069 002
- determiner noun agreement with adj 2 filtered 0.54 0.02 0.64  0.02 058  0.02 066  0.02 0.61  0.02
- determiner noun agreement with adj irregular 1 filtered 0.55 0.02 062 002 057  0.02 0.65  0.02 077 0.02
- determiner noun agreement with adj irregular 2 filtered 0.56 0.02 070 0.02 067  0.02 075  0.01 0.68  0.02
- determiner noun agreement with adjective 1 filtered 0.55 0.02 0.65  0.02 060  0.02 0.60  0.02 0.64  0.02
- distractor agreement relational noun filtered 047 0.02 048  0.02 051 0.02 046  0.02 047  0.02
- distractor agreement relative clause filtered 049 0.02 051 0.2 051 0.2 048  0.02 050  0.02
- drop argument filtered 0.60 0.02 075 001 072 001 071 001 072 001
- ellipsis n bar 1 filtered 0.49 0.02 027  0.02 034  0.02 0.54  0.02 051 0.02
- ellipsis n bar 2 filtered 0.33 0.02 0.21 0.01 026 0.02 030 002 028  0.02
- existential there object raising filtered 0.65 0.02 067 0.02 065 0.02 063  0.02 072 002
- existential there quantifiers 1 filtered 0.63 0.02 0947 o.01 090" 0.01 0900 o001 [OS7N o001
- existential there quantifiers 2 filtered posiI o.01 030 002 006 001 057 002 043 002
- existential there subject raising filtered 0.62 0.02 056  0.02 066  0.02 066  0.02 0.60  0.02
- expletive it object raising filtered 0.62 0.02 0.58  0.02 0.56  0.02 057  0.02 057  0.02
- inchoative filtered 041 0.02 042  0.02 040 0.02 047  0.02 043  0.02
- intransitive filtered 042 0.02 062 002 062  0.02 064  0.02 065  0.02
- irregular past participle adjectives filtered 061 0.02 068  0.02 076 0.01 053 0.02 077 001
- irregular past participle verbs filtered 046 0.02 049  0.02 063 0.02 0.68  0.02 038  0.02
- irregular plural subject verb agreement 1 filtered 0.52 0.02 059  0.02 054  0.02 064  0.02 061  0.02
- irregular plural subject verb agreement 2 filtered 051 0.02 057 0.2 058  0.02 059 0.02 057  0.02
- left branch island echo question filtered Posz ool 046 002 033 002 042 002 046 002
- left branch island simple question filtered 0.57 0.02 066  0.02 069  0.02 063  0.02 089 001
- matrix question npi licensor present filtered 0.24 0.01 048  0.02 069  0.02 0.77  0.01 007 001
- npi present 1 filtered 041 0.02 0.11 0.01 027 001 013 001 025 001
- npi present 2 filtered 041 0.02 0.10 001 026 001 0.12 001 023 001
- only npi licensor present filtered 0.58 0.02 037 0.2 071  0.02 0.00  0.00 072 0.02
- only npi scope filtered 0.36 0.02 002 | 001 001 | 0.00 007 001 031 002
- passive 1 filtered 0.62 0.02 075  0.02 075 001 072 0.02 076 001
- passive 2 filtered 0.66 0.02 076 001 075 001 070  0.02 075 001
- principle A ¢ command filtered 041 0.02 0.63  0.02 054  0.02 062 0.02 054  0.02
- principle A case 1 filtered 0.73 001 |JIGOM o000 [NIGOM 0.00 059 002 0927 0.01
- principle A case 2 filtered 0.50 0.02 062  0.02 063 002 060  0.02 072 001
- principle A domain 1 filtered 0.53 0.02 069 002 049  0.02 045  0.02 067  0.02
- principle A domain 2 filtered 0.53 0.02 050  0.02 055 002 0.51 0.02 047  0.02
- principle A domain 3 filtered 0.54 0.02 0.54  0.02 0.55  0.02 0.51  0.02 054  0.02
- principle A reconstruction filtered 0.53 0.02 088 001 088 001 072 001 073 001
- regular plural subject verb agreement 1 filtered 049 0.02 053 0.2 052 0.02 068  0.02 057  0.02
- regular plural subject verb agreement 2 filtered 0.49 0.02 044  0.02 047  0.02 047  0.02 049  0.02
- sentential negation npi licensor present filtered 0.62 0.02 066  0.02 070 0.02 057  0.02 038  0.02
- sentential negation npi scope filtered 0.54 0.02 0.60  0.02 084 001 061  0.02 025 001
- sentential subject island filtered 043 0.02 070 001 071 001 055  0.02 058  0.02
- superlative quantifiers 1 filtered 0.36 0.02 051  0.02 051  0.02 051  0.02 051 002
- superlative quantifiers 2 filtered 047 0.02 047 0.2 064  0.02 0.15 001 037  0.02
- tough vs raising 1 filtered 0.37 0.02 037  0.02 030 001 036  0.02 039  0.02
- tough vs raising 2 filtered 0.67 0.02 069 002 076 001 067 002 069  0.02
- transitive filtered 0.59 0.02 054  0.02 055 002 052  0.02 0.55  0.02
- whisland filtered 0.58 0.02 089 001 086 0.01 042  0.02 083 001
- wh questions object gap filtered 061 0.02 080 001 077 001 038 0.02 085 001
- wh questions subject gap filtered 0.63 0.02 082 001 080 001 020  0.01 081 001
- wh questions subject gap long distance filtered 0.68 0.02 082 001 069  0.02 0.60 0.2 089 001
- wh vs that no gap filtered 0.59 0.02 095 001 088 001 055  0.02 0.0L
- wh vs that no gap long distance filtered 0.65 0.02 096  0.01 085 001 059  0.02 0.01
- wh vs that with gap filtered 0.38 0.02 007 001 008 001 058 0.2 003 001
- wh vs that with gap long distance filtered 0.35 0.02 007 001 016 001 044  0.02 002 0.00
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