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Abstract

In this paper, we build off of the success of the
previous BabyLM challenge winner’s model,
BabyLlama, to explore various methods of en-
hancing knowledge distillation for small lan-
guage models. Our main focus is on investigat-
ing how small a language model can be while
still maintaining competitive performance. We
experiment with three main approaches: (1)
DistilledGPT-44M, which uses smaller teacher
models and a more compact student model com-
pared to BabyLlama; (2) ContrastiveLlama-
58M, which incorporates contrastive loss into
the knowledge distillation process; and (3)
MaskedAdversarialLlama-58M, incorporates
adversarial loss into the knowledge distillation
process. Using the 10M-word dataset from
the BabyLM challenge’s strict-small track, we
evaluate our models on the BLiMP, EWoK,
and GLUE benchmarks. Our results show
that effective knowledge distillation can still
be achieved with significantly smaller teacher
and student models. In particular, our model
DistilledGPT-44M is able to achieve better per-
formance than one of last year’s winning en-
tries, LTG-BERT, while achieving similar per-
formance but cutting training time by around
70% and parameters by around 25% compared
to the other winning entry, BabyLlama.

1 Introduction

Since 2017, transformers have been everywhere in
NLP (Vaswani, 2017). Their non-autoregressive
nature allows for high parallelization, leading to
unprecedented scalability. In recent years, a num-
ber of models with trillions of parameters have
emerged, such as Google’s Switch Transformer
(1.6 trillion) and Huawei’s PanGu-Σ (1.1 trillion).
Models like these or models in the billions de-
mand enormous computational resources and vast
swathes of training data. They consume substantial
energy, raising concerns about their environmental
impact (Bender et al., 2021). The costs of contin-

ued scaling are also increasingly prohibitive, high-
lighting the need for more sample-efficient model
architectures.

The 2024 BabyLM challenge (Choshen et al.,
2024), by limiting the amount of training data avail-
able, in some ways aims to address the computa-
tional concerns around large models. However, the
scope of the contest focuses more on limiting the
amount of training data rather than limiting param-
eter size or compute; participants have the freedom
to use models as large as they want. But last year,
the winners of BabyLM (Timiryasov and Tastet,
2023) demonstrated with their model BabyLlama
that a small model can outperform models close to
an order of magnitude larger on NLP tasks. Model
parameter efficiency does not necessarily mean
worse results; in fact, in some cases it means better
results.

BabyLlama used knowledge distillation and en-
semble learning to distill knowledge from two
teacher models - GPT2-705M and Llama-360M
- to a smaller Llama-58M student model (Hinton
et al., 2015). As a model compression technique,
knowledge distillation (KD) has several advantages:
it only requires access to the teacher model’s out-
put logits (not its weights), and it is also model
agnostic.

Building on BabyLlama’s success, we aim to
demonstrate that even smaller teachers and students
can achieve competitive performance, further push-
ing the boundaries of parameter efficiency. We
explore the impact of using teachers with fewer pa-
rameters and distilling knowledge into even smaller
student models. We also explore incorporating dif-
ferent losses into the distillation training, such as
contrastive loss and adversarial loss.

Our results suggest that effective knowledge dis-
tillation can be achieved with significantly smaller
teacher and student models, demonstrating compet-
itive performance even with reduced parameters.
We find that our DistilledGPT-44M model, despite
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having much fewer parameters, achieves results
comparable to the original BabyLlama-58M on key
benchmarks. Our experiments with contrastive and
adversarial learning techniques in the distillation
process, which albeit less promising, reveal inter-
esting trade-offs between different aspects of model
performance.

2 Dataset

We use the provided 10M dataset from the strict-
small track and build on the BabyLlama repository
https://github.com/timinar/BabyLlama. Fol-
lowing their preprocessing steps, we apply regex-
based cleaning and train a Byte-Pair Encoding to-
kenizer on the training set. The train and dev sets
are split into 128-token chunks, with the model be-
ing presented a new random permutation of these
chunks in each epoch. Validation loss is computed
at the end of each epoch using a fixed, randomly
sampled subset of the dev set.

3 Evaluation

Evaluation of model performance was done using
the BabyLM evaluation suite (Choshen et al., 2024).
This consists of the following benchmarks:

• BLiMP: BLiMP (Benchmark of Linguistic
Minimal Pairs for English) evaluates language
models on their ability to identify grammati-
cal acceptability. It presents pairs of sentences
that differ by one linguistic element, testing
the model’s understanding of 12 areas of En-
glish morphology, syntax, and semantics, such
as anaphor agreement and filler-gap construc-
tions. It measures how well models assign
higher probability to the grammatically cor-
rect sentence in each pair.

• EWoK: EWoK (Elements of World Knowl-
edge) evaluates language models on their abil-
ity to build and apply internal world models.
It tests models’ understanding of concepts
and contexts by presenting them with minimal
pairs of scenarios where models must deter-
mine the plausibility of context-target combi-
nations. The framework spans 11 knowledge
domains.

• GLUE: GLUE (General Language Under-
standing Evaluation) evaluates language mod-
els on a variety of natural language under-
standing tasks. It covers tasks such as senti-

ment analysis, text similarity, question answer-
ing, and textual entailment. LORA finetuning
is used for GLUE in this case, though due
to computational constraints, this was only
evaluated for DistilledGPT-44M, as it was the
only one that showed substantial improvement
for BLiMP and EWoK. We get the macroav-
erage by averaging scores across 9 subtasks
- all the subtasks in the BabyLM evaluation
suite except for CoLA as CoLA only reports
matthews correlation scores.

4 Experiments

4.1 Baselines
We first trained GPT2 models in various sizes (18M,
44M, 97M, 705M) and Llama models in various
sizes (20M, 60M, 360M) as a baseline and as future
teacher models, using same hyperparameters used
in the code of BabyLlama (Timiryasov and Tastet,
2023). Model parameters can be found in Table 1.

4.2 DistilledGPT-44M
For our first experiment, we explore the effect of
using smaller teacher models and a more compact
student model compared to the original BabyLlama
configuration.

We use GPT2-44M and Llama-60M as teacher
models, both of which are substantially smaller
than the GPT2-705M and Llama-360M teachers
used in the original BabyLlama. For the student
model, we opt for GPT2-44M instead of the Llama-
58M used in BabyLlama. This configuration is a
significant reduction in the total number of param-
eters across both teachers and student.

The knowledge distillation process follows the
same general approach as BabyLlama. We first
train both teacher models (GPT2-44M and Llama-
60M) on our dataset. We then train the GPT2-44M
student model using a combination of cross-entropy
student loss with true labels, and distillation loss
between the student’s output and each teacher’s
output. Model architecture for GPT2-44M follows
the baseline 44M model.

4.3 ContrastiveLlama-58M
For our second experiment, we bring contrastive
loss into the knowledge distillation process. Con-
trastive learning tries to bring the representations
of similar samples closer together while pushing
dissimilar samples apart in the embedding space
(Chen et al., 2020). For our task, we use contrastive
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Hyperparameter GPT2-18M-all GPT2-44M-all GPT2-97M-all GPT2-705M-all Llama-20M-all llama-60M-all Llama-360M-G10

Hidden dimension size 320 768 768 1536 384 768 1024
Number of layers 2 2 12 24 2 2 24
Number of attention heads 4 8 12 16 4 8 8
Residual dropout 0.0 0.0 0.0 0.1 N/A N/A N/A
Attention dropout 0.0 0.0 0.0 0.1 N/A N/A N/A
Embedding dropout 0.0 0.0 0.0 0.1 N/A N/A N/A
Learning rate 7e-4 7e-4 7e-4 2.5e-4 3e-4 3e-4 3e-4
Batch size 128 128 128 128 128 128 128
Number of epochs 6 6 6 4 4 4 4
Gradient accumulation steps 2 2 2 16 1 1 8
Warmup steps 300 300 300 300 300 300 300
Mixed precision training (fp16) True True True True True True True

Table 1: Model hyperparameters for baseline models

loss to encourage the student to produce similar
hidden representations to the teacher for the same
input while distinguishing between representations
of different inputs.

We use GPT2-705M and Llama-360M as teacher
models and Llama-58M as the student model. The
contrastive loss is computed using the N-pair loss
formulation, which considers one positive pair and
multiple negative pairs in each training iteration.
We set N to 32. For each training sample, we gen-
erate 31 negative samples by randomly selecting
other samples from the same batch. The positive
pair consists of the hidden representations of the
teacher and student for the same input, while nega-
tive pairs are formed by pairing the teacher’s rep-
resentation with the student’s representations for
different inputs.

We subdivide the overall loss into 39% cross-
entropy student loss with true labels, 39% distil-
lation loss, and 22% N-pair contrastive loss com-
puted on the hidden representations of the teacher
and student models. This relative weights of loss
were chosen through a preliminary linear search
for optimal weights by training on a very small sub-
set of data. Model architecture for student model
follows that of BabyLlama-58M model.

4.4 MaskedAdversarialLlama-58M

Our next experiment incorporates adversarial learn-
ing into the distillation process by implement-
ing the MATE-KD (Masked Adversarial TExt, a
Companion to Knowledge Distillation) algorithm
(Rashid et al., 2021). MATE-KD enhances tra-
ditional knowledge distillation by introducing an
adversarial text generator.

The MATE-KD process consists of two main
steps:

• Maximization step: A pre-trained masked lan-
guage model (MLM) generator is trained to

perturb the input text by maximizing the di-
vergence between teacher and student logits.
This generator learns to create challenging ex-
amples that highlight the differences between
the teacher and student models.

• Minimization step: The student model is then
trained using knowledge distillation on both
the original and perturbed training samples,
encouraging it to match the teacher’s perfor-
mance on both standard and adversarial in-
puts.

For our implementation, we use ELECTRA-
56M as the generator, pretraining it on our dataset.
Our teacher models are GPT2-44M and Llama-
60M, both pretrained on our dataset. The stu-
dent model remains Llama-58M, consistent with
our previous experiments. We equally weight
cross-entropy student loss with true labels, knowl-
edge distillation loss, and adversarial distillation
loss on perturbed samples in our loss function.
Model architecture for student model follows that
of BabyLlama-58M model.

5 Results

Our results for these 3 experiments can be found in
Table 2.

5.1 DistilledGPT-44M

Our DistilledGPT-44M results are encouraging,
as they demonstrate that our significantly smaller
model configuration can still achieve competitive
performance.

From table 2, we can see that DistillGPT-44M
manages to outperform both its parent models,
GPT2-44M (which scored 58.2 on BLiMP Sup-
plement and 65.6 on BLiMP Filtered) and Llama-
60M (which scored 56.7 on BLiMP Supplement
and 63.5 on BLiMP Filtered). This shows that
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Child Model Parent Model 1 Parent Model 2 BLiMP Supplement BLiMP Filtered EWoK

BabyLlama-58M GPT2-705M Llama-360M 59.5 69.8 50.7

ContrastiveLlama-58M GPT2-705M Llama-360M 59.3 68.5 50.0
MaskedAdverserialLlama-58M GPT2-44M Llama-60M 56.8 65.9 49.6

DistilledGPT-44M GPT2-44M Llama-60M 58.8 66.8 50.0

Table 2: Summary of BLiMP filtered, BLiMP supplement and EWOK results for various methods tried for improving
knowledge distillation

BLiMP Supplement BLiMP Filtered EWoK

GPT2-18M 55.9 63.7 49.7
GPT2-44M* 58.2 65.6 50.4
GPT2-97M 58.0 66.0 50.6
GPT2-705M 56.7 66.1 50.6

Llama-20M 56.6 62.8 50.2
Llama-60M* 56.7 63.5 49.6
Llama-360M 55.1 68.2 50.5

LTG-BERT 60.8 60.6 48.9
BabyLlama-58M 59.5 69.8 50.7
DistilledGPT-44M 58.8 66.8 50.0

Table 3: Summary of BLiMP Filtered, BLiMP Supplement, and EWoK performance compared to various bench-
marks. Our model is in italics, and * represents its teacher models

DistillGPT-44M is able to draw insights from both
parents.

This shows that beyond the normal paradigm of a
much larger parent model training a student model,
we can use collaborative multi-teacher knowledge
distillation to create a model that outperforms both
parent models.

We also ran finetuned DistilledGPT-44M on
GLUE and compared it against BabyLlama-58M
baseline results released by BabyLM organiz-
ers, and showed that it comparably (Table 3).
DistilledGPT-44M excels in tasks requiring nu-
anced contextual understanding, such as RTE (nat-
ural language inference) and WSC (Winograd
Schema Challenge), suggesting strong capability
in reasoning tasks. While BabyLlama-58M out-
performs DistilledGPT-44M on similarity-focused
tasks like QQP and sentiment analysis in SST-
2, DistilledGPT-44M’s competitive scores high-
light its efficient handling of complex, context-
dependent tasks, even with a smaller parameter
set.

BabyLlama-58M demonstrates stronger general-
ization across a variety of sentence-pair classifica-

tion tasks, excelling in QNLI, MNLI, and BoolQ.
It also outperforms DistilledGPT-44M on CoLA,
indicating better linguistic acceptability. However,
DistilledGPT-44M’s competitive performance in
reasoning tasks suggests an efficient and resource-
effective model, making it a viable alternative in
scenarios where model size is a constraint. These
results underscore DistilledGPT-44M’s balance of
size and performance, standing strong against the
larger BabyLlama model in both accuracy and task
diversity.

Additionally, the total training time was greatly
reduced from the time it took to train BabyLlama-
58M. When training on an A5000 GPU, we re-
duced the total training time from around 10 hours
to around 3 hours, which is a more than 3x reduc-
tion in training time.

When running a Wilcoxon Ranked-Sum Test
on DistilledGPT-44M and BabyLlama-58M for
BLiMP, EWoK and GLUE tests seperately, we see
that they are statistically similar for both BLiMP,
EWoK and GLUE, showing that we are able to
achieve comparable performance with greatly re-
duced training times.
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Model MRPC (F1) RTE MultiRC QQP (F1) QNLI WSC MNLI SST-2 BoolQ CoLA (MCC) Macro Avg
DistilledGPT-48M 80.9 55.4 64.9 75.1 77.4 57.7 66.9 75.9 65.3 -0.01 68.8
BabyLlama-58M 82.0 49.6 60.1 83.6 82.8 38.5 72.4 86.2 65.0 2.2 68.9

Table 4: Results of DistilledGPT compared to BabyLlama-58M in GLUE Benchmark

5.2 ContrastiveLlama-58M

Our ContrastiveLlama-58M model show a slight
improvement over the baseline GPT2 and Llama
models of similar size, and it performs similarly to
BabyLlama-58M, with no substantial difference
when we perform a Wilcoxon signed rank test.
Nonetheless, we currently do not see a benefit to in-
troducing this contrastive loss giving performance
remained around the same. We see a trade-off
between contrastive learning and traditional knowl-
edge distillation; in future experiments, different
weighting schemes for the losses would be interest-
ing to try.

5.3 MaskedAdversarialLlama-58M

Our MaskedAdversarialLlama-58M model shows
a decrease in performance compared to both the
BabyLlama-58M baseline and our other experi-
ments. The drop is noticeable in the BLiMP Sup-
plement task, where the score is lower than even the
baseline GPT2 and the similarly-sized Llama mod-
els. This might suggest that the adversarial training
might be conflicting with the student model’s abil-
ity to capture certain linguistic nuances. It could
be possible that the generated adversarial examples
are too challenging or not representative enough of
the task-specific knowledge required for these eval-
uations. Similarly with our contrastive experiment,
trying different weighting schemes for the loss com-
ponents might help in balancing the trade-off be-
tween robustness and task-specific performance in
the future.

6 Limitations and Future Work

Although we showed the effectiveness of knowl-
edge distillation with smaller models, we did not
thoroughly explore the lower bounds of model size.
In future experiments we could investigate even
smaller student models or experiment with a wider
range of teacher-student size combinations to find
the optimal balance between model size and perfor-
mance.

Additionally, our experiments with
contrastive and adversarial learning
techniques (ContrastiveLlama-58M and
MaskedAdversarialLlama-58M) did not show

improvements over the simpler DistilledGPT-44M
model. These advanced techniques probably
require further refinement or different implemen-
tation strategies to be effective: we could try
different weighting schemes for loss components
in contrastive and adversarial training. Addi-
tionally, for the masked adversarial model, the
performance of the generator plays a critical role
in generating effective perturbed inputs. Using a
more powerful MLM generator, rather than the
smaller ELECTRA-56M model we used, could
improve the adversarial training process and create
better perturbations.

7 Conclusion

Herein, we showed that knowledge distillation can
be used even with two very simple parents with
around the same number of parameters as the child
model, to produce a child model which outperforms
both parents. We present DistillGPT-44M, which
outperforms both the baseline (GPT2) and one of
last year’s winning entry for the BabyLM challenge
LTG-BERT, while maintaining comparable perfor-
mance to the other winning entry BabyLlama-58M
despite reducing number of parameters by around
25% and cutting training time by around 70%.
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