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Abstract

The size of neural models within natu-
ral language processing has increased at a
rapid pace in recent years. With this in-
crease in model size comes an increase in
the amount of training data required for
training. While these larger models have
shown strong performance, their use comes
with added training and data costs, can be
resource-prohibitive for many researchers,
and uses an amount of language data that
is not always available for all languages.
This work focuses on exploring quality esti-
mation as a method of data selection or fil-
tering. The aim is to provide models with
higher quality data as compared to larger
amounts of data. This approach was ap-
plied to machine translation models with
varying data sizes as well as to the BabyLM
Challenge. Given the 100M word dataset
provided in the BabyLM Challenge, we
test out various strategies for selecting 10M
words for pretraining and use a curriculum
learning approach based on the quality es-
timation scoring. We find small improve-
ments in certain data settings.

1 Introduction

In recent years, there has been a dramatic rise in
the size of neural network models used for natural
language processing tasks. To train these larger
models, there has been a similar rise in the size
of datasets used for training or pretraining. While
these models have been quite successful, this trend
comes with several downsides including the cost of
creating these larger systems which also inhibits
the ability of many researchers who lack access to
the large scale computing resources required. By
contrast, human language development occurs in
children with exposure to far fewer words of train-
ing data. Inspired by this, the BabyLM Chal-
lenge (Choshen et al., 2024) focuses on “sample-
efficient pretraining on a developmentally plausible
corpus.”

One approach to improve model performance in
data-limited settings is curriculum learning (El-
man, 1993). Just as human language learners are

typically exposed to simpler language before build-
ing up to more complex utterances, curriculum
learning involves increasing the difficulty of train-
ing examples over the course of model training.
In order to do this, there must be some measure
of “difficulty” in order to assign an ordering to
training examples. In this work, we apply qual-
ity estimation scoring as an estimation of diffi-
culty. These scores are used to train models for
the BabyLM Challenge, specifically restricted to
10 million words or less of training data.

Quality estimation (QE) in machine translation
scores the quality of translation output without
the need for a reference translation (Specia et al.,
2018). Through a series of experiments, we explore
the effects of using QE to filter data for machine
translation systems for both initial model training
and fine-tuning, as well as the result of training
on different quantities of data for each model (see
Section 3). Prior work has shown that data filter-
ing through QE can increase model performance
(Batheja and Bhattacharyya, 2023). We explore
that further in this work for both machine transla-
tion and language modeling in data restricted set-
tings.

Since quality estimation scores the quality of
the output of a machine translation system, it is
likely that higher QE scores correspond to sen-
tences which the system has an easier time trans-
lating. Motivated by this, we experiment with us-
ing QE scores as an estimation of the difficulty of
a given sentence for an NLP system. In partic-
ular, we use this for data selection as well as for
difficulty scoring for curriculum learning training
of a “baby” language models as part of the 2024
BabyLM Challenge (see Section 4).

2 Related work

2.1 BabyLM Challenge and Curriculum
Learning

As this is the second year of the BabyLM Chal-
lenge, there is a body of existing work which relates
directly to our BabyLM experiments (Warstadt
et al., 2023). There were many submissions (41.9%
of teams) in last year’s iteration which made use of
curriculum learning. Using a curriculum to make
training difficulty scale up during training is known
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as curriculum learning (Bengio et al., 2009). It
has been shown that reordering input data during
training can have a large effect on model perfor-
mance across tasks such as natural language infer-
ence (NLI) (Schluter and Varab, 2018) and neural
machine translation (NMT) (Liu et al., 2020). The
most similar approaches from last year’s BabyLM
Challenge to this current work were by Chobey
et al. and by Hong et al.. In those works, a teacher
language model was trained first and used to de-
termine the curriculum for training a new model.
We similarly are using another model to inform
the curriculum, though the model and curriculum
forming is done differently.

2.2 Quality Estimation

QE has been used to assist with both automated
post-editing (APE) (Chatterjee et al., 2018) and
human post-editing tasks (Béchara et al., 2021).
QE can be used in tandem with APE to determine
which sentences from a machine translation system
need to be corrected (Chatterjee et al., 2018). In
contrast, we use QE in this work to filter out data
to be used for fine-tuning the machine translation
model.

QE has also been used to extract high-quality
data from both parallel and pseudo-parallel data
for training machine translation systems (Batheja
and Bhattacharyya, 2022, 2023). We take this
work one step further by fine-tuning machine
translation systems on the model’s own output
which was also filtered using QE. The results from
fine-tuning on both high and low-quality data were
evaluated.

3 Quality Estimation for Machine
Translation

3.1 Methodology
3.1.1 Dataset

We used the German-English IWSLT 2017 dataset
(Cettolo et al., 2017) for all machine translation
experiments described in this section. The orig-
inal dataset was initially divided into eight sets
of different sizes ranging from approximately 1500
sentences to the full-sized set of 198669 sentences
as shown in Table 1. The full dataset was first
halved to create the next smallest sized dataset.
This smaller dataset was then also halved to cre-
ate the next smallest size and so on for all eight.
Sentences that were removed during this process
did not reappear in smaller sets. This ensured that
each smaller set of sentences consisted solely of sen-
tences from the larger set.

The smallest dataset split of roughly 1500 sen-
tences was dropped due to the BLEU scores being
too low to be meaningful after initial model train-
ing. All experiments listed were completed with
the remaining seven splits of data.

3.1.2 Model Training

The fairseq (Ott et al., 2019) sequence modeling
toolkit was used to train machine translation mod-
els from German to English. A new model was
trained on each dataset split. The results from ini-
tial model training resulted in BLEU scores rang-
ing from 0.04 to 36.82, with the largest dataset
split corresponding to the highest BLEU score.

3.1.3 Quality Estimation Filtering

TransQuest is a framework for machine transla-
tion quality estimation that can be used to rate
translations at either the word or sentence level
(Ranasinghe et al., 2020). The SiameseTransQuest
sentence-level quality estimation model was used
throughout these experiments’.

The quality estimation threshold to separate
high-quality and low-quality sentences was deter-
mined by selecting the threshold that gave the
widest range of filtered sentence quantity across
all seven split datasets.

3.1.4 Model Fine-Tuning

Using the sentences that were filtered out using
TransQuest quality estimation, the original fairseq
translation models for the specified dataset split
were fine-tuned on the filtered sentences. The
BLEU scores were recorded after fine-tuning to see
if any improvements had been made as a result of
the fine-tuning. To replicate any of our results,
please see our GitHub repository?.

3.2 Experiments

Experiments 1 through 3 start with fairseq trans-
lation models trained on the original IWSLT 2017
German-English dataset splits. See Table 5 for the
full results. In experiments 4 through 6, the orig-
inal dataset is first filtered with QE and only the
high-quality data is used for initial model train-
ing. QE is then used to filter the model output for
fine-tuning (see Table 6).

3.2.1 Experiment 1

Seven fairseq models were trained on the original
IWSLT 2017 German-English dataset which had
been split into varying sizes. Each model was then
used to translate the test set, which introduced
new data to the model. The output translations
went through TransQuest quality estimation. The
low-quality sentences as rated by TransQuest were
used to fine-tune the models.

For the models initially trained on the smallest
splits, excluding the eighth split, fine-tuning re-
sulted in BLEU score improvements from 0.46 and
0.76. The most significant score improvement was

'https://huggingface.co/ TransQuest /siamesetransquest-

da-en_de-wiki
2https://github.com/lsyip/mt-ge-filtering
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Dataset Split Number of Sentences BLEU
1 (Full set) 198669 36.82
2 99335 33.15
3 49668 29.14
4 24834 23.00
5 12417 16.63
6 6209 11.75
7 3105 9.40

8 1553 0.04f

Table 1: Initial Model BLEU Scores for Experi-
ments 1-3. Model trained on unfiltered data, fine-
tuned on high or low quality data.

1Not used in experiments

seen in split 7, where the initial model had been
trained on the smallest amount of data.

3.2.2 Experiment 2

The seven base translation models trained on the
dataset splits remain the starting point for this
experiment. This time, the models were used to
translate the training sentences that they had been
trained on, thus re-introducing the same data the
model was trained on. The translation output
went through TransQuest quality estimation and
the low-quality sentences were used to fine-tune the
models.

For this experiment, splits 5 and 6 had BLEU
score improvements of over 0.6 points. The re-
maining splits did not show significant improve-
ment after fine-tuning.

3.2.3 Experiment 3

Starting again with the seven base translation
models, the models were again used to translate
the training set. This translation output then went
through TransQuest quality estimation and the
high quality sentences were used for fine-tuning.

The highest BLEU score improvement for this
pipeline was on split 5, which showed an increase
of 0.41 points after fine-tuning on the high-quality
sentences. The remaining splits did not show sig-
nificant improvement in BLEU scores after fine-
tuning.

3.2.4 Experiment 4

For this experiment, we first filtered each of the
IWSLT 2017 splits through TransQuest quality es-
timation. See Table 2 for details. Next, new fairseq
translation models were trained on the sentences
that were rated to be of high quality. These mod-
els serve as the starting point for the following two
pipelines. This setup mirrors the parallel corpus
filtering via quality estimation previously done by
Batheja and Bhattacharyya.

Dataset Split Number of Sentences BLEU
1 75898 30.56
2 36269 25.00
3 17776 19.13
4 8882 15.20
5 4286 6.90

6 2149 0.05

7 1082 0.07

Table 2: Initial Model BLEU Scores for Experi-
ments 4-6. Model trained on filtered data, fine-
tuned on high or low quality data.

3.2.5 Experiment 5

Using the new fairseq models that were trained in
experiment 4, the model was asked to translate all
sentences from their respective training set, which
did not introduce new data to the model. The new
translations were sent through TransQuest quality
estimation and the sentences that were rated high-
quality were used for fine-tuning.

After fine-tuning, the models trained on the
smallest three splits did not show significant im-
provement to their BLEU scores. However, some
improvement was made with the larger splits. The
models initially trained on splits 1, 2, 3 and 4
showed BLEU score improvements of 0.38, 0.6,
0.58, and 0.46, respectively. It is important to note
that with each larger split, the number of sentences
in the fine-tuning set also increases as more trans-
lations were sent through quality estimation.

3.2.6 Experiment 6

Starting again with the fairseq models that were
previously trained in experiment 4, these models
were again used to translate sentences from their
respective original training sets and the new trans-
lations were sent through TransQuest for quality
estimation. The sentences that were rated to be of
low-quality were then used to fine-tune the models.

After fine-tuning, smallest 3 splits did not show
any improvements in BLEU score. Splits 1, 2, and
4 showed an increase in BLEU score between 0.21
and 0.28. Split 3 had the highest BLEU score in-
crease of 0.51.

3.3 Machine Translation Results

In experiments 1-3, we observed that some models
trained on smaller datasets saw improvements in
BLEU score after fine-tuning on training data that
had been filtered through quality estimation. The
differences between using low-quality and high-
quality data to fine-tune, however, were marginal.
This suggests that the quality of the data may not
matter as much as the quantity that is available.
For the smaller datasets, improvements could be
seen after fine-tuning in both the low and high-
quality instances.
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For experiments 4-6, which used TransQuest
quality estimation to filter both the original
dataset and the data for fine-tuning, the initial
model BLEU scores were lower than the first three
experiments due to having fewer training sen-
tences. We observed that some improvements in
BLEU score can be made after fine-tuning on the
filtered high-quality on the larger dataset splits.
The most significant differences after fine-tuning
were seen in splits 2, 3, and 4.

4 BabyLM Challenge

4.1 Methodology
4.1.1 Dataset

The data for the BabyLM Challenge provided by
the challenge organizers consists of text from six
sources and was selected to represent language
data that a human child may be exposed to when
developing their language skills. The provided
dataset contains 100 million words of text data.
From this, we could form training datasets con-
taining up to 10 million words to train models for
the strict-small track.

4.1.2 Model and Training

The data preprocessing involved removing blank
lines and special characters, with a focus on
dialogue-related elements. The sentences within
each dataset were then rearranged based on length
to streamline the training process. After prepro-
cessing, the sentences were translated from English
to German using base translation models from
fairseq. See Table 3 for metadata of processed
datasets.

The quality of resulting pairs of German-English
sentences was assessed using TransQuest and
xCOMET frameworks. COMET, which stands
for Crosslingual Optimized Metric for Evaluation
of Translation, is a neural framework to predict
human judgments on machine translation qual-
ity from source and target language samples (Rei
et al., 2020). Specifically, the wmt23-cometkiwi-
da-x1®> model was chosen for xComet, and its re-
sults were compared to those from TransQuest.
However, we found the scores from both models
to be inconsistent with each other. In the end, the
xComet scores were selected to rank and filter the
data for training, since the TransQuest scores were
heavily influenced by sentence length.

Our model is a RoBERTa (Liu et al., 2019)
model. RoBERTa is a modification of the BERT
(Devlin et al., 2018) model, which showed im-
proved performance across several benchmarks.

We conducted several experiments to explore dif-
ferent strategies for selecting a training subset with
a budget of 10 million words from the original 100

3https:/ /huggingface.co/Unbabel /wmt23-
cometkiwi-da-xl1

million words. The experiments varied based pri-
marily on:

e The order of training: ascending or descending
(original curriculum learning) order of quality
estimation scores (equivalently, reversed ma-
chine comprehension level),

e The separation or combination of datasets
from various sources,

e The number of hidden layers and heads during
model training.

After filtering and training, models were evalu-
ated using a standardized evaluation pipeline pro-
vided by the organizers to compute their scores on
the BLiMP and EWoK benchmarks.

Code to train our models can be found on
GitHub*.

4.2 Experiments

4.2.1 Experiment 1

For this experiment, all sources were combined and
rearranged based on their xComet scores. The 10
million words in sentences with highest scores were
kept and divided into 3 files, namely easy (top 2
million), medium (next 4 million), and hard (next
4 million). Sentences with higher QE scores are
considered to be easier sentences. Those files are
trained in order from easy to hard, following the
curriculum learning approach.

4.2.2 Experiments 2 and 3

For Experiment 2, 1.8 million words from the high-
est scored sentences of each sources were selected,
except for Switchboard from which all 0.8 million
words were taken. For Experiment 3, we did the
opposite, by selecting the 1.8 million words from
the lowest scored sentences from each source. This
means we followed the typical order for curriculum
learning in Experiment 2 and the reversed order in
Experiment 3.

In both experiments, the following file order
was used for training: CHILDES, OpenSubti-
tles, Switchboard, BNC _spoken, Simple_wiki, and
Gutenberg.

4.2.3 Experiments 4-6

For Experiment 4, we tried to replicate Experi-
ment 1 in the way word data were selected, start-
ing by combining all sources into one stream for
score ranking. However, we divided the word bud-
get into 5 files grouped by QE score with each file
containing around 2 million words. The model is
trained on these files from easiest to hardest in Ex-
periment 4 and reversed order in Experiment 6.
For Experiment 5, instead of selecting 10 million
words from highest scored sentences, we filtered

*https://github.com/jdebened /Babyl.M2024
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. L. # Words  # Words
Dataset Description (Original) (Processed)
CHILDES Child-directed speech 28.9M 15.6M
British National Corpus (BNC) Dialogue 7.7TM 5.3M
Standardized Project Gutenberg Corpus Written English 26.3M 21.7M
OpenSubtitles Movie subtitles 20.0M 13.5M
Simple Wikipedia Wikipedia (Simple English) 14.7M 11.5M
Switchboard Dialog Act Corpus Dialogue 1.3M 0.9M
Total 99M 68.5M

Table 3: Original and Processed Dataset provided for the strict track of the BabyLM Challenge. Dataset

names, domain descriptions, and word counts

those from lowest scored ones and trained resulting
files in the order of hardest to easiest files.

4.2.4 Experiments 7-10

For these experiments, only one source was used
in each experiment, namely either CHILDES or
Gutenberg. In Experiments 7 and 8, the 10 mil-
lion words were selected from lowest scores of
CHILDES and Gutenberg datasets respectively.
The order of training is from sentences with low-
est scores to those with higher scores, opposite of
expected curriculum learning order.

In Experiment 9, we filtered down to the 10
million words from highest scoring sentences of
CHILDES to compare with the result from Exper-
iment 7. It is noted that this comparison is based
on data selection of highest and lowest scored sen-
tences as well as training order of increasing and
decreasing complexity.

In Experiment 10, we used the same subset of 10
million words from Experiment 10. However, the
number of hidden layers and heads were doubled
for further comparison.

The motivation behind choosing these sources
rather than others is because we wanted to test
the opposition between child-directed speech and
written texts.

4.2.5 Experiments 11 and 12

For these experiments, we tried to replicate Exper-
iments 4 and 5 respectively. However, we decided
to split into smaller files, each with 1 million words.

4.2.6 Experiments 13 and 14

For these experiments, the mixture of 5 million
words from highest scored sentences and 5 million
words from lowest scored ones were used.

The primary difference between these experi-
ments are based on their order of training. While
Experiment 13’s order followed curriculum train-
ing, Experiment 14 did the opposite.

Full experiment descriptions, mainly in how data
was selected for model training, can be found at
Table 4.

4.3 Results

Full experiment results including BLiMP and
EWOoK scores from the evaluation pipeline can be
found at Table 4.

Evaluation pipeline provided by BabyLM Chal-
lenge 2024 included zero shot evaluation on tasks
from the BLIMP benchmark and hidden evaluation
tasks from the Ewok benchmark (Warstadt et al.,
2020; Ivanova et al., 2024).

BLiMP is made up of tasks designed to test how
well language models adhere to the structure of
English. Each task presents a pair of sentences,
where one is grammatically correct, and the other
is incorrect, with the two sentences differing as lit-
tle as possible. A model is considered accurate for
a given example if it assigns a higher probability
to the correct sentence in the pair (Warstadt et al.,
2023).

Elements of World Knowledge (EWoK) frame-
work evaluates world modeling in language models
by testing their ability to use knowledge of con-
cepts across physical and social domains to deter-
mine plausible or implausible contexts. It flexi-
bly constructs multi-step scenarios, targets specific
cognitive concepts, and generates controlled evalu-
ation items using a template-based approach. This
framework focuses on how well language models
can productively apply concept knowledge, rather
than just matching individual sentences or facts
(Ivanova et al., 2024).

From the table of results, we found several pat-
terns in the varied BLIMP and EWoK scores:

e Models with order of training from harder
to easier, opposite to expected order from
curriculum learning (decreasing complex-
ity) had slightly higher BLiMP_complement
scores compared to others with/without same
datasets such as models 3, 5, 10, 12, 14. The
exception in this case is Model 6, compared
to Model 4. However, the BLiIMP _filtered and
EWoOoK _filtered scores did not experience the
similar pattern with no noticeable improve-
ment for any order. This inconsistency may
stem from our assumption of the relationship
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Reversed CL order

BLiMP BLiMP | EWoK .
# | Data setup complement | filtered | filtered Details
All data sources 10M highest QE scores
1 | Sources combined 58.01 60.69 49.99 separated into 2M highest,
CL training order next 4M, next 4M
All data sources 1.8M words of each source
2 | Sources kept separate 54.98 60.87 49.15 by highest QE score
CL training order (Switchboard max 0.8M)
All data sources 1.8M words of each source
3 | Sources kept separate 60.25 60.17 50.47 by lowest QE score
Reversed CL order (Switchboard max 0.8M)
All data sources .
4 | Sources combined 58.92 61.01 50.00 %OM h1ghe§t QI scores .
CL training order separated into 5 equal-sized files
All data sources
5 | Sources combined 61.41 60.45 50.10 10M 10W€SF QE scores .
Reversed CL order separated into 5 equal-sized files
All data sources 10M highest QE scores
6 | Sources combined 56.83 60.31 | 4971 | Scparatedinto equal-sized files,
Reversed CL order ’ ’ ’ train in the reverse order
(compared to experiment 4)
CHILDES data only 10M lowest QE scores
7 Reversed CL order 59.34 5780 5021 separated into 5 equal-sized files
Gutenberg data only 10M lowest QE scores
8 Reversed CL order 58.27 61.94 50.46 separated into 5 equal-sized files
CHILDES data only 10M highest QE scores
) CL training order 55.41 5799 50.30 separated into 5 equal-sized files
10M lowest QE scores
separated into 5 equal-sized files,
10 gﬁiﬁfﬁ?ii&ﬁ d(;?ly 59.73 62.39 | 49.66 | double the number of hidden
° layers and heads (compared
to experiment 8)
All data sources .
11 | Sources combined 56.92 61.20 | 50.97 | OM highest QI scores
CL training order separated into 10 equal-sized files
All data sources
12 | Sources combined 59.80 60.11 50.55 | LOM lowest QI scores - ‘
Reversed CL order separated into 10 equal-sized files
All data sources M higheS‘F QE scores .
13 | Sources combined 59.74 60.35 50.31 separated into 5 equal-sized files,
CL training order then 5M lowest QE scores
separated into 5 equal-sized files
5M highest QE scores
All data sotrces separated into 5 equal-sized files,
14 | Sources combined 63.02 60.66 5.1 | then SM lowest QE scores

separated into 5 equal-sized files;
train in reverse order (compared
to experiment 13)

Table 4: Experiments setups and results (%). Comparison between models trained on 10 million word
budget filtered from original 100 million words provided in the 2024 BabyLM Challenge. Bolded values
show best in column. Strategies to filter the data to form training datasets containing up to 10 million
words to train models.
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between quality estimation and machine com-
prehension level.

e Models with combined sources did not show
superior results in BLIMP_complement scores
compared to separated ones. Models with
multiple sources also did not outperform
single-source models. However, regarding the
BLiMP _filtered scores, single-source model us-
ing Gutenberg showed better performance
compared to multiple-source models or other
single-source models, especially derived from
CHILDES data. Additionally, this may also
relate to the fact that Gutenberg’s written
style and higher quality can improve the per-
formance.

e Models’ performance and the number of files
to train were not proportional in terms of
BLiMP_complement scores, but showed a
clear positive correlation in EWoK _filtered.
Models using 5 training files get the highest
BLiMP_complement in comparison to 3 or 10
files. Meanwhile, in the case of implement-
ing the curriculum learning order (models 1,
4, 11), the BLiMP filtered accuracy positively
correlated with the number of files.

e Models using doubled number of heads
and hidden layers took more time to train
and had better BLiMP_complement and
BLiMP filtered scores (models 8 and 10), but
not EWoK filtered scores.

5 Conclusion

This work explored quality estimation for data fil-
tering and curriculum learning on both machine
translation systems and language models. As
shown in our machine translation experiments (see
Section 3.2), modest improvements can be ob-
tained through finetuning on filtered data. This
benefit largely went away as the data size scaled
up to the full IWSLT17 dataset, suggesting that
this method has more use for certain data limited
settings rather than for general model use. Fur-
thermore, base model performance went up more
noticeably when additional data was added, show-
ing that more data made a larger difference than
higher quality data in this setting.

For the BabyLM Challenge strict-small track,
teams could form datasets consisting of up to 10
million words to train their language models. We
explored several options for data selection from the
provided 100 million word dataset. Each model
was then trained using a curriculum learning ap-
proach based on quality estimation scoring. Over-
all, data source made a bigger difference to model
performance than curriculum choice. In particular,
models trained using the Project Gutenberg data

generally had higher scores on downstream tasks.
This suggests that while the other data sources
are useful for human children learning language,
the higher quality data available in the Gutenberg
dataset produced a better language model.
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A  Appendix

Experiment 1 Experiment 2 Experiment 3
Split | Train | Initial | FTT BLEU FT BLEU FT BLEU
Sents | BLEU | Sents Sents Sents
1 198669 | 36.82 1884 36.81 128246 | 36.94 70423 36.84
(-0.01) (4+0.12) (4+0.02)
2 99335 | 33.15 1862 33.17 66261 33.30 33074 33.29
(4+0.02) (4+0.15) (4+0.14)
3 49668 | 29.14 1962 29.43 33540 29.45 16128 29.49
(4+0.29) (4+0.31) (4+0.35)
4 24834 | 23.00 2110 23.15 16934 23.28 7900 23.1
(40.15) (40.28) (40.10)
5 12417 | 16.63 2232 17.09 8670 17.24 3747 17.04
(40.46) (40.61) (40.41)
6 6209 11.75 2682 12.21 4419 12.41 1790 11.86
(+0.46) (+0.66) (+0.11)
7 3105 9.40 2928 10.14 2185 9.42 920 9.41
(+0.74) (+0.02) (+0.01)

Table 5: Experiment 1-3 Results. Model trained on unfiltered IWSLT17 dataset, fine-tuned on high or
low quality data.

"Fine-tune
Experiment 4 Experiment 5 Experiment 6
Split | Train Sents | Initial | FTT BLEU FTT BLEU
BLEU | Sents Sents
1 75898 30.56 60187 30.94 (+0.38) 15711 30.77 (+0.21)
2 36269 25.00 29657 25.6 (4+0.60) 6612 25.28 (+0.28)
3 17776 19.13 14433 19.71 (40.58) 3343 19.64 (4+0.51)
4 8882 15.20 7728 15.66 (4+0.46) 1154 15.44 (+0.24)
5 4286 6.90 1402 6.87 (-0.03) 2884 6.72 (-0.18)
6 2149 0.05 178 0.06 (4+0.01) 1971 0.05
7 1082 0.07 83 0.07 999 0.07

Table 6: Experiment 4-6 Results. Model trained on filtered IWSLT17 dataset, fine-tuned on high or low
quality data.
"Fine-tune
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