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Abstract
BABYLM initiative paves the way for a range
of experiments aimed at better understanding
language models (LMs) and the differences and
similarities between human and artificial lan-
guage learning. However, the current frame-
work is limited to the English language and a
range of evaluation metrics, focused on syn-
tax, semantics, and pragmatics. In this pa-
per, we propose some steps towards extend-
ing the framework to other languages, like
French, leveraging existing linguistic resources
for these languages. Additionally, we advo-
cate for greater exploration of genre variations
within subcorpora for training LMs, as well as
for the adoption of additional evaluation met-
rics with different underlying principles. Our
proposal consists of using high-quality sponta-
neous speech corpora as a source for extracting
production-related variables, which the models
are then fine-tuned to predict. We hypothe-
size that these production-related features offer
insights into the language processing mecha-
nisms underlying the data and that cognitively
sensitive models should outperform others in
predicting these features. Specifically, we pro-
pose focusing on the prediction of phenom-
ena such as speech reductions, prosodic promi-
nences, sequences co-occurring with listeners’
backchannels, and disfluencies. To illustrate
our approach, we present an example involv-
ing the prediction of speech reductions and
prosodic prominences in spontaneous speech in
two different languages (French and English),
using models trained on 10 million tokens from
different data source mixtures.

1 Introduction

The BABYLM initiative is built on three interre-
lated aspects: (i) data sets for training language

models, (ii) evaluation metrics designed to cap-
ture cognitive and linguistic skills and their de-
velopment, and (iii) models that are either more
cognitively plausible and/or capable of learning
efficiently from "small" datasets. This initiative
represents a strategic and timely effort to better
understand the differences between artificial and
human language learners.

While the 2023 edition focus was primarily on
models, the 2024 call expands the scope to include
investigations into both datasets and evaluation
metrics—a crucial step, as we will argue in this
position paper. Specifically, we propose concrete
directions for expanding language model training
datasets and exploring new evaluation metrics to
deepen the linguistic and cognitive relevance of the
BABYLM evaluation framework. Regarding eval-
uation metrics, we advocate for a novel approach
that leverages existing high-quality spontaneous
speech corpora.

One observation about the BABYLM initiative to
date is that the datasets used are in English. While
this is a natural starting point, it represents a sig-
nificant limitation. Expanding the scope to include
more languages is not only about better represent-
ing linguistic communities or potential model users.
Achieving comparable, contrastive results across
different languages within the BABYLM frame-
work could offer valuable insights into both the
learning models and the underlying learning pro-
cesses.

While the original BABYLM initiative argues
convincingly for a mix of data sources includ-
ing transcripts of child-caregiver conversations, ev-
eryday conversations, subtitles, and simple texts,
different mixtures can be explored. Due to data
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scarcity, it is still impossible to gather a 100M data
set based on real spoken conversational data but the
10M is accessible for a few languages like English,
French and Mandarin and a few others. Conver-
sational speech is the genre within which humans
acquire their basic language skills. It is a genre
quite distant from the usual written or web content
on which LMs are trained, increasing the risk of
biases for LMs produced. Moreover, it has been
argued that it is a genre of high relevance to lan-
guage emergence (Levinson, 2020; Christiansen
and Chater, 2022). How could a purely interac-
tional dataset, including both child-directed and
general conversation transcripts, be compared to
more balanced mixtures? This opens the door for
testing various hypotheses. For instance, does in-
cluding more encyclopedic knowledge help with
higher-level commonsense tasks, while a purely
conversational training set provides a model with
better communicative and conversational abilities?

In this context, current evaluation metrics,
while a good starting point, appear biased in
two ways: they tend to favor canonical written
forms and prioritize syntactic, semantic, and
commonsense pragmatics. However, language
and communicative competence include many
other dimensions. Although the initiative clearly
emphasizes the importance of using speech
transcripts, both child-directed and everyday
conversations, as training data, to our knowledge,
none of the evaluation metrics employed address
explicitly the specificities of spontaneous speech.

To summarize, we argue that, in line with the
directions proposed in this year’s new call, train-
ing datasets, and evaluation metrics are just as
crucial as models for understanding the compu-
tational learning of language structure. We propose
evaluation metrics based on spontaneous speech
data and demonstrate how we can build such met-
rics from different aspects of the speech signal and
transcripts obtained from high-quality spontaneous
speech corpora.

2 Related Work

Since the emergence of large language models,
there has been strong interest from the compu-
tational linguistics community in understanding
why they are so successful. Warstadt et al. (2020b)
explore the conditions (e.g., the amount of train-
ing data) under which ROBERTA develops and

leverages linguistic features, such as part of speech
(POS) and morphology, as opposed to relying on
simpler surface-level features like simple position-
based or length-based features. More recently, sev-
eral studies have probed LLMs to better charac-
terize their performance across various domains,
particularly with regard to their linguistic compe-
tence versus commonsense reasoning. These stud-
ies have also examined the relationship between
model performance and the amount of training data
required for different tasks. In particular, Zhang
et al. (2021) used training sets of varying sizes, 1M,
10M, 100M, and 1B tokens, to show that syntac-
tic and semantic competence becomes robust in
the 10M-100M range, whereas larger datasets are
needed to achieve strong results in pragmatic and
commonsense reasoning tasks.

More broadly, there have been proposals for eval-
uating the performance of LLMs on diverse lin-
guistic tasks. Warstadt et al. (2019b) leveraged
a substantial body of generative syntax-semantics
literature to develop benchmarks based on accept-
ability judgments, coming either the linguistic liter-
ature like the COLA benchmark further extended
by exploiting more sources and data augmenta-
tion methods in BLIMP (Warstadt et al., 2020a).
In addition to these binary decision tasks, Zhang
et al. (2021) combined three other types of eval-
uation metrics: classifier probing (following (Et-
tinger et al., 2016; Adi et al., 2017)), which in-
cludes tasks from POS tagging to coreference reso-
lution; information-theoretic probing based on the
minimum description length (MDL) principle; and
fine-tuning on higher-level tasks such as those in
the SUPERGLUE benchmark.

Most of the benchmarks have been proposed for
English. However, BLIMP Warstadt et al. (2019a)
has inspired a series of language-specific bench-
marks, such as CLIMP for Mandarin Chinese (Xi-
ang et al., 2021), as well as benchmarks for other
languages like Japanese (Someya and Oseki, 2023),
Dutch (Suijkerbuijk et al.), and Russian (Takta-
sheva et al., 2024). These are important additions to
the evaluation landscape. While these benchmarks
represent important extensions to the general evalu-
ation framework, they all rely on syntax-semantics
structures derived from introspection and textbook
data, as will be discussed in the next section. In par-
allel to these efforts, monolingual language models
have been developed using large amounts of data
(Chang et al., 2024), as well as experiments involv-
ing varied data quantities (Micheli et al., 2020).

148



In another line of research, several studies have
tested the ability of large language models (LLMs)
to perform tasks inspired by cognitive science, par-
ticularly in the domains of semantics and pragmat-
ics (Ettinger, 2020; Binz and Schulz, 2023).

Our approach of using actual speech data to ex-
tract production-based metrics can be related to
studies that use behavioral or neurophysiological
data linked with linguistic datasets. Specifically,
there has been significant work focusing on tex-
tual datasets combined with eye-tracking (Hollen-
stein et al., 2021) or neurophysiological (Bingel
et al., 2016; Hollenstein et al., 2018) measures.
Additionally, datasets from passive listening tasks,
linked to fMRI, have been released for various lan-
guages (e.g., French, Mandarin, and English) (Li
et al., 2022). These datasets have been used, for
instance, to study the impact of training parameters
on a language model’s ability to predict neurophys-
iological data (Pasquiou et al., 2022). Focusing
on spontaneous speech, (Rauchbauer et al., 2019;
Hmamouche et al., 2024) examined the predictabil-
ity of fMRI-derived signals from conversational
variables, including lexical information.

In terms of specialized language models,
(Cabiddu et al., 2025) developed LMs based on
child-directed speech transcripts and evaluated
them on word-sense disambiguation tasks. They
concluded that word acquisition trajectories could
be better captured by multimodal models that in-
corporate acoustic features, among other aspects.
Regarding more specifically tokenizers, Beinborn
and Pinter (2023) proposed an evaluation paradigm
focusing on the cognitive plausibility of subword
tokenization. They compared BPE, WordPiece, and
UnigramLM and revealed a lower "cognitive corre-
lation" for the latter. Lastly, in the most recent
BabyLM edition, (Martinez et al., 2023) introduced
an interesting learning curriculum that constrained
vocabulary in the early stages to simulate more cog-
nitively plausible learning curves. Although this
approach did not yield consistent overall results,
marginal gains were observed in selected tasks.

3 A proposal for a new source of metrics

All initiatives mentioned are grounded in text-based
and/or handcrafted paradigms, potentially coupled
with behavioral and /or physiological lab mea-
sures. In contrast, we propose using actual sponta-
neous conversational transcripts to build comple-
mentary benchmarks that test not only the syntax-

semantics dimensions but also real-world language
use. These metrics will remain fundamentally
linguistic in nature rather than focusing on task-
specific or end-to-end evaluation.

Language is acquired, especially in its early
stages, within spontaneous, conversational environ-
ments. While conversational language shares gram-
matical structures with other genres, its unique
characteristics suggest that simply listing syntactic
"errors" or semantic incongruities does not fully
capture linguistic competence. Furthermore, in a
conversational context, what may be considered a
production error from a formal grammatical per-
spective is often perfectly acceptable and success-
fully achieves its communicative purpose. There-
fore, we aim to develop a complementary approach
that provides a broader set of metrics for evaluating
language models from both cognitive and commu-
nicative perspectives when combined with existing
benchmarks.

Specifically, we propose using spontaneous
speech corpora, as they offer insights into human
language processing through various observable
production phenomena. Our approach is a kind
of classifier probing (Ettinger et al., 2016; Adi
et al., 2017; Warstadt et al., 2019b), but rather
than focusing on meta-linguistic tasks (e.g.,
predicting syntactic categories), we aim to predict
phenomena that serve as partial indicators of
language processing. We propose a preliminary
set of potential metrics, which remains open
for further development. These metrics include
speech reductions, listener’s backchannel signals,
prosodic prominences, and disfluencies. The
common point among these metrics is that they are
all grounded in spontaneous speech production,
and each has been the subject of extensive research.

3.1 Speech reductions
Speech reductions have been studied across a range
of linguistic levels, from phonetics to semantics,
especially when considering the issue of signal in-
formation density. In spontaneous speech, some
chunks of speech are produced in a reduced man-
ner, both in terms of duration and articulatory am-
plitude. The location of these reductions is not
random. For example, studies have suggested that
speakers tend to smooth the information density
of their speech signal over time, with reductions
serving as a mechanism to achieve this smoothing
effect (Aylett and Turk, 2004).
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The relationship between information density
and speech reduction has led to research develop-
ments on this topic with various approaches. These
approaches may differ in the probabilistic mea-
sures used to predict reductions, such as lexical
frequency, contextual probability, and informativity
(Aylett and Turk, 2004; Gahl, 2008; Cohen Priva,
2012; Seyfarth, 2014). They also differ in terms
of the linguistic level at which reductions occur,
whether at the phoneme-, syllable-, word-level, or
in terms of overall speech rate. Many of these stud-
ies include and compare different types of proba-
bilistic measurements (e.g., lexical frequency and
contextual probability) within a single study (e.g.,
(Seyfarth, 2014; Cohen Priva and Jaeger, 2018))
and some of them also compare probabilistic mea-
surements calculated at different linguistic levels
(e.g., segment- and syllable-levels in Van Son et al.
(1999), segment- and word/-level measurements
in Van Son and Pols (2003), syllable- and word-
level measurements in Wang (2022)). Inclusion
and comparison of reductions or phonetic variabil-
ity across various linguistic levels in the same study
have also been done (e.g., individual segments and
prefixes as a whole in Pluymaekers et al. (2005);
morphemes and words in Tang and Bennett (2018)),
albeit less frequently.

These studies show that phonetic reduction can
be predicted to varying degrees on the basis of the
statistical distribution of linguistic units, and the
prediction has been repeatedly found with vary-
ing types of measurements at various levels of lin-
guistic units. This motivates the development of
a reduction-labeling task for evaluating language
models.

3.2 Prosodic Prominences
Prosodic prominence refers to the emphasis placed
on certain units, often demarcated at the level of
words or syllables, within a spoken utterance. This
emphasis can be measured through (and perceived
based on) acoustic cues such as movements in fun-
damental frequencies, duration, intensity, and seg-
mental properties such as the formant structure of
vowels. Recent work by Wolf et al. (2023) has
shown a significant degree of redundancy between
the representations encoded from tokens alone and
those derived from acoustic-prosodic information.
Acoustic-prosodic features such as word-level en-
ergy, fundamental frequency, duration, pause, and
composite measurements derived using a wavelet-
based algorithm (Suni et al., 2017) were used to

quantify this redundancy. Their findings suggest
that prosodic information can be predicted, to some
extent, from the word itself and its surrounding con-
text.

Furthermore, Kakouros and O’Mahony (2023)
suggests that language models (in their study,
BERT) use syntax-semantics layers to predict
prosodic aspects. While we do not argue that text
alone can fully predict prosodic prominence (as
also noted by Wolf et al. (2023)), we remark that
part of prosodic prominence can indeed be pre-
dicted by a language model. In the case of spon-
taneous speech, this prosodic information reflects
an additional layer of language processing. There-
fore, language models that better capture human
language processing should have an advantage over
models trained exclusively on raw written text, par-
ticularly concerning prosodic prediction.

3.3 Listeners’ Signals
Although not directly linked to the speaker’s
production, backchanneling (Yngve, 1970) of-
fers another perspective on language processing.
Backchannels do not occur randomly; they are fre-
quent in casual conversations and closely related
to turn-ending prediction (Skantze, 2021). There
has been an ongoing debate about whether predict-
ing the exact location of a turn-ending is a mat-
ter of lexical and syntactic completion prediction
(De Ruiter et al., 2006) or based on prosodic cues
from the main speaker (Bögels and Torreira, 2015).
Finer-grained experiments by Riest et al. (2015)
identified semantic completion as a crucial source
of information for predicting turn-endings.

Our position is that if a listener can anticipate
when it is appropriate to produce a backchannel,
and even if part of this decision is based on
prosodic cues from the main speaker, language
models should be capable of predicting these
moments to some extent.

3.4 Disfluencies
Directly predicting disfluencies (Shriberg, 1994),
as discussed earlier, is challenging because dis-
fluencies are explicit in the token stream. Re-
moving them and labeling sequences where they
originally appeared is cumbersome and potentially
problematic. A more effective approach might
be to adopt a well-established evaluation method:
comparing "acceptable" versus "unacceptable" se-
quences. While disfluencies exhibit various sub-

150



tleties, most follow a few simple patterns. We could
compare actual utterances from high-quality lin-
guistic corpora that do include detailed disfluency
transcription with artificially generated utterances
where disfluent patterns have been injected, simi-
lar to the syntactic acceptability approach used in
Wagner et al. (2009) and Warstadt et al. (2019b).

4 Data

4.1 Pre-training data for creating LLMs

We have trained several language models. For the
French experiment, we trained one model on 10M
tokens from conversational datasets inspired by the
original BABYLM data mix (ORFEO1 (Benzitoun
et al., 2016) and CHILDES-FR2 (MacWhinney,
2014; Rose and MacWhinney, 2014)) and another
on 10M tokens from Wikipedia. The training pro-
cess used standard parameters (a BPE tokenizer
with a 10K vocabulary size3, a minimum token
frequency of 2, and training for 3 epochs), with im-
plementations from the HUGGINGFACE packages.

Similarly, three English models were trained
on three size-matched datasets containing 9M to-
kens from the following sources: a subset of the
BABYLM 10M training data, "spoken" data that
included BNC and Switchboard subsets from the
BABYLM 100M training data, and a subset of
Simple Wikipedia data from the BABYLM 100M
training data. Subsets of the corresponding valida-
tion data from BABYLM were also used to create
0.9M-word validation sets for early stopping in LM
training (maximum epochs = 100, early stopping
patience = 3).

We included ROBERTA models in the fine-
tuning experiments to serve as a topline for this
task. The purpose of using ROBERTA models,
which do not fit any of the BABYLM tracks, was
to better contextualize our proposed metrics as a
form of sanity check. The underlying idea is that
if full-fledged LMs like ROBERTA fail to perform
the task, it is likely that the task cannot be achieved
given the provided data.

4.2 Benchmarks

For these experiments, we used two sources to
build benchmarks: the Corpus of Interactional Data

1https://hdl.handle.net/11403/cefc-orfeo
2https://phon.talkbank.org/access/French/
3We tested vocabulary sizes of various sizes. Although the

scores varied, they did not affect the performance hierarchy
between the models.

(CID) for French4 (Blache et al., 2017) and the
Buckeye Corpus for English5 (Pitt et al., 2005).
CID is an 8-hour corpus of 1-hour conversations
between friends (16 speakers). It features fiercely
spontaneous conversational speech. Buckeye is a
corpus with 38.1 hours of spontaneous speech (40
speakers) recorded in an interview format.

The main reason for the choice of these corpora
is the high quality of their speech transcript align-
ment, down to the syllable or even the segment
level. These spontaneous datasets have also been
used in various phonetic studies (Raymond et al.,
2006; Meunier and Espesser, 2011).

5 Experiments

The experiments evaluated different pre-trained
models for our set of tasks.6 More precisely, we
fine-tuned the pretrained models separately on a to-
ken classification task to predict which tokens were
labeled (reduced / prominent / backchannelled) and
which were not. A simple cross-validation was
conducted across groups of speakers to maximize
diversity across the folds.

5.1 Speech Reduction

There are several methods to determine whether a
portion of speech is reduced. Following approaches
in the literature, we first derived ratios of every
word token’s actual duration and its expected du-
ration. For the French benchmark, we leveraged
annotations of syllable boundaries in the corpus
and developed a model that predicts syllable dura-
tion based on the segment it contains, similar to
Wang (2022). A model is trained on one-half of the
corpus and then applied to estimate the expected
token duration in the remaining half of the corpus.
For the English benchmark, we calculate words’ ex-
pected duration from their component phonemes’
mean duration in the corpus (Bell et al., 2009; Gahl
et al., 2012; Seyfarth, 2014).

In both cases, we then converted the ratios into
binary labels by applying a threshold of 0.7 (i.e., a
reduction of at least 30%). This threshold resulted
in labelling 33% of the tokens as reduced in the
French benchmark and about 35% of the tokens
in the English benchmark. These labels were then
encoded in a BIO format.

4https://hdl.handle.net/11403/sldr000720
5https://buckeyecorpus.osu.edu/
6Notebooks for pretraining LMs and performing the

experiment can be accessed at https://github.com/
prevotlaurent/babyLM_TW_FR.
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The main results for French and English are pre-
sented in Figures 1 and 2 respectively (see more de-
tailed results in appendix). The results confirm that
these models can predict speech reductions to some
extent in a spontaneous speech corpus. Then, the
"conversational" and "spoken" data models appear
to have some advantages over the Wikipedia-based
ones, even though the differences were not statisti-
cally significant.7 Finally, the topline performance
of ROBERTA is clear for the French results.

Figure 1: F-score comparing training data for predicting
Speech reduction on CID corpus (ROBERTA as a top
line). The significance between wiki and conv is not
tested to be significant.

Figure 2: F-score comparing training data for predicting
Speech reduction on the Buckeye corpus (ROBERTA
models as top lines). The differences between models
trained on 9M words were not significant.

5.2 Prosodic Prominences
To detect prosodically prominent tokens we used
Suni et al.’s (2017) method based on wavelet that

7All statistical significances have been tested through a
Mann-Whitney-Wilcoxon two-sided test.

combines various acoustic features for determining
prominence at the token level. One of the reasons
for this tool choice is that it had been used already
in the LMs literature (Wolf et al., 2023) to quan-
tify the amount of redundancy between textual and
prosodic levels. We used the default configuration
of this tool and used a threshold score of 1.25 (See
figure 9 in the appendix for details on the score val-
ues distribution). In the French data, this threshold
amounted to 13.8% of the tokens labeled as prosod-
ically prominent. In the English data, this threshold
amounted to 14.7% of prosodically prominent to-
kens.

In both French and English experiments, the
conversational and spoken models are sig-
nificantly better than the wiki counterparts.
ROBERTA models’ topline performance is also
clearer for both languages in this task.

Figure 3: F-score comparing training data for pre-
dicting prosodically prominent tokens on CID corpus
(ROBERTA as a sanity top line). **: p <= 0.01

Figure 4: F-score comparing training data for predicting
prosodically prominent tokens on the Buckeye corpus
(ROBERTA models as top lines). *: p <= 0.05
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5.3 Backchannels
We also designed, for the French benchmark
only,8 a task for predicting tokens around which
a backchannel had been produced by the listener.
To detect those, we used a simple list of tokens, eg.
for French (’mh’, ’ouais’, ’@’, ’ah’, ’oui’, ’bon’,

’voilà’, ’putain’, ’accord’, ’ben’, ’oh’, ’hum’, ’eh’,
’uh’, ’OK’). For each token of the target participant,
we checked whether the other participant had pro-
duced one of these backchannel tokens in a time
frame of 250ms before the beginning of the tar-
get token and 250ms after the end of the target
token. This resulted in labeling 7.73% of tokens
as being in the temporal vicinity of the listener’s
backchannels.

Figure 5: F-score comparing training data for predicting
tokens overlapping a listener’s backchannel in the CID
corpus. *: p <= 0.05

As seen in figure 5, LLMs do not manage to
solve this task with the data we gave them. While
there is a statistically significant benefit for conver-
sational pre-training (and in this case even over the
bigger ROBERTA) the overall score does not go over
5% of f-score suggesting that none of these LLMs
are getting close to modeling this phenomena. This
is likely due to the nature of backchannelling: The
literature points toward the contribution of lexico-
syntactic cues to predict the end of turns, but the
dominant cues remain prosodic ones, which these
LLMs had no direct access to in their training data.

5.4 Testing models on BabyLM’s zero-shot
tasks

To examine whether models trained on spoken data
can also be competitive in tasks that are not ap-

8This metric requires a truly conversational corpus with
both parties accurately transcribed which is not the case of the
English corpus used here.

parently tied to spoken language, we ran the En-
glish LMs9 on the zero-shot classification tasks in
BABYLM, i.e., BLIMP (Warstadt et al., 2020a)
and EWoK (Ivanova et al., 2024), shown in Table
1. While the model trained on spoken data loses its
advantage from our proposed reduction and promi-
nence classification task and ranks the worst in the
BLIMP supplement task, it is still competitive with
other small models in filtered BLIMP and EWOK.
Furthermore, the model trained on the BABYLM
data, with a mixture of spoken and written ma-
terials, has the trend of outperforming the model
trained on Simple Wikipedia both in our proposed
tasks but also in BLIMP.

BLIMP EWoK
supp. filtered filtered

ROBERTA-Large 71.9 73.9 65.5
ROBERTA-Base 70.3 74.3 62.9
BABYLM-9M 59.1 59.9 68.0
Wiki-9M 57.3 58.9 67.8
Spoken-9M 55.9 59.2 68.7

Table 1: English Models’ performances in BLIMP &
EWok

6 Potential shortcomings and Limitations

Information-centric nature. Our metrics are
related to information-theoretic notions such as
information density, entropy, and predictability.
There is a substantial body of literature that
demonstrates that these concepts can at least
partially explain the phenomena discussed in
the previous sections. This reminds us that
information-theoretic measures, such as perplexity
(a common LLM evaluation metric), are inherently
connected to the variables we aim to predict. One
potential limitation is that the models may only
capture the information-theoretic contribution to
our tasks. However, the prediction of these phe-
nomena cannot be reduced to information-theoretic
explanations alone. Each metric introduces its own
set of subtleties related to language processing,
and our goal is to evaluate LLMs in terms of their
ability to grasp these subtleties.

Text-only. The phenomena we propose
for probing the models are inherently related
to speech processing, which goes beyond what

9At the moment, we still lack similar benchmarks for
French to do the same with our French LMs.
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can be achieved with a text-only approach.
Beyond the acoustic modality, the visual channel
also plays a role, especially in contributing to
backchannels. However, it is possible to limit
multimodality to just text and speech by excluding
face-to-face corpora from the benchmark. Our
goal in proposing these metrics is not to achieve
state-of-the-art performance in predicting these
phenomena. Rather, we aim to treat them as
"traces" of human language processing visible
at the surface level, and to test which models are
better at predicting these traces from text-only
input.

Surface level shortcuts. A concern related
to the previous point is the risk that models rely
on surface-level elements as shortcuts to predict
the variables we are targeting. While we do
not have a definitive solution to this issue, since
the nature of our metrics involves performance
details observable in surface forms, we believe it
is still worth pursuing this line of investigation.
If the approach behaves consistently across our
range of proposed metrics and languages, it may
provide valuable information for language model
evaluation. The next step will be to build con-
trolled evaluation sets, similar to those developed
in McCoy et al. (2019), that allow the exclu-
sion of surface-level confounds in a principled way.

Triviality of the main result. From a machine-
learning perspective, it might be seen as a trivial
result that models trained on data similar to test
sets perform better than models trained on other
types of data. First of all, it is worth emphasiz-
ing that pretraining datasets and benchmarks in our
experiments are completely independent as they
do not come from the same raw corpora. Also,
the pretraining datasets and corpora for building
benchmarks have been curated by different teams
and transcribed with different conventions. Nev-
ertheless, we cannot deny that the conversational
datasets are by all aspects (sentence length distri-
bution, lexical frequencies, etc) more similar to
benchmarks than Wikipedia datasets are.

As trivial as it seems, it may be one of our main
points: to produce models more closely related to
human cognition, one should use data sets made of
spontaneous speech (and not generic textual / web
content). The fact that ROBERTA outperforms all
models does not change this fact since ROBERTA

is trained on a dataset several orders of magnitude

bigger.

7 Conclusion and Roadmap

In this position paper, we advocate for advancing
the BABYLM initiative in several key areas. First,
expanding beyond English is both necessary and
feasible, given the initiative’s design centered on
"small-scale" data sets. Here we used French as
an example, but we have also built the Mandarin
equivalent datasets10, emphasizing the importance
of multilingual perspectives. Our proposal focuses
on using training data composed entirely of sponta-
neous speech transcripts, which offers insights into
language learning processes. It will be crucial to ex-
plore more nuanced variations in training data, such
as balancing conversational speech, child-directed
speech, and simple texts. Equally important is
the development of complementary evaluation met-
rics. We propose using spontaneous speech data to
benchmark models and assess linguistic phenom-
ena, such as speech reductions, prosodic promi-
nences, and backchannel responses, as key indica-
tors of human language processing.

For the time being, we have English, Mandarin,
and French training datasets with different data
mixtures. The next steps involve systematizing
the pilot experiments on speech reductions con-
ducted here for the Mandarin dataset. Then, we
will extract all the other proposed metrics for the
benchmark datasets. Through this expanded set of
experiments, we aim to demonstrate the value of
the proposed approach and generalize it to other
linguistic phenomena. In a broader perspective,
we hope to show that benchmarks like BLIMP that
require a significant amount of expert and naive
human input to build, can be complemented with
benchmarks derived from the numerous existing
high-quality linguistic corpora, without additional
human efforts.
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A Variables to predict distributions and
thresholds

Figure 6: Distribution reduction ratios as calculated in
the French Dataset and the threshold selected.

Figure 7: Distribution reduction ratios as calculated in
the English Dataset and the threshold selected.

B Complete score tables
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Language Task Model F1 Precision Recall
French reduction wiki-10M .298 (.030) .299 (.035) .298 (.029)

conv-10M .310 (.029) .300 (.033) .321 (.030)
XLM-Roberta-Base .352 (.023) .342 (.027) .363 (.020)

prominence wiki-10M .246 (.026) .282 (.028) .219 (.027)
conv-10M .311 (.033) .356 (.039) .277 (.033)
XLM-Roberta-Base .446 (.029 .503 (.040) .403 (.033)

backchannel wiki-10M .007 (.006) .004 (.004) .040 (.023)
conv-10M .020 (.016) .014 (.014) .057 (.025)
XLM-Roberta-Base .009 (.005) .006 (.004) .024 (.017)

English reduction Wiki-9M .327 (.013) .322 (.014) .334 (.022)
Spoken-9M .336 (.012) .333 (.011) .340 (.019)
BabyLM-9M .335 (.012) .331 (.013) .340 (.020)
Roberta-Base .345 (.010) .345 (.014) .345 (.016)
Roberta-Large .349 (.009) .343 (.011) .355 (.015)

prominence Wiki-9M .349 (.019) .405 (.041) .311 (.035)
Spoken-9M .382 (.020) .453 (.046) .333 (.028)
BabyLM-9M .366 (.018) .437 (.045) .318 (.029)
Roberta-Base .398 (.049) .499 (.044) .336 (.060)
Roberta-Large .431 (.030) .488 (.057) .392 (.046)

Table 2: Full results on the proposed speech-based benchmarks

Figure 8: Distribution of prominence score as calculated
in the French Dataset and the threshold selected.

Figure 9: Distribution of prominence score as calculated
in the English Dataset and the threshold selected.

158


