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Abstract
English relative clauses are a critical test
case for theories of syntactic processing.
Expectation- and memory-based accounts
make opposing predictions, and behavioral
experiments have found mixed results. We
present a technical extension of Lossy Context
Surprisal (LCS) and use it to model relative
clause processing in three behavioral experi-
ments. LCS predicts key results at distinct
retention rates, showing that task-dependent
memory demands can account for discrepant
behavioral patterns in the literature.

1 Introduction

A fundamental goal of computational psycholin-
guistics is to predict and explain syntactic process-
ing difficulty as manifested in reading times. Sur-
prisal from modern language models is a strong pre-
dictor of reading times on naturalistic text: words
take longer to read when they are less predictable
(e.g. Wilcox et al., 2023). This finding aligns with
expectation-based theories of syntactic processing
(Hale, 2001; Levy, 2008). However, surprisal fails
to account for certain effects from the psycholin-
guistic literature — particularly locality effects, in
which longer syntactic dependencies lead to in-
creased processing effort (e.g. Grodner and Gibson,
2005; Bartek et al., 2011). Under surprisal theory,
this is unexpected: additional intervening context
should generally make prediction easier.

Locality effects are naturally explained in terms
of human memory limitations, which motivate
memory-based theories of syntactic processing.
One example is Dependency Locality Theory (Gib-
son, 1998; Gibson et al., 2000), which posits that
the processing cost of integrating a syntactic depen-
dency is proportional to dependency length. Sim-
ilar locality predictions arise from cue-based re-
trieval theories (e.g. Lewis and Vasishth, 2005).

Recent research has offered a principled concep-
tual unification of expectation- and memory-based
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Figure 1: Illustration of lossy context surprisal (LCS)
with retention probabilities of individual words. At high
retention rates (top), LCS predicts an expectation-based
processing slowdown at “the" for object relative clauses
(red). At low retention rates (bottom), LCS predicts a
memory-based processing slowdown at the verb.

perspectives in terms of Lossy-Context Surprisal
(LCS; Futrell et al., 2020). This theory holds that
expectations are derived from imperfect memory
representations of the context; hence, words are
easy to process only when they are easy to pre-
dict from lossy context representations. Resource-
Rational Lossy-Context Surprisal (RR-LCS) (Hahn
et al., 2022) implements LCS for general input by
constraining GPT-2 (Radford et al., 2019) with ra-
tionally optimized lossy context representations.

Here, we use LCS to model memory and ex-
pectation in the context of English relative clause
processing (Figure 1) – long considered a key set-
ting where memory- and expectation-based models
make opposing predictions (e.g. Levy, 2008, 2013).
Object relative clauses (ORCs), such as “The di-
rector that the dancer admired," are more difficult
to process than subject relative clauses (SRCs),
such as “The director that admired the dancer."
Surprisal theory and DLT differ as to when this
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difficulty arises in incremental processing. Under
the expectation-based account of surprisal theory,
comprehenders use their experience of English syn-
tactic distributions to predict upcoming structures.
Subject relatives are more frequent than object rela-
tives in written corpora (Roland et al., 2007). There-
fore, given the prefix “The director that," readers
should expect a tensed verb such as “admired," and
slow down on encountering the ORC determiner
“the." Surprisal theory thus predicts that the pro-
cessing difficulty for ORCs relative to SRCs will
appear primarily on the determiner. By contrast,
DLT posits that processing difficulty reflects the
integration of long-distance dependencies. Under
this account, the main slowdown in ORCs should
instead appear at the verb “admired," as comprehen-
ders integrate the dependency to the distant object
“director."

Behavioral studies of relative clause processing
have found discrepant results depending on the task.
Experimental data from eye-tracking (Traxler et al.,
2002; Staub, 2010) and self-paced reading (Grod-
ner and Gibson, 2005; Roland et al., 2007; Frinsel
and Christiansen, 2024) support the memory-based
prediction of longer reading time on ORC verbs.
Using the Maze task, however, Forster et al. (2009)
find only the determiner slowdown predicted by sur-
prisal theory. In a recent study, Vani et al. (2021)
collect Maze data with stimuli from earlier eye-
tracking experiments, and reproduce the determiner
slowdown. The authors suggest that the later ORC
verb slowdown found in eye-tracking studies may
reflect spillover rather than memory effects.

In the current study, we investigate whether the
task-dependent discrepancies observed in English
relative clause processing can be modeled as a
trade-off between memory and expectation. We
manipulate how much of the preceding sentence
context is remembered in the lossy context surprisal
model, and evaluate Vani et al.’s stimuli at a range
of retention rates. We additionally evaluate LCS
predictions on the relative clause stimuli of Roland
et al. (2021), who report both spillover and memory
effects in their eye-tracking data.

Figure 1 illustrates our results. At a high reten-
tion rate (e.g. 60%), LCS predicts the expectation-
based determiner slowdown on ORC test items,
consistent with the observed RTs for the Maze filler
data. At a low retention rate (e.g. 20%), however,
LCS predicts the ORC verb slowdown found in
eye-tracking studies such as Staub (2010). Further-
more, we find that low-retention LCS predictions

also capture the memory effects found by Roland
et al. after adjusting for spillover per their analysis.
This finding suggests an alternative explanation for
observed task discrepancies: eye-tracking while
reading likely imposes lower memory demands
than the Maze task, leading to a stronger influence
of memory constraints on incremental processing.

This paper presents two key contributions:1

• We release and document a technical improve-
ment to the RR-LCS model. Through extend-
ing the lossy context model to subword to-
kenization, the new model can now handle
out-of-vocabulary inputs.

• We show that, through manipulating the reten-
tion rate, LCS predicts two distinct behavioral
patterns of relative clause processing which
have been reported in different tasks. This
finding shows that task-dependent memory
demands can explain apparently contradictory
results in the literature.

2 Background

Measuring incremental processing Behavioral
methods which track word-by-word reading time
(RT) offer scientific insight into human language
processing, as longer RTs reflect processing diffi-
culty. Special eye-tracking (ET) equipment can col-
lect RT data in a laboratory setting by monitoring
participants’ eye movements as they read (Rayner,
1998). This method most closely approximates
natural reading, but ET data collection is resource-
intensive and the resulting RTs can be noisy and
challenging to interpret. One crucial source of
noise comes from spillover effects: longer process-
ing time for one word can “spill over" to following
words. In such cases, systematically longer RTs on
a specific word do not reflect difficulty processing
that word, but instead the word or words preceding.

An alternative cost-effective source of RT data
is self-paced reading (SPR), in which participants
must press a button to reveal each word in sequence.
Unfortunately, spillover effects are typically much
larger in SPR compared to ET data. The Maze task
(Forster et al., 2009) modifies SPR by introduc-
ing distractors: participants are shown two words
at each step, and must select the word which cor-
rectly continues the sentence. This task is more
cognitively demanding, and appears to reduce or

1See https://github.com/kmccurdy/LCS for model
and analysis code.
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eliminate spillover effects (Boyce and Levy, 2020;
Boyce et al., 2020). Witzel et al. (2012) compare
Maze and ET for three types of ambiguous sen-
tences and find that Maze RTs capture most — but
not all — patterns of incremental processing diffi-
culty seen in ET RTs. In this paper, we consider the
possibility that higher working memory demands
in the Maze task account for key discrepancies be-
tween Maze and ET results.

Modeling memory and expectation Language
models (LMs) are typically trained on a next-
word prediction objective, which aligns them with
the expectation-based account of Surprisal Theory.
Modern large language models, however, have be-
come worse predictors of human RT data due to
their superhuman capacity for memorization (Oh
and Schuler, 2023). This has motivated model-
ing approaches which combine LMs with memory
constraints. Timkey and Linzen (2023) propose a
model architecture with a single self-attention head,
which reduces the capacity to retrieve earlier repre-
sentations from context. Kuribayashi et al. (2022)
find improved fits to RTs by simply truncating
words from the preceding context. Here, we model
memory constraints with Resource-Rational Lossy
Context Surprisal (RR-LCS; Hahn et al., 2022),
which learns to stochastically retain or delete spe-
cific words from the representation of the preceding
context. Crucially, we can systematically vary the
LCS retention rate to simulate different patterns of
working memory engagement.

3 Computing Lossy Context Surprisal

3.1 Resource-Rational Lossy Context
Surprisal

Standard surprisal theory assumes that processing
difficulty of a word is proportional to its surprisal—
that is, its negative log-probability in context:

− logP (xT+1|x1...T ) (1)

Lossy Context Surprisal (Futrell et al., 2020) modi-
fies this by conditioning not on the exact context,
but on a lossy memory representation:

− logP (xT+1|MT ) (2)

where M is a lossy representation generated from
x1 . . . xT . To generate testable Lossy Context
Surprisal predictions, we must specify (1) lossy
representations MT and (2) how these are gen-
erated from contexts x1...T−1. Such a specifica-
tion is provided by Resource-Rational Surprisal

(RR-LCS; Hahn et al., 2022). Following Futrell
et al. (2020), RR-LCS specifies the lossy represen-
tations in terms of retaining or masking individual
words. Formally, the model operates over contexts
x ∈ ΣT , where T is a maximum context size, set to
20 in Hahn et al. (2022). The model is specified by
a family of retention probabilities (after Anderson
and Milson, 1989; Anderson and Schooler, 1991)
pw,i ∈ [0, 1] (1 ≤ i ≤ T ), where pw,i indicates
the probability that word w at position i is avail-
able when predicting word T (Figure 1). Given a
context x1...T , each word is independently kept or
masked depending on these probabilities, yielding a
lossy representation MT := y ∈ (Σ ∪ {LOST})T .

The retention probabilities pw,i are chosen so as
to minimize average lossy-context surprisal:

min
pw,i

Ex1...T+1,y1...T [− logP (xT+1|y1 . . . yT )] (3)

subject to a bound on the average number of re-
tained words:

Ex,y[#{i : yi = LOST}] ≤ δT (4)

where the expectations range over contexts x1...T
with associated next word xT+1 from a large cor-
pus, and lossy versions y drawn via the retention
probabilities pw,i. Importantly, the retention rate
δ ∈ [0, 1] is the model’s single free parameter: it
indicates how many words on average are retained.
Given a budget specified by δ, the model thus learns
to prioritize retaining those words that are usually
more helpful for predicting future words. On a
technical level, the constrained optimization (3–4)
is implemented using Lagrangian duality; see Hahn
et al. (2022, Supp. Mat. §1) for details. Empiri-
cally, the optimized retention probabilities strongly
favor forgetting less recent words, especially high-
frequency function words.

3.2 Implementation
In the parameterization of Hahn et al. (2022), given
the embedding gi of the i-the token and pi of the i-
th position, the retention probabilities receive a log-
biaffine parameterization after Dozat and Manning
(2017):

pw,i = σ
(
Fpi +MLP2(gi) + pTi MLP1(gi)

)

(5)
where MLPi denotes ReLU MLPs with one hid-
den layer with d dimensions, and σ is the logistic
sigmoid function. Both the positional and word
embeddings can directly influence the probability
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(first and second summands); there is also an op-
tion for multiplicative interaction between the two
(third summand). The parameters of the two MLPs,
the transform F , and the embeddings gi, and pi are
trainable parameters, optimized for (3–4).

By Bayes’ Rule, the predictive distribution
P (xT+1|MT ) in (2) is proportional to:

∑

x1...xT∈ΣT

P (x1...T+1)P (MT |x1...T ) (6)

where the sum ranges over hypothetical contexts
x1...T , weighted by their probability of giving rise
to the imperfect representation MT . The term
P (MT |x1...T ) can be computed in terms of pw,i.
The other term, P (x1...T+1), describes the expec-
tations in the absence of any memory limitations;
Hahn et al. (2022) estimate it using GPT-2 Medium
(Radford et al., 2019). Plugging these components
into (6), lossy-context surprisal (2) is then esti-
mated using importance sampling. Importantly, in
the limit where no memory limitations are present
(δ = 1), the predictions equal those of the GPT-2
model. Varying δ from 0 to 1, the resource-rational
lossy-context surprisal model thus interpolates be-
tween a predictive model without any context, and
a full transformer language model.

Implementation based on subwords An im-
portant limitation of the original implementation
from Hahn et al. (2022) is that it uses a traditional
word-based tokenization, with a vocabulary of 50K
words. While sufficient to model their experimen-
tal stimuli, the model frequently faces OOV tokens
when applied to other data, hindering broader val-
idation.2 In order to apply the model to other ex-
perimental stimuli, we straightforwardly adapted
the model to modern subword-based tokenizations:
Assume a word w consists of tokens t1 . . . tN , each
represented by token embeddings e1 . . . eN , where
N ≤ Nmax = 5.3 We concatenate e1, . . . , eN to
a vector of length N · d and pad with zeros to ob-
tain a vector of length Nmax · d; we then use a
trainable one-layer ReLU MLP to transform this
vector into the vector gi fed into (5), in place of
the word embeddings from the original word-based
model.4 When a word xi has been forgotten, it is
represented in y as a single special token, LOST ,

2For example, 8% of the stimuli evaluated in §4 contain at
least one OOV under the original model.

3In very rare cases of longer words, the tokens starting
from the sixth one were disregarded.

4In preliminary experiments, we also considered alterna-
tive parameterizations, such as simply summing embeddings
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Figure 2: Linear mixed-effects model fit for LCS to
Maze (Hahn et al., 2022), ET, and SPR data for filler
items from Vasishth et al. (2010). Points are individual
LCS model instances, line shows GAM smooth, x-axis
shows retention rate, y-axis shows goodness of fit in AIC
— lower is better. Maze data are better approximated by
LCS with a higher retention rate (40%) compared to ET
and SPR data (20%).

indicating that a word was present but not how
many tokens it spanned. Hence, while the model
is now specified in terms of subwords, it continues
to implement the same cognitive theory; in partic-
ular, forgetting continues to apply on the level of
words.5

Setup We train the model using this parameteri-
zation, using the GPT-2 Tokenizer, and otherwise
matching the setup of Hahn et al. (2022): The
model is trained, separately for different values
of δ, on the same English Wikipedia corpus (2.3
billion words). Paragraphs are shuffled and sepa-
rated by an EOS token. The model is applied to
contexts of size T across sentence and paragraph
boundaries. In evaluation, the context is padded
or truncated to length T (long enough to cover the
experimental stimuli); padding is removed before
passing to the GPT-2 model. We set T = 20.

without any nonlinear transformation. We compared the op-
tions at δ = 10, and chose the one with the best result on the
objective function (3-4).

5Note that another option would be to apply the model at
the level of subwords, but this would be of unclear cognitive
plausibility, as subwords do not directly correspond to any
units of theoretical cogniitive interest, and even depend on
tokenizers.
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3.3 Evaluation

Hahn et al. (2022) validated that, with a nonzero
forgetting rate, their LCS implementation improved
fit to Maze RTs on their filler sentences when com-
pared to a model variant with zero forgetting rate.
These filler sentences had previously been used in
ET and SPR experiments by Vasishth et al. (2010).
Crucially, for these fillers, RT data is available from
three paradigms: Maze from Hahn et al. (2022),
ET and SPR from Vasishth et al. (2010). The fillers
comprise both critical items and fillers from Grod-
ner and Gibson (2005, Expt. 1). The items contain
a mixture of syntactic structures, including some
embedded structures. The key advantage of these
filler data compared to datasets such as the Dundee
corpus (Kennedy and Pynte, 2005) or Natural sto-
ries (Futrell et al., 2017) is that data from three
paradigms—Maze, SPR, and ET—is publicly avail-
able for exactly the same sentences, neutralizing
confounding effects of factors such as genre.

We evaluate our subword model implementation
on the same stimuli and range of modalities. This
evaluation has two goals: 1) to confirm that our
subword implementation achieves comparable fits
to reading time data as the original word-based
model, in the sense that relatively low retention
rates should model RT better than high retention
rates, and 2) to inform our later analysis of task
differences in relative clause processing. We model
reading time fit per word using the same linear
mixed-effects model structure6 as Hahn et al. (2022,
Supp. Mat. §9). We also report goodness of fit in
terms of Akaike’s An Information Criterion (AIC).

Our findings (Fig. 2) are qualitatively similar to
those of Hahn et al. (2022, Supp. Mat. Fig. 30). We
observe a comparable spread of AIC values across
retention rates, with an average ∆AIC ≥ 10 sep-
arating the best-fitting retention rate from others.
This stark differentiation in goodness of fit suggests
that the best-fitting retention rate captures mean-
ingful variation in reading time. Moreover, in line
with other literature (§2), we also see that memory
constraints — i.e. retention rates much lower than
100%7 — produce superior fits to human RT data.

We also reproduce the task-specific trends re-
6LMER formula: log(RT ) ∼ LCS +

wordPositionInItem + log(WordFreq) +
WordLength+prevWordLCS+log(prevWordFreq)+
prevWordLength+ log(prevWordRT )+(1|ItemID)+
(1|ParticipantID)

7Note that LCS with 100% retention rate is function-
ally equivalent to pure language model surprisal, i.e. GPT2-
Medium in our implementation.

3000

3500

4000

20% 30% 40% 50% 60% 70% 80%
Retention rate

A
IC

Figure 3: Linear mixed-effects model fit for LCS to
Maze RT data on filler items (Vani et al., 2021). Points
are individual LCS model instances, line shows GAM
smooth, x-axis shows retention rate, y-axis shows good-
ness of fit in AIC. Retention rate 60–70% achieves the
best fit on average.

ported by Hahn et al.. They found that Maze RTs
were best modeled at a higher retention rate of 5 out
of 20 words (25%; compare to 40% in our imple-
mentation) compared to ET and SPR RTs, which
were best fit at 3 out of 20 words (15%; compare to
20% in our implementation). The remainder of this
paper investigates whether these task-dependent
differences can account for discrepant empirical
results from the relative clause literature.

4 Modeling Relative Clause Processing

The increased difficulty in processing object rela-
tive clauses (ORCs) compared to subject relative
clauses (SRCs) provides a testing ground for ef-
fects of memory and expectation. Memory-based
accounts such as Dependency Locality Theory
(DLT; Gibson, 1998; Gibson et al., 2000) predict
increased reading time (RT) at the ORC verb, re-
flecting integration of long-distance dependencies.
This prediction has been realized in eye-tracking
(ET) studies (Traxler et al., 2002; Staub, 2010). The
expectation-based Surprisal Theory (Hale, 2001;
Levy, 2008), however, predicts an RT slowdown
only at the start of the ORC noun phrase, and this
pattern has been found in Maze studies (Forster
et al., 2009; Vani et al., 2021). Vani et al. sug-
gest that the ORC verb slowdown found in eye-
tracking studies may reflect spillover effects rather
than memory constraints.

We explore the alternative hypothesis that ET
experiments impose lower memory demands rel-
ative to the Maze task. At lower retention rates,
lossy context surprisal (LCS) models memory con-
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Figure 4: LCS predictions (left; error bars show standard error across model instances and items) and reading time
data (right) for stimuli from Staub (2010, ET gaze duration, Experiment 1) and Vani et al. (2021, Maze, Experiment
1; cf. their Figs. 3 and 4). At the higher retention rate (60%), LCS predicts only the determiner slowdown observed
in Maze data (top row). At the lower retention rate (20%), LCS also predicts the ORC verb slowdown observed in
ET data (bottom row).

straints, but not spillover effects; if LCS captures
the patterns in ET behavioral data, this supports
the interpretation that ORC verb slowdowns are
memory-driven but also modulated by task de-
mands. Using our LCS implementation with sub-
word tokenization, we generate predictions on criti-
cal RC stimuli and compare them to behavioral
results from Maze (Vani et al., 2021) and eye-
tracking (Staub, 2010; Roland et al., 2021). We
draw on Roland et al.’s statistical analysis to fur-
ther distinguish spillover and memory effects.

4.1 Selecting Retention Rate

Maze We use the same evaluation procedure de-
scribed in §3.3 on the Maze filler item RT data
from Experiment 1 of Vani et al. (Fig. 3). Note
that these model fits span a broad range of AIC val-
ues, so we can confidently state that LCS at higher
retention rates better predicts RT data from this ex-
periment. We observe similarly high performance
at 60% and 70% retention rates. As the evaluation
in §3.3 found a lower retention rate (40%) provided
the best fit to Maze data, we conservatively select
60% as more consistent with our earlier analysis.8

8This difference — 60%–70% retention, vs. the 40% found
in §3.3 — may also reflect task demands. Hahn et al. (2022)
use the A-Maze task, in which participants distinguish words
from length-matched words with low contextual probability.
Vani et al. (2021) introduce the I-Maze task variant, which
interpolates lexical and grammatical competitors and may
impose higher memory demands.

Eye-tracking Unfortunately, filler data is not
available for either of the ET studies we aim to
model. We select 20% as our prospective reten-
tion rate based on the evaluation in §3.3. This low
retention rate is consistent with our hypothesis of
reduced memory demand in ET studies.

4.2 Evaluating Relative Clause Processing

The previous section identified two distinct reten-
tion rates at which to evaluate LCS, based on their
fit to reading times from the Maze and eye-tracking
experimental settings. In this section, we generate
LCS predictions at these two retention rates for the
critical relative clause items tested by Vani et al.
(2021), Staub (2010), and Roland et al. (2021). Pre-
dictions at each retention rate are averaged over
multiple LCS model instances trained with differ-
ent random seeds and hyperparameter configura-
tions, with a minimum of four instances per reten-
tion rate. We then compare the predictions to the
behavioral patterns reported on these stimuli for
Maze and eye-tracking data.

4.2.1 Eye-tracking vs. Maze
We hypothesize that participants systematically en-
gage their working memory at higher capacity dur-
ing the Maze task compared to the more natural-
istic eye-tracking while reading setting. If this is
the case, then we expect that LCS at higher reten-
tion rates will predict the relative clause processing
behavior observed in Maze studies, with an ORC
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Figure 5: Original and spillover-adjusted gaze duration RT data (left; error bars show standard error across
participants and items) and LCS predictions (right; error bars show standard error across model instances and items)
for full-NP stimuli from Roland et al. (2021, Experiment 2). At the lower retention rate (20%), LCS predicts ORC
slowdowns on the RC verb, consistent with both the original and spillover-adjusted RT data.

slowdown at the beginning of the RC noun phrase,
i.e. on the determiner. Conversely, we expect LCS
at lower retention rates to predict the pattern of
effects observed in eye-tracking studies, with the
main ORC slowdown appearing on the RC verb.

LCS predictions largely conform to the expected
patterns (Figure 4). At a 60% retention rate, LCS
mirrors the processing behavior of participants in
Vani et al.’s Maze task, with an ORC slowdown at
the determiner but not at the RC noun or verb. At
20% retention, however, we see an ORC slowdown
on the RC verb, and a relative ORC speedup on
the RC noun — both effects reported in gaze dura-
tion ET data from Staub (2010). Crucially, we see
the same pattern in LCS predictions across experi-
ments. Vani et al. use test items from Traxler et al.
(2002) in their Experiment 1, which differ from
the critical items in Experiment 1 of Staub (2010).
Nonetheless, the same memory-based pattern —
ORC slowdown on the RC verb and speedup on
the RC noun — emerges in low-retention LCS pre-
dictions for both sets of stimuli.9

We use linear mixed-effects models10 to assess
the reliability of these patterns for each retention
rate, critical region, and experiment. At the de-

9We also generate LCS predictions at both retention rates
for Experiment 2 from Vani et al./Staub, which served as a
control comparison between ORCs and embedded sentence
complements in both studies. LCS predictions capture the tar-
get effect and do not vary across retention rates — as expected
for a control experiment with no predicted memory effects —
so we do not consider these findings further.

10LMER formula: LCS ∼ Condition+ (1|ItemID) +
(1|ModelID)

terminer, both the high- and low-retention LCS
models predict a large and significant ORC slow-
down for both experiments. This aligns with the
Maze data, but not with the ET data; there is a
small ORC slowdown on the determiner, but it is
not significant per the statistical analysis of Staub
(2010). We speculate that this absence may reflect
spillover in the SRC condition, as the determiner
directly follows the RC verb; this could raise RT
times compared to the ORC condition (in which
the determiner follows“that"), obscuring the ORC
slowdown effect. At the RC noun, both LCS mod-
els predict a significant ORC speed-up: small at
60% retention, much larger at 20% retention. This
appears consistent with the RT data — while Vani
et al. report no RC effect here with Maze, Staub
finds a significant ORC speed-up in gaze duration.
Finally, at the RC verb, LCS captures the critical
pattern: no ORC slowdown with high retention,
as seen in the Maze data — but significant ORC
slowdown at low retention, as seen in the ET data.
This pattern supports a memory-based rather than
spillover interpretation of the ORC verb effect.

4.2.2 Memory vs. Spillover
To further investigate the role of spillover effects
in eye-tracking, we draw on the data and analysis
of Roland et al. (2021). Their Experiment 2 also
compares ORC and SRC processing on a distinct
set of RC stimuli.11 Roland et al. also conduct

11Roland et al. (2021) include an additional manipulation
of NP type, in which the RC noun is either a full noun phrase
or a pronoun. For simplicity, we consider only the full NP
stimuli here.
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an extensive statistical analysis of spillover effects
on their gaze duration data. We use the estimated
coefficients from their fully specified model (2021,
Table 12) to adjust RT values while controlling for
spillover.12

Recall that the key prediction of memory-based
accounts is an ORC slowdown on the RC verb. Fig-
ure 5 shows that this effect is visible in the original
gaze duration data, and remains after adjusting for
spillover. It also shows that this ORC verb slow-
down is predicted by LCS at 20% retention, but
not at 60% retention — a pattern consistent with
the findings of the previous section. Linear mixed-
effect model analysis confirms that both high- and
low-retention LCS models predict a significant ef-
fect of RC type at the verb, but in opposed direc-
tions: the 60% retention model predicts an ORC
speed-up, while the 20% retention model predicts
an ORC slowdown, consistent with the spillover-
adjusted RT data. Once again, the observed pattern
supports a memory-based account of the RC verb
effect observed in ET gaze data.

5 Discussion

Our main finding is that low-retention LCS repro-
duces key predictions of memory-based accounts,
and provides a plausible fit to ET data — whereas
high-retention LCS reproduces expectation-based
predictions, and better fits Maze data. The Maze
task requires that participants actively reject dis-
tractor words and select the correct sentence con-
tinuation; this activity strikes us as clearly more
cognitively demanding than naturalistic reading, so
task-dependent memory demands present a viable
explanation for these discrepant results.13 An alter-
native hypothesis suggested by Vani et al. (2021)
attributes the ORC verb slowdown seen in ET data
to spillover effects. Our analysis indicates that this
is unlikely: the ORC verb slowdown is consistently
predicted by low-retention LCS, pointing toward a
memory-driven explanation.

To be clear, we do not claim that spillover has
no systematic influence on relative clause process-
ing. The detailed modeling analysis conducted by

12Note that we adjust only for spillover predictors, not for
other estimated effects.

13While tasks with higher cognitive load are often associ-
ated with reduced memory capacity in the research literature,
we note that the cognitive load in the Maze task is not opposed
to sentence processing, but in fact perfectly aligned with it.
Higher retention of the preceding sentence context will facil-
itate higher performance on the task itself, i.e. selecting the
correct sentence continuation.

Roland et al. (2021) indicates that spillover at least
partly accounts for the ORC verb slowdown. The
slowdown effect persists, however, even after ad-
justing for spillover, and our LCS simulations sug-
gest that the slowdown reflects memory constraints
(Figure 5).

We note that LCS consistently predicts some pat-
terns which have not been given a formal theoreti-
cal articulation. Further investigation is required to
assess when these discrepancies could be system-
atic and theoretically meaningful. The ORC noun
speed-up presents an interesting case study: this
effect is not directly predicted by either expectation
or memory accounts, but it appears robustly in both
LCS predictions and the ET data for Experiment
1 of Staub (2010). This unexpected concordance
suggests that memory constraints may also drive
this effect. On the other hand, LCS appears to
incorrectly predict an ORC slowdown at the RC
NP for the Roland et al. (2021) stimuli (Figure 5);
however, closer analysis reveals that this effect is
driven by the ORC slowdown at the determiner —
on the RC noun itself, LCS once again predicts
an ORC speedup, and this effect is larger at the
lower retention rate of 20%.14 Under LCS, mem-
ory constraints appear to drive both the ORC verb
slowdown and the ORC noun speedup, although
to our knowledge the latter effect has not been dis-
cussed in connection with memory-based accounts.
Exploring the nature of this connection could be a
promising direction for future research.

Future work could also explore alternative ap-
proaches to modeling expectation. While surprisal
theory is well-represented in the research litera-
ture and closely aligned with the standard language
model learning objective, other research has formu-
lated expectation in terms of information gain (e.g.
Hale, 2016; Hoover, 2024). Under an information
gain account, the incremental cost of processing
a given word reflects not its conditional probabil-
ity (as posited by surprisal theory), but rather the
uncertainty reduction it provides between alterna-
tive sentence continuations. Chen and Hale (2021)
use one such approach, namely Entropy Reduction
(Hale, 2003), to model the same relative clause
processing asymmetry addressed here. They use
corpus statistics to compute word-by-word transi-
tions in entropy over the probabilities of following
syntactic derivations, and find that this measure

14We are unable to compare this prediction directly to the
Roland et al. ET data, as RTs are reported for critical regions
rather than individual words.

43



predicts the observed ORC slowdown at both the
RC NP determiner and the RC verb. Their model
can therefore account for the ORC verb slowdown
observed in ET data — however, it would not ap-
pear to predict the pattern observed in Maze data
by Vani et al. (2021). An alternative information
gain approach (e.g. Hoover, 2024) could in prin-
ciple address such task-dependent effects. In the
meantime, we note that LCS straightforwardly cap-
tures this variation in relative clause processing as
a consequence of memory demands.

Other avenues for future research could address
further limitations of the current study. For in-
stance, it might be more appropriate to vary reten-
tion rates not only at the experiment level, but also
to model differences between individual partici-
pants. One could also pursue more interpretability
in LCS predictions through detailed analysis of spe-
cific word-level reconstructions. Lastly, this paper
focuses on one grammatical phenomenon in one
language; a thorough treatment of memory effects
in online language comprehension will naturally
require a broader scope of evaluation.

6 Conclusion

We find that manipulating the retention rate of a
lossy context surprisal (LCS) model captures task-
dependent differences observed in reading times
(RTs). Filler item RTs from the Maze task are best
fit with a relatively high retention rate (e.g. 60%),
while lower retention (20%) better predicts eye-
tracking RTs for those same items. Furthermore,
based on these task-dependent retention rates, LCS
correctly predicts critical RT patterns observed
for English relative clauses. In particular, low-
retention (20%) LCS follows memory-based the-
ories and predicts higher RTs for object relative
verbs — an effect found in eye-tracking but not
Maze studies. These results can explain the appar-
ently contradictory behavioral evidence supporting
both memory- and expectation-driven accounts: rel-
ative clause processing is likely modulated by the
memory demands of the task, and we can use LCS
to model this phenomenon.
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