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Abstract

Sentiment analysis is crucial in Natural Lan-
guage Processing as it enables the extraction
of opinions and emotions from text. How-
ever, Arabic sentiment analysis is often over-
looked. Current benchmarks for Arabic senti-
ment analysis tend to be outdated or lack com-
prehensive annotations, which limits the devel-
opment of more accurate and reliable models
for the Arabic language. To address these chal-
lenges, we introduce ArSen, a meticulously an-
notated Arabic dataset centered on COVID-19,
along with IFDHN, a novel model that employs
fuzzy logic for more precise sentiment classifi-
cation1. ArSen offers a robust and contempo-
rary benchmark, and IFDHN achieves state-of-
the-art performance in Arabic sentiment analy-
sis, with 78.12% accuracy, an F1-Macro score
of 55.83%, and an F1-Micro score of 78.12%
on the test set. Notably, by using only 0.23% of
the computational resources of large language
models, IFDHN achieved performance compa-
rable to LLaMA-3-8B, showcasing significant
improvements over existing methods.

1 Introduction

Sentiment analysis (SA), also known as opinion
mining, is a critical task in Natural Language Pro-
cessing (NLP) that involves detecting, extracting,
and classifying opinions and emotions expressed
in text (Marreddy and Mamidi, 2023; Hussein,
2018). In recent years, the advent of social me-
dia platforms like Twitter (X for now) has provided
a rich data source for SA. Building on this, so-
phisticated models such as RoBERTa-LSTM and
KEAHT have emerged, further promoting the de-
velopment of the SA field (Tan et al., 2022; Tabinda
Kokab et al., 2022; Tiwari and Nagpal, 2022).

Despite these advancements in sentiment anal-
ysis, the complexity of the Arabic language, com-

* Corresponding author.
1Resources are available at: https://github.com/

123fangyang/ArSen.

bined with its significant differences from English,
has led to a scarcity of studies and resources in Ara-
bic sentiment analysis (ASA) (El-Masri et al., 2017;
Yan and Xu, 2024). The widely used ASA bench-
marks, such as Gold Standard (Refaee and Rieser,
2014) and SemEval (Rosenthal et al., 2017), are
often outdated and small in scale (less than 10,000).
To address this gap, we leveraged a large volume
of Arabic tweets generated during the COVID-19
pandemic. During this pandemic, Arabic-speaking
users widely shared their emotions and experiences.
This large-scale public sharing made it possible
to construct a comprehensive and diverse dataset.
Therefore, we introduce Arabic Sentiment (ArSen),
a COVID-19-themed Arabic benchmark created
through meticulous manual annotation by trained
professionals. The ArSen benchmark aims to ad-
dress the previously mentioned challenges and pro-
vide ASA research with a modern, comprehensive
resource featuring accurate data annotations, thus
advancing the field of ASA within NLP.

Additionally, we propose a new model called the
Improved Fuzzy Deep Hybrid Network (IFDHN),
designed specifically to enhance sentiment clas-
sification through the integration of fuzzy logic.
Fuzzy logic has been effectively applied in senti-
ment analysis to handle the ambiguity and nuances
of language (Zadeh, 1996; Vashishtha et al., 2023).
Our IFDHN model demonstrates state-of-the-art
(SOTA) performance in ASA tasks, validating the
effectiveness of incorporating fuzzy logic to im-
prove classification accuracy.

Our contributions are twofold: (1) We proposed
ArSen, a robust and contemporary benchmark for
ASA tasks, addressing the lack of up-to-date and
high-quality benchmarks in this domain; (2) we
introduced IFDHN, a novel model that integrates
fuzzy logic to better handle ambiguous sentiments,
improving overall classification performance.

The paper is organized as follows: Section 2
introduces the ArSen benchmark, detailing its con-
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struction and significance. Section 3 discusses the
architecture and features of IFDHN model. Sec-
tion 4 presents comprehensive evaluations of the
IFDHN model against leading SOTA models using
the ArSen dataset. Finally, Section 5 summarizes
our findings and proposes directions for future re-
search in ASA.

2 ArSen Benchmark

To address the aforementioned shortcomings in
ASA, we introduce the ArSen benchmark. Firstly,
our motivation for creating the ArSen benchmark
is discussed in Section 2.1, where we outline the
rationale for selecting COVID-19-themed tweets
to develop the benchmark. We then move on to de-
scribe the benchmark construction process in Sec-
tion 2.2, providing a thorough explanation of the
data preprocessing and annotation steps involved.
This section aims to provide a clear understand-
ing of how ArSen was developed and the rigorous
methodologies employed to ensure its quality.

2.1 Motivation

The COVID-19 pandemic disrupted daily life for
everyone and became a trending topic on Twit-
ter from 2020 to 2023 (Ali, 2021). For now, the
COVID-19 crisis has largely subsided, the tweets
from this period provide a comprehensive and com-
plete picture of the real emotional states of Arabic-
speaking users during the pandemic, such as fear,
anxiety, hope, and solidarity (Lwin et al., 2020).
Additionally, the pandemic led to discussions on a
variety of topics, including health, economy, poli-
tics, and social interactions (Chandrasekaran et al.,
2020), which enhances the dataset’s comprehen-
siveness and enables the development of models
that can handle a wide range of topics (Xu et al.,
2022). This rich emotional context and topic diver-
sity offer valuable insights for ASA in a contem-
porary and relevant setting. Therefore, we focus
on using tweet data from the COVID-19 period to
develop the ArSen benchmark for ASA. In our pre-
vious research, we introduced a similar benchmark,
ArSen-20 (Fang and Xu, 2024), which included
20,000 tweets. However, ArSen-20 had limitations,
such as a less rigorous annotation process, and no
experiments were conducted using the dataset. To
address these issues, we have implemented stricter
annotation standards and performed extensive ex-
periments to enhance the reliability and usefulness
of our new benchmark.

Field Type Description
like_count int The number of likes on this tweet.
quote_count int The number of times this tweet has been quoted.
reply_count int The number of replies to this tweet.
retweet_count int The number of retweets to this tweet.
tweet string The actual UTF-8 text of the tweet.
user_verified boolean Indicates if this user is a verified Twitter User.
followers count int The number of followers of the author.
following count int The number of following of the author.
tweet_count int Total number of tweets by the author.
listed_count int The number of public lists that this user is a member of.
description string The text of this user’s profile description (bio).
created_at date Creation time of the tweet.
label string Sentiment Classification of this tweet.

Table 1: Tweets field feature information.

2.2 Data Preprocessing and Annotation

Xu and Yan (2023) provided a suitable opportunity
for our work with their proposed AROT-COV232

dataset, which collected approximately 500,000
original COVID-19-related tweets and contextual
information, spanning from January 2020 to Jan-
uary 2023. These data can be accessed and used for
research purposes, our ArSen dataset follows the
same policy. To maintain representativeness while
reducing dataset size for efficient analysis, we ran-
domly selected ~10k tweets from AROT-COV23.
Furthermore, to protect the privacy of Twitter users,
we remove redundant features that could expose
personal information during preprocessing, thereby
streamlining the dataset. The detailed tweets field
feature information is shown in Table 1.

Following this preprocessing phase, we anno-
tated around 10,000 tweets into three classes: pos-
itive, neutral, and negative. Each tweet was anno-
tated by three annotators, who are advanced Ara-
bic speakers. They received thorough training in
advance, following the same labeling guidelines.
The annotation guidelines categorized tweets as
follows:

Positive: Tweets expressing happiness, gratitude,
affirmation, encouragement, and solidarity.

Neutral: Tweets conveying factual information,
such as news updates, advertisements, sugges-
tions, advice, and questions.

Negative: Tweets conveying sadness, condemna-
tion, sarcasm, warnings, protests, regret, refu-
tation, and obituaries.

Notably, in our annotation process, emojis
helped as cues to label the tweets more quickly. For
instance, a positive tweet often includes a ’smile
emoji’ or a ’red heart emoji’ to express the author’s

2https://github.com/chengxuphd/AROT-COV23
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Labels Example in Arabic English Translations
Positive . é<Ë Qº ��Ë@ð é<Ë YÒmÌ'@ Praise be to God and thanks be to God.

Neutral . �é�J� úÍ@
 A 	KðPñ» �ðQ�
 	̄ �HAJ
 	̄ð �éÊJ
�k ¨A 	®�KP@ France: Coronavirus death toll rises to six.

Negative . AJ
Ë A¢�
@
 ú

	̄ Q 	k

�
@ 	áK
 	Qk ÐñK
 Another sad day in Italy.

Table 2: Labels used in annotation and examples of
each.

happiness or well-wishes to others. In addition,
the tweet’s sentiment must reflect the author’s emo-
tion when they posted the tweet, rather than the
annotators’ opinion.

In the annotation process, we employ a voting
mechanism. If two out of the three annotators agree
on a label, we accept that label (Rosenthal et al.,
2017; Alharbi et al., 2021). Otherwise, this tweet
will be deleted. Furthermore, Table 2 provides
examples of tweets from each sentiment category
as part of the annotation process.

We present the detailed statistics for the ArSen
dataset in Table 3, offering insights into the data
size and label classifications, which indicate that
neutral sentiments dominate the dataset. This is
primarily because most tweets aimed to inform the
public about the latest developments in the pan-
demic by sharing neutral news updates, while only
a smaller portion expressed the authors’ genuine
emotional responses (positive or negative).

Statistics Num Proportion
Data size
Training set 8153 80%
Validation set 1020 10%
Testing set 1020 10%
Avg. tweet length (tokens) 146 -
Labels
Neutral 7069 69.4%
Positive 1564 15.3%
Negative 1557 15.3%

Table 3: The ArSen dataset statistics.

3 Proposed Model

Researchers have long recognized the unique ad-
vantages of fuzzy logic in capturing the ambigui-
ties and uncertainties of real-world data (Das et al.,
2020). Zadeh (1996) introduced the concept of
computing words using fuzzy logic. In this ap-
proach, sentiment polarity is determined by calcu-
lating fuzzy membership values ranging from 0.0
to 1.0. Each word in the text is assigned a score
within this range, reflecting the realistic scenario
where sentiment is not always binary but often am-

biguous and uncertain (Vashishtha et al., 2023). In
recent years, fuzzy logic has also drawn significant
attention in the field of SA (Huyen Trang Phan
and Nguyen, 2023; Golondrino et al., 2023; Sun
et al., 2024; Alzaid and Fkih, 2023). Moreover, the
ArSen dataset contains contextual information, so
we would like to construct a multi-channel fuzzy
model to test the ArSen dataset. A recent study
in the field of fake news detection provides an op-
portunity for this work. Xu and Kechadi (2023,
2024) introduced the FDHN model, which uses
fuzzy logic and multiple input types: news text,
textual context, and numerical context. The text in-
puts are processed by TextCNNs, while numerical
context is handled by CNN and Bi-LSTM layers,
then processed by a Fuzzy Layer. The model’s out-
puts are concatenated and integrated in the final
layer, achieving SOTA performance metrics on the
LIAR dataset (Wang, 2017), which includes multi-
class labels such as pants-fire, false, barely-true,
half-true, mostly-true, and true. This use of fuzzy
multi-class labels shows a strong similarity to our
ArSen benchmark. Beyond this, they both require
contextual information. Therefore, we believe that
the strengths of the FDHN model allow us to ad-
equately analyze the ArSen benchmark. In order
to transfer FDHN to the ASA task, we tailored and
improved the architecture of FDHN to propose the
IFDHN model, aiming to better utilize its fuzzy
logic and context-dependent properties. Through
our experiments, we found that introducing textual
context information, specifically the created_at and
description features in the ArSen dataset, was re-
dundant and decreased the model’s performance,
leading us to remove these features. Furthermore,
we designed a separate TextCNN to process tweet
text and then fine-tuned the CNN-BiLSTM module
for numerical context.

Although Large Language Models (LLMs) like
GPT-3.5/4 (OpenAI, 2024) and LLaMA-3 (Dubey
et al., 2024) have achieved impressive results
in many NLP tasks like question answering and
text generation, they fall short in interpretability
and computational efficiency for fuzzy classifica-
tion tasks (Chang et al., 2024; Bang et al., 2023;
BehnamGhader et al., 2024). For example, GPT-4
achieved only 28.1% accuracy on the LIAR dataset,
whereas FDHN achieved 46.5% (Pelrine et al.,
2023), and FDHN requires only about 3 seconds
to train an epoch on a single A100 GPU, while
LLMs generally require more than 4 A100 GPUs
to be fine-tuned for hours to train for downstream
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Figure 1: The IFDHN model structure.

tasks. Taking these considerations into account, we
decided to use FDHN as the baseline model in this
work. However, we also included the results of
LLaMA-3-8B for comparison.

As illustrated in Figure 1, the IFDHN model
comprises two primary channels: Tweet Text and
Numerical Context. The tweet text is fed into a dis-
tinct TextCNN, while the numerical context is pro-
cessed by a combination of CNN and Bi-LSTM lay-
ers before being passed through a Fuzzy Layer. The
model produces three outputs: output 1 is derived
from the Tweet Text channel, output 2 is derived
from the Numerical Context channel, and output 3
is the Fuzzy Layer-processed version of output 2.
These three output representations are then concate-
nated and integrated in the final layer. In particular,
an example data point used in our IFDHN model
is shown in Table 4, with f1 representing the tweet
text and {f2, . . . , f10} representing the numerical
context. More detailed component analysis is pro-
vided in Appendix A.

# Field Value
- label positive
f1 tweet . �éÒJ
ºmÌ'@ A 	J�KXAJ
 �®Ë @Qº ��
f2 like_count 6
f3 quote_count 0
f4 reply_count 0
f5 retweet_count 6
f6 followers_count 10977
f7 following_count 356
f8 tweet_count 9029
f9 listed_count 108232
f10 user_verified False

Table 4: An example data point from ArSen dataset
used in IFDHN model.

4 Experimental Results

In this section, we present a comprehensive analy-
sis of our experiments, which are divided into two
main parts: a performance evaluation on the ArSen

Model Validation Test
Accuracy F1-Macro F1-Micro Accuracy F1-Macro F1-Micro

RoBERTa 0.6889 0.2719 0.6889 0.6850 0.2710 0.6850
AraT5-Tweet-Base 0.7134 0.6604 0.7134 0.7723 0.6837 0.7723

FNet 0.7233 0.5081 0.7233 0.7429 0.4960 0.7429
LLaMA-3-8B 0.7428 0.6236 0.7428 0.7595 0.6240 0.7595

FDHN 0.7350 0.4888 0.7306 0.7753 0.5575 0.7753
IFDHN 0.7478 0.5113 0.7368 0.7812 0.5583 0.7812

Table 5: Comparison of various state-of-the-art models
on ArSen dataset. The highest scores are highlighted in
bold, while the second-highest scores are highlighted
with an underline.

dataset using the IFDHN model and other SOTA
models (Section 4.1). In addition, an ablation study
was performed to investigate the impact of different
features on the performance of the IFDHN model
(Section 4.2). Performance evaluation metrics are
detailed in Appendix B. Detailed information about
our experimental setup, including the development
environment and hyperparameter configurations,
can be found in Appendix C.

4.1 Performance Comparison

We evaluated the performance of the IFDHN model
with several SOTA models on the ArSen dataset.
Table 5 presents a comparison of the accuracy and
F1 scores for the validation and testing sets.

The RoBERTa model (Liu et al., 2019) is an op-
timized BERT (Devlin et al., 2019) variant trained
with more data and longer sequences. Despite its
robust architecture, RoBERTa yielded the lowest
performance in our experiments, with particularly
low F1-Macro scores of 0.2719 on the validation
set and 0.2710 on the test set.

Nagoudi et al. (2022) evaluated both Dialec-
tal Arabic and Modern Standard Arabic, introduc-
ing the AraT5-Tweet-Base model. This model
achieved the highest F1-Macro scores in both vali-
dation and testing sets among the evaluated mod-
els, with scores of 0.6604 and 0.6837, respectively.
AraT5-Tweet-Base’s ability to handle both com-
mon language forms in tweets allows it to better
capture the diverse sentiment labels present in the
dataset. This flexibility in processing both language
forms likely contributed to its superior performance
in F1-Macro compared to our IFDHN model.

The FNet model(Lee-Thorp et al., 2022) replaces
the self-attention mechanism in Transformer en-
coders with unparameterized Fourier Transforms.
In our ArSen dataset, the FNet model delivered
average performance across various metrics.

The LLaMA-3 model (Dubey et al., 2024) is a
decoder-only LLM with a 128K token vocabulary,
optimized for efficient language encoding and pre-
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trained on over 15 trillion tokens. This structure
makes the LLaMA-3 model less suitable for our
sentiment classification task. It features grouped
query attention, offering strong performance across
diverse NLP tasks. In our experiments, this model
achieved the highest validation set F1-Micro score
of 0.7428 without any fine-tuning. This result may
be due to the relatively small scale of our bench-
mark.

The FDHN model (Xu and Kechadi, 2023, 2024),
significantly contributed to the development of our
IFDHN model. The FDHN model outperforms
in all metrics while using fewer computational re-
sources, which further motivated us to refine the
model for our ASA task.

The IFDHN model outperformed all other mod-
els in accuracy and achieved the highest F1-Micro
score on the test set. More importantly, we
achieved comparable performance using just 0.23%
of LLaMA-3’s computational resources. As shown
in Table 8, the IFDHN model has the lowest time
cost, taking only 0.44 seconds. This outstanding
result might be due to our multi-channel structure,
which combines more information than just the
tweet text, making it well-suited for the ArSen
benchmark.

4.2 Ablation Experiment

To evaluate the impact of different features on the
overall performance, we conducted a series of ab-
lation experiments on the ArSen dataset. Table 6
summarizes the results.

Our ablation study included three sets of exper-
iments: (1) evaluating each feature individually,
(2) assessing the impact of excluding each feature
one at a time, and (3) analyzing the model’s perfor-
mance with all features combined. This study pro-
vided critical insights into the role of various fea-
tures in sentiment analysis for Arabic text. These
experiments led to the following findings:

1. The tweet feature emerged as the most critical
for accurate sentiment detection. It achieved
the highest performance scores when used
alone and caused the most significant perfor-
mance drop when excluded. This underscores
the importance of the tweet as the primary
source of sentiment information.

2. The interaction metric was identified as the
second most crucial feature. Although its stan-
dalone performance was similar to that of the

Feature Validation Test Mean
Accuracy F1-Macro F1-Micro Accuracy F1-Macro F1-Micro

Interacting metric 0.6850 0.2755 0.6862 0.7164 0.2830 0.7164 0.5604
Meta-data 0.6869 0.2715 0.6869 0.7164 0.2783 0.7164 0.5594

Tweet 0.7390 0.4976 0.7319 0.7772 0.5655 0.7772 0.6814
All without

Tweet 0.6869 0.2715 0.6869 0.7164 0.2783 0.7164 0.5594
Interacting metric 0.7272 0.4749 0.7244 0.7713 0.5294 0.7713 0.6664

Meta-data 0.7380 0.4680 0.7260 0.7753 0.5464 0.7753 0.6715
All 0.7478 0.5113 0.7368 0.7812 0.5583 0.7812 0.6861

Table 6: Ablation Experiment Results on the ArSen
dataset. The interaction metric includes numerical
features of like_count, quote_count, reply_count, and
retweet_count. The meta-data feature comprises follow-
ers_count, following_count, tweet_count, listed_count,
and user_verified. In the first experiment, we individu-
ally tested our packed features. Next, we excluded one
feature at a time. Finally, all features were included to
observe their combined performance.

meta-data, it yielded the highest scores when
the meta-data feature was excluded, highlight-
ing its value in sentiment detection.

3. The meta-data feature contributed signifi-
cantly to the model’s performance. Its inclu-
sion improved the model’s ability to general-
ize and provided context that complemented
the tweet’s content.

The ablation study highlights the importance of
combining multiple features to improve the robust-
ness and accuracy of Arabic sentiment analysis
models. While tweet content is key, interaction
metrics and metadata provide valuable context that
enhances sentiment detection.

5 Conclusion

In this paper, we introduced a novel Arabic senti-
ment analysis benchmark focused on the COVID-
19 pandemic and presented the IFDHN model, tai-
lored specifically for sentiment analysis within this
context. Our model demonstrated substantial per-
formance improvements over other SOTA models.
Compared to the large language model LLaMA-
3-8B, our model achieved a 0.5% and 2.17% in-
crease in accuracy on the validation and test sets,
respectively, and a 2.17% increase in F1-Micro on
the test set. More notably, the IFDHN model re-
duced processing time by approximately 422 times
compared to LLaMA-3-8B, achieving a remark-
able processing speed of just 0.44 seconds. This
comprehensive evaluation highlights the IFDHN
model’s capability to effectively capture nuanced
sentiments, making it a valuable tool for under-
standing public sentiment.
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Limitations

While our IFDHN model shows substantial
promise in Arabic sentiment analysis, several limi-
tations must be noted. Our experiments were lim-
ited to a COVID-19-focused dataset, which may
affect generalizability across other domains within
Arabic sentiment analysis. The model’s robustness
in diverse contexts remains unexplored as it was
not tested on established benchmarks like LABR
(Aly and Atiya, 2013) and ASTD (Nabil et al.,
2015). Additionally, despite the potential of LLMs
like GPT-4 for nuanced language understanding
(Guan and Greene, 2024a,b; Guan et al., 2024),
their high resource demands, challenges in fuzzy
classification, data contamination issues (Xu et al.,
2024), and susceptibility to illusions (Schaeffer
et al., 2023) precluded their inclusion in our study.
Our benchmark, primarily sourced from Twitter,
may not fully represent broader Arabic language
use, potentially introducing platform-specific bi-
ases. Ethical considerations also arise in the use
of this dataset, particularly regarding the poten-
tial for misuse in surveillance, censorship, or other
harmful activities, underscoring the importance of
adhering to strict ethical guidelines. Furthermore,
the model does not address the complexities of Ara-
bic dialects, which vary significantly in vocabulary
and syntax. Future work should include compre-
hensive evaluations across diverse datasets, explore
the integration of LLMs, and account for dialectal
variations to enhance the accuracy and generaliz-
ability of Arabic sentiment analysis.
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A Component Analysis

In this section, we present a comprehensive compo-
nent analysis of our proposed model for the ASA

task. The performance of the IFDHN models is
evaluated using various metrics, including accu-
racy, F1-macro, and F1-micro, on both validation
and testing sets. Importantly, all training phases of
the models are finished within 10 epochs.

Table 7 provides a summary of the performance
of our models in both sets. This table includes
three fundamental components: TextCNN (TC),
CNNBiLSTM (CB), and Fuzzy (FZ).

In the first row of this table, we use only the
TextCNN module to process our dataset. This
module proved to be the most significant part of
the IFDHN model, achieving high scores across
all evaluation metrics, with the highest F1-Macro
score on the testing set. Additionally, in the third
row, when the TextCNN module is excluded, the
F1-Macro score is the lowest. Moreover, when
comparing row two with row four, adding the Fuzzy
layer leads to improved performance across all met-
rics. If the Fuzzy layer is not employed, alternative
methods such as a self-attention mechanism or a
probabilistic approach like Bayesian Neural Net-
works may also be effective in handling uncertainty
and enhancing model performance.

B Evaluation Metrics

For our experiments, we utilize Accuracy and
F1-score to evaluate the performance of models.
Specifically, due to the class imbalance of our
dataset, we report F1-Macro and F1-Micro to cap-
ture the model’s performance across all classes.
These evaluation metrics are widely used in many
research studies (Heikal et al., 2018; Al-Smadi
et al., 2018).

Accuracy is the simplest and most intuitive per-
formance metric. It is defined as the ratio of cor-
rectly predicted instances to the total number of
instances in the dataset. The formula for Accuracy
is:

Accuracy =
TP + TN

TP + TN + FP + FN
where TP, TN, FP, and FN represent the number

of true positives, true negatives, false positives, and
false negatives, respectively.

F1-Score combines precision and recall into a
single metric by taking their harmonic mean, pro-
viding a balance between the two. The formula for
F1-Score is:

F1-Score =
2× Precision × Recall

Precision + Recall
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Model Validation Test Mean
Accuracy F1-Macro F1-Micro Accuracy F1-Macro F1-Micro

TC 0.7429 0.5022 0.7342 0.7743 0.5621 0.7743 0.6817
TC + CB 0.7341 0.4946 0.7318 0.7782 0.5553 0.7782 0.6787
CB + FZ 0.6869 0.2715 0.6869 0.7164 0.2783 0.7164 0.5594

TC + CB + FZ 0.7478 0.5113 0.7368 0.7812 0.5583 0.7812 0.6861

Table 7: Performance comparison of different sub-models of the IFDHN on validation and testing sets.

where Precision is defined as TP
TP+FP and Recall

is defined as TP
TP+FN .

F1-Macro is an extension of the F1-Score for
multi-class problems. It is calculated by first com-
puting the F1-Score for each class independently
and then averaging these scores. The formula for
F1-Macro is:

F1-Macro =
1

N

N∑

i=1

F1-Scorei

where N is the total number of classes, and
F1-Scorei represents the F1-Score of the ith class.
F1-Macro treats each class equally, which is bene-
ficial when assess the model’s performance across
all classes without being biased by class size.

F1-Micro, on the other hand, aggregates the con-
tributions of all classes to compute the precision
and recall before calculating the F1-Score. Un-
like F1-Macro, F1-Micro gives more weight to the
classes with more instances. The formula for F1-
Micro is:

F1-Micro =
2× TPsum

2× TPsum + FPsum + FNsum

In this formula, TPsum, FPsum, and FNsum are the
sums of true positives, false positives, and false
negatives across all classes, respectively.

By utilizing these metrics, particularly F1-Macro
and F1-Micro, we gain a comprehensive under-
standing of our model performance, especially in
the context of the class imbalance present in the
ArSen dataset.

C Experimental Setup

The model was implemented using PyTorch3, and
the experiment was conducted on a NVIDIA RTX
4090 GPU. Building on this setup, we provide de-
tails in this section on the specific configuration of
the model utilized in our experiments.

3https://pytorch.org/

Firstly, in our IFDHN model, each module’s
output sequence length is configured to 6, with a
dropout rate of 0.5 and an embedding dimension
set to 128, utilizing zero-padding where necessary
to maintain consistency.

The TextCNN module, responsible for process-
ing tweet text, includes an embedding layer fol-
lowed by three parallel CNN layers, which use
kernel sizes of 3, 4, and 5, all with a depth of 128.
Each CNN layer’s output is subjected to MaxPool-
ing to capture the most significant features. These
pooled feature maps are then concatenated and fed
into a linear layer with dropout to prevent overfit-
ting.

The CNNBiLSTM module, which handles nu-
merical context, starts with a linear layer incorpo-
rating dropout. This is followed by a CNN layer
with 32 output channels and a kernel size of 1. The
processed output is then fed into a three-layer Bi-
LSTM network with dropout to capture temporal
dependencies. Finally, a linear layer is applied to
generate the module’s output.

Secondly, to evaluate the performance of our
IFDHN model, we compared it with some SOTA
models, including RoBERTa, AraT5-Tweet-Base,
and FNet, using HuggingFace implementations
for sequence classification. Specifically, we em-
ployed the pre-training weights roberta-base4,
AraT5-tweet-base 5, and fnet-base6, respec-
tively. Additionally, for the FDHN model, we incor-
porated the description and created_at features as
inputs to the text context module. All models were
trained for 10 epochs, with other parameters set to
their default values, and the time spent to train one
epoch for all models is presented in Table 8. All
the code results represent the best outcomes from a
single execution, with a random seed set to 42.

Finally, we also included LLaMA-3 for test-
ing to explore the performance of LLMs on

4https://huggingface.co/FacebookAI/
roberta-base

5https://huggingface.co/UBC-NLP/AraT5-base
6https://huggingface.co/google/fnet-base
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this task. During the experiments with LLaMA-
3, we also used its HuggingFace implementa-
tion (Meta-Llama-3-8B-Instruct7) and utilized
LLM2Vec (BehnamGhader et al., 2024) for sen-
tence embedding.

Model Avg. Epoch Time Val Best Epoch
LLaMA-3-8B 185.82s -

RoBERTa 50.13s 5/10
AraT5-Tweet-Base 29.66s 3/10

FNet 23.70s 3/10
FDHN 0.47s 4/10
IFDHN 0.44s 4/10

Table 8: The average time spent by all models to train
one epoch. The third column indicates the best epoch
on the validation set, where the minimum loss value
was achieved. There is no best Epoch number on the
validation set since LLaMA-3 uses only the inference
mode.

7https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

516

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

