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Abstract

We introduce the Principled Reasoning and
Acting (PRAct) framework, a novel method
for learning and enforcing action principles
from trajectory data. Central to our approach
is the use of text gradients from a reflection
and optimization engine to derive these action
principles. To adapt action principles to spe-
cific task requirements, we propose a new opti-
mization framework, Reflective Principle Op-
timization (RPO). After execution, RPO em-
ploys a reflector to critique current action prin-
ciples and an optimizer to update them accord-
ingly. We develop the RPO framework under
two scenarios: Reward-RPO, which uses en-
vironmental rewards for reflection, and Self-
RPO, which conducts self-reflection without
external rewards. Additionally, two RPO meth-
ods, RPO-Traj and RPO-Batch, is introduced to
adapt to different settings. Experimental results
across four environments demonstrate that the
PRAcCct agent, leveraging the RPO framework,
effectively learns and applies action principles
to enhance performance.

1 Introduction

Large language model (LLM) agents enable the
action execution (Gravitas, 2023; Goodman, 2023;
Yao et al., 2023a; Wang et al., 2023a) and con-
secutive reasoning ability (Nakajima, 2023; Shinn
et al., 2023; Yao et al., 2023b) of LLM. Specifi-
cally, an LLM agent has both memory (Shinn et al.,
2023; Li et al., 2023; Liu et al., 2024) and action
space (Chase, 2023; Wu et al., 2023; Liu et al.,
2023). Adding those information into prompt ex-
tends the inference of LLM to be multi-turn action
execution. Therefore, an LLM agent is able to de-
cide next actions based on its previous execution
observations (Wang et al., 2023b; Xu et al., 2023;
Goodman, 2023; Song et al., 2023).
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Figure 1: Comparison of ReAct and PRAct agents.

Optimizing the reasoning framework (Yao et al.,
2023a; Liu et al., 2023; Wang et al., 2023b) of
agent is crucial in generating correct action execu-
tion. As of now, customizing an LLM agent with
existing open-source packages (Liu et al., 2024;
Wu et al., 2023; Chase, 2023; Liu, 2022) requires
the designing of action spaces, such as function
calls (Patil et al., 2023) and code execution (Wu
et al., 2023, 2024). Along with a well-designed
agent reasoning framework, i.e. the prompts of
agent, an LLM is able to consecutively generate
correct actions. ReAct (Yao et al., 2023a) frame-
work achieves wide successes via adding one-step
think actions to enhance the reasoning ability of an
agent. Additionally, Reflection (Shinn et al., 2023;
Yao et al., 2023b; Paul et al., 2023) mechanism
is proposed to improve the agent self-correction
capability. Plan (Xu et al., 2023; Liu et al., 2023)
before execution is also verified to be beneficial.

Despite many successes, agent execution can fail
to make decisions when faced with contradictory
observations, particularly during the execution of
long-step tasks. To address it, we propose a new
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type of reasoning strategy, PRAct, for the LLM
agent. Intuitively, we associate each action with
principles that describe the conditions for using
that action. During execution, an agent can check
these principles before generating the next action.
Compared to simple action descriptions, princi-
ples provide more detailed conditions on when to
use the action and offer specific instructions on
how to generate the parameters for an action. We
demonstrate the benefits of PRAct in Figure 1 via
comparing with ReAct agent in WebShop (Yao
et al., 2022) where an agent uses search and click
actions to interact with a shopping website. The
ReAct agent searches a query and, despite item 2
not having the available color, still clicks it as it
appears most relevant. In contrast, the PRAct agent
refines the search based on both search and click
principles. Consequently, the PRAct agent decides
to search with an improved query, enhancing its
decision-making process.

To reduce the labor involved in prompt design
and to cover more complex scenarios, we propose
a new principle optimization framework, Reflec-
tive Principle Optimization (RPO). RPO operates
in three stages: execution, reflection, and optimiza-
tion. During the execution stage, an agent performs
tasks using predefined or null principles and mem-
orizes the task trajectories. In the reflection stage,
the agent reviews its task executions, evaluating
how actions were selected and whether they met
the task requirements. Finally, in the optimization
stage, an optimizer refines principles to enhance
agent performance. We investigate two optimiza-
tion methods: RPO-Traj, which individually op-
timizes principles for each trajectory, and RPO-
Batch, which concatenates all reflections in a batch
for optimization.

We summarize our contributions as follows: 1)
PRACct is the first work that considers the action
principles for LLM agent; 2) we propose two opti-
mization methods to adapt the principles to tasks.

2 PRACT: Optimizing Principled
Reasoning and Acting

2.1 Formulation

Given a task query, an agent is able to consec-
utively execute actions [ai,as,...,a,] and col-
lects observations [01, 09, ...,0,] from environ-
ments, where o; is the execution results of a;. A
policy function 7(a¢|c;) predicts the next action
a; given the execution trajectory context ¢; =

[(a1,01), (a2,02),...,(a—1,0:—1)]. An Executor
agent utilizes a language model to determine the
policy function. It requires textual trajectory infor-
mation for the prompt Intrinsically, those context
information are text-based, including action names,
action parameters and observations.

PRAct constraints the reasoning of LLM to fol-
low a set of principles P as follows:

7(a¢|er) = Executor(ag|T (c); P), (1)

where 7 is the prompt template to organize context
information and the principles P are guidelines that
help shape the decision-making process of an LLM
agent. Principles provide instructions on the usage
of the action such as how to generate parameters
for the action. Additionally, principles reduce the
set of potential actions by eliminating those that do
not conform to the defined guidelines, thereby nar-
rowing the search within the action space. In this
paper, we simplify the principles space to be the
same as actions space, i.e. each a; € A associated
with ap; € P.

2.2 Reflective Principle Optimization (RPO)

Although the principles could be predetermined, as
in the action descriptions, it is challenging to com-
prehensively cover all possible conditions without
an automatic optimization paradigm. Therefore,
we propose a new algorithm, Reflective Principle
Optimization (RPO), to adapt principles for com-
plex scenarios. RPO operates in three stages: 1)
Execution, 2) Reflection, and 3) Optimization.

2.2.1 Execution

Given a set of tasks, the executor agent performs
actions based on the current set of principles, col-
lecting observations from the environment. This
stage involves prompting the LLM agent to gen-
erate actions, which regressively calls Eq. (2) un-
til reaching the final actions or maximum steps.
Given a task query ¢, we denote the trajectory as
¢g = [(ag”04"), (a5”0f?). . (ag” 0f)]. Note
that those actions may be some inner actions, such
as think or plan (Yao et al., 2023a; Liu et al., 2024)
, which do not forward to the environment and are
associated with a default or null observation. Ex-
ecutor collects a set of trajectory context sequences
C for those queries Q during execution stage.

2.2.2 Self-Reflection

After executing the actions, a reflector agent re-
flects on trajectories C by analyzing the collected
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Figure 2: PRAct and RPO overview. Each iteration three stages: execution, reflection and optimization. During
execution, an agent executes tasks with previous principles. The trajectories are saved. Then, the agent reflects on
those tasks executions. Finally, the agent leverages those self-reflection results to optimize the principle.

Table 1: Overall comparison results. Bold denotes the best performance.

GPT-3.5-turbo GPT-4-turbo
WebShop Academia Movie Weather | WebShop Academia Movie Weather
Act 0.4542 0.5304  0.5483 0.5869 0.5257 0.6704  0.5875 0.6882
ReAct 0.4742 0.5504 0.5416  0.5973 0.5667 0.7428  0.5583 0.6990
Reflexion | 0.5539 0.6024  0.5728 0.5876 0.5723 0.7796  0.6072 0.7197
ExpeL 0.5823 0.6318  0.6215 0.6475 0.6329 0.8084  0.6847 0.7583
PRAct-T 0.6012 0.6798  0.6595 0.6953 0.6323 0.9207 0.7132 0.7796
PRAct-B 0.5904 0.7396  0.6625 0.7042 0.6413 0.8254  0.7250 0.8331
observations. This stage involves evaluating the =~ RPO-Traj as follows:
effectiveness of the actions in each trajectory and 3)

the adherence to the principles as follows:

rq = REFLECTOR(cq, P), (2)
for all ¢, € C. The reflection process identifies
conditions or guidelines where the principles need
adjustment to better handle the observed tasks. If
an environment provides rewards toward the exe-
cution, it is a reward-based reflector aligning the
executions with reward feedback. Instead, if no
rewards present for execution, it is a self-reflector.

2.2.3 Optimization

Based on the reflection results, we leverage the
generation ability of LLM to refine the principles
for improving the performance of agent in similar
future scenarios. This stage involves refining the
principles to better align with the observed condi-
tions and enhance decision-making. We investigate
two types of optimization methods.

RPO-Traj. This approach individually considers
each trajectory and its reflection to optimize princi-
ples. Then a batch of principles are summarized as
a new set of tailored principles P*. We formulate

P* =Y OPT(ry, P),
Q

where ZQ denotes a summarizor of all principles
generated from optimizer OPT for all queries Q.
RPO-Batch. We use a prompt template to con-
catenate all the reflections in a batch. Then the
optimizer directly generates new principles via con-
sidering all those reflections, which is formulated
as follows:

P* = OPT(CONCAT{r4|q € Q},P), (4

where CONCAT denotes using a prompt template
to concat those reflections. In comparison, RPO-
Traj requires generating principles for |Q|+1 times,
while RPO-Batch only needs one time principles
generation but with |@Q| times longer context length.
Hence, long context reasoning ability is necessary
for an optimizer in RPO-Batch method.

3 Experiment

3.1 Experiment Setup

Baselines. We compare our PRAct agent with
existing Act, ReAct (Yao et al., 2023a), Reflex-
ion (Shinn et al., 2023) agent reasoning methods
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and Expel (Zhao et al., 2024) prompt optimization
framework. In this paper, we employ GPT-3.5-
Turbo-0125 and GPT-4-Turbo-2024-04-09 (Ope-
nAl, 2023) as two foundation LLMs. And for
simplicity, the executor, reflector and optimizer
in PRAct are of the same language model.

Benchmarks and Evaluation. Following Agent-
Board (Ma et al., 2024), we evaluate PRAct agent
on three tool environments and one WebShop envi-
ronment. Tool environments support the designing
of WEATHER, MOVIE, and ACADEMIA agents.
Tasks are 60 queries and actions are a set of func-
tion calls. The reward score is the recall of ground
truth actions. Webshop environment is a web
browser simulation. Agent performs either search
and click actions to complete 251 online shopping
tasks. Reward is attributes coverage ratio between
final shopped items and ground truth item.

3.2 Optimization setup

For optimizing the WebShop agent with a Reward-
based reflector, we randomly split the query tasks
into training, validation, and test tasks with a ratio
of 3:1:1. During each training step, we sample a
batch of training tasks to execute and use RPO to
optimize the principles. Performance on validation
tasks is used for early stopping, and results are
reported on test tasks. For tool agents, we use a self-
reflector without rewards, making reflection tasks
the same as test tasks. Since there is no ground
truth, no data leakage problem exists. We tune the
training batch size in [10,20,40] for WebShop and
[2,4,6] for tool environments.

3.3 Experiment Results

Overall Performance. We present comprehen-
sive comparisons of our methods against the agent
baselines in Table 1. PRAct-T and PRAct-B are
our methods with RPO-Traj and RPO-Batch opti-
mization methods, respectively. We observe con-
sistently better performance of PRAct agent, which
demonstrates the effectiveness of principles in im-
proving agent performance. Between the two op-
timization methods, i.e. PRAct-T and PRAct-B,
PRACct-B generally performs better than PRAct-T.
The reason is that summarizing principles from
a batch of reflections enables potential reasoning
across trajectories. However, PRAct-T outperforms
PRACct-B due to the potential weaker long context
understanding ability of GPT-3.5-Turbo, which in-
dicates batch-wise optimization is more suitable
for larger models.

Reflector | GPT-3.5 | GPT-4
Self-T 0.5871 | 0.6172
Self-B 0.5763 | 0.6238
Reward-T | 0.6012 | 0.6323
Reward-B | 0.5904 | 0.6413

Table 2: Different reflectors of PRAct. Self and Reward
stand for self and reward-based reflectors, respectively.
T and B denote RPO-Traj and RPO-Batch, respectively.

An additional variant is PRAct with self-reflector
on Webshop. We compare it on both RPO-T and
RPO-B optimization methods, and report the re-
sults in Table 2. Compared with both results,
reward-based reflector, demonstrates its superiority
in optimizing principles with rewards.

Optimization Curve. We present the training
curves in Fig. 3. Although at each step, we did not
pick the best principle out of the sampled action
principles on the validation set, we still observe
consistent improvement over time. Notably, with
action principles optimized by PRAct, LLM agents
under GPT-3.5-Turbo can match the performance
of GPT-4-turbo in Webshop environment.

Webshop

Academia

207-
06- -@- gpt-35-testing
—— gpt-4-testing

0 5 10 15 20 0.0 25 5.0 7.5 10.0
Steps Steps

Avg Reward
o o
@ ©

-8~ gpt-3.5-validation
=@~ gpt-3.5-testing
—— gpt-4-validation
—— gpt-4-testing

Figure 3: Training curves in Webshop and Academia
with different LLMs and data splits. The reported scores
are the average across 5 random seeds.

4 Conclusion

We propose a novel agent reasoning framework,
PRAct, which provides principles of actions and
thus benefits the action understanding of agent. Be-
sides, we introduce two optimization algorithm,
RPO-Traj and RPO-Batch for adapting the action
principles with task executions. Experimental re-
sults on four environments demonstrates the effec-
tiveness of PRAct framework. And the training
curve illustrates the learning efficacy of RPO. In
conclusion, PRAct opens a new discussion on how
to regularize the agent actions while RPO shades
the light on how to optimize the agent prompts.
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