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Abstract

The ability to compare by analogy, metaphor-
ically or not, lies at the core of how humans
understand the world and communicate. In this
paper, we study the likelihood of metaphoric
outputs, and the capability of a wide range of
pretrained transformer-based language models
to identify metaphors from other types of analo-
gies, including anomalous ones. In particular,
we are interested in discovering whether lan-
guage models recognise metaphorical analo-
gies equally well as other types of analogies,
and whether the model size has an impact on
this ability. The results show that there are rel-
evant differences using perplexity as a proxy,
with the larger models reducing the gap when it
comes to analogical processing, and for distin-
guishing metaphors from incorrect analogies.
This behaviour does not result in increased diffi-
culties for larger generative models in identify-
ing metaphors in comparison to other types of
analogies from anomalous sentences in a zero-
shot generation setting, when perplexity values
of metaphoric and non-metaphoric analogies
are similar.

1 Introduction

Analogical reasoning is critical to deep language
understanding, as it is a core mechanism of human
generalization and creativity (Holyoak and Tha-
gard, 1996; Hofstadter, 2001). Analogical thinking
includes figurativeness (e.g. The mind is a sponge.),
in which humans naturally express relationships
based on non-literal connections. Traditionally,
metaphors have been challenging to model from
a computational perspective (Veale et al., 2016)
and in the context of NLP. This is due to their pro-
teiform nature, conventional or creative, concise or
structurally more complex.

Some limitations might have been lifted given
the new wave of language models (LMs) that
have revolutionalised the field of NLP and beyond

(Chowdhery et al., 2022; Ouyang et al., 2022; Tou-
vron et al., 2023). Indeed, recent studies on the last
generation of large transformer-based LMs show
enhanced abilities to perform analogical reasoning
(Webb et al., 2023), suggesting that models of a
larger size may gain the ability to process complex
analogies.

As a conceptual innovation device, figurative
analogies have also been studied in relation to the
fluency, creativity and originality of students’ writ-
ing (Kao, 2020). Creative writing support tools
specialising in metaphor generation have been de-
veloped, such as Metaphoria (Gero and Chilton,
2019). The emergence of LLMs as writing as-
sistants has further highlighted the importance of
understanding how metaphors are processed by
LMs, especially given some limitations pointed
by their users related to the generation of poor
metaphors and overly predictable endings, to name
a few (Chakrabarty et al., 2024).

Motivated by the recent advances in language
modeling and the need for understanding how LMs
process metaphors, we establish the following two
research questions:

Research Question 1 (RQ1). How do language
models distinguish metaphors from literal and
anomalous sentences? In particular, we are inter-
ested in determining if the likelihood of metaphors
compared to both literal and anomalous sentences
is consistent across models. For this, we are also in-
terested in analysing the differences among model
families and, particularly, sizes. This research ques-
tion is addressed in Section 5.

Research Question 2 (RQ2). Assuming dif-
ferences in the answer to RQ1, we aim to ad-
dress the following complementary questions: how
do metaphors impact the performance of lan-
guage models in general analogy tests? Are lan-
guage models capable of solving analogies when
metaphors are involved? Our findings are presented
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in Section 6.
In order to answer both research questions, we

evaluate a broad range of language models on their
ability to distinguish anomalous, metaphoric and
non-metaphoric sentences on datasets from psy-
cholinguistics, that were, to our knowledge, previ-
ously unused in NLP studies. The results clearly
show the marked differences in terms of perplex-
ity between attributive metaphors and other lit-
eral attributive structures, where, in some cases
metaphors are processed more similarly to anoma-
lies, whereas in other cases, they are processed
more similarly to literal examples. A last ex-
periment on the SAT analogy test dataset allows
a comparison of the models in open-generation
tasks for challenging metaphors and analogies.
We observed differences between perplexity and
generation-based approaches, with an enhanced
ability of the models to deal with metaphors in the
generation setting1.

2 Background

In this section, we provide more details on the rela-
tion between analogies and metaphors, and discuss
other terminology used across the paper.

Analogies. Analogy is a type of similarity in
which the same system of relations holds across
different sets of elements (Gentner and Smith,
2012). The analogies that we consider express
parallels across pairs of concepts captured min-
imally through attributive structures A is-a B or
more explicitly with comparisons of the form A
is to B what C is to D. Mapping conceptual struc-
tures to understand or create analogies comes natu-
rally to humans, but it is generally challenging for
computational models because it conveys implicit
semantic attributes and relations. For example, un-
derstanding the statement ketchup is to tomato what
guacamole is to avocado involves an internal rep-
resentation of the relation x is made of mashed y.

In two-word analogies, the relation of interest
is implicit. For example, from the sentence His
editing style was a chainsaw, one can reconstruct
an implicit 4-term analogy: His editing style was
to the text what a chainsaw is to a forest.2

1The code and datasets used in our experiments can be
found at https://github.com/Mionies/Metaphors_and_
Analogies.

2Such reconstructions may leave room for interpretation
as they are generally underdefined. For instance, forest may
not be the only choice in the example.

Metaphors. Within Conceptual Metaphor The-
ory (CMT), a metaphor is defined as a mapping
process between broad conceptual domains (Lakoff
and Johnson, 1980), which occur at the level of
thought and manifests through language. In order
to study the ability of models to identify metaphoric
mappings, we experiment on linguistic expressions
constrained in form. In this paper, a metaphor
is defined as a word (or a set of related words),
that can be understood through the prism of an-
other distant word (or another paired set of related
words), without relying on additional explicit con-
text. We feed minimal metaphoric sentences that
almost only contain the words forming mappings
into the models, to gain a better understanding of
how they are represented by the LMs.

According to Black (1977), all metaphors medi-
ate an analogy , but not all analogies are metaphors.
The relation between metaphors and analogies has
been much debated. Researchers who refer to
shared features and structural analogies as the ba-
sis of metaphors disagreed with some conceptual
mapping theorists who have argued that similarity
is not the basis for metaphors (Grady, 1999). Gen-
tner et al. (2001) and Bowdle and Gentner (2005)
introduce a framework that intends to unify both
views. The present study adopts this theoretical
framework. Metaphors are treated here as a species
of analogies. More recently, Wijesiriwardene et al.
(2023a) proposed a taxonomy of analogies where
the metaphors included in our dataset would be
classified as semantic and pragmatic analogies, i.e.
the two most complex types of analogies, which
require good semantic representations, and some-
times pragmatic knowledge, to be processed accu-
rately.

Among all analogies, we hypothesise that
metaphors might be even harder to process, because
they are more structurally variable than other types
of analogy. The attribute and relation conveyed
are partial matches. They can even violate struc-
tural consistency (Gentner et al., 1988). Accord-
ing to Tourangeau and Sternberg (1982), a good
metaphor is one that involves two very different
domains. It is not an absolute criterion, but good
metaphors are often cross-domain (far) analogies,
which adds to the complexity. Another specificity
of metaphors is that the mapping is not reversible
(Ortony, 1993), i.e., metaphors have directional-
ity. For example The acrobat is a hippopotamus
suggests a clumsy acrobat and The hippopotamus
is an acrobat suggests a graceful hippopotamus.
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For these two reasons, LMs may struggle to catch
capture the parallelism between the concepts in-
volved in a metaphor in comparison to other types
of analogies.

Anomalies. Semantic anomalies can resemble
metaphors in the sense that they may eventually
bring together concepts that are distant from each
other. Unlike metaphors, the two concepts do not
share any obvious properties. For example, A chair
is a syllogism can be considered to be an anomaly
(Black, 1977). Fallacious analogies made of two
word pairs in the A is to B what C is to D structures
are constructed by mapping words that are not con-
nected by the same relation. For example, having
the first pair linked by a part of relation and the
second pair by a made of relation.3

3 Related Work

Automatic metaphor processing research has seen
a garnered increased in recent years, partially due
to the encouraging performance of language mod-
els on existing benchmarks (Leong et al., 2020).
However, there have been almost no studies on
metaphors in the context of analogies.

3.1 Analogies

Czinczoll et al. (2022) compared the performance
of transformer-based language models on near
analogies and more creative ones. They reported a
large gap in the performance of the LMs between
the two categories and released the SCAN dataset
of creative analogies. In the context of the recent
multiplication of larger language models, we can
now say that their study is limited to relatively
small models, BERT and GPT2, and in the frame-
work of fine-tuning experiments. In contrast, we
study the zero-shot abilities of the model, which
allows us to conveniently scale up the experiments
with limited computing power. The SCAN dataset
does not contain anomalies or distinguish between
metaphoric and non-metaphoric analogies. There-
fore, integrating it into our our experimental setting
would require additional annotations.

Webb et al. (2023) studied the performance of
the GPT3-davinci models on a large range of dif-
ferent analogies, from geometric patterns to short
pieces of text. All the experiments are compared

3In the rest of this paper, we refer to the sentences that
are not figurative, and not semantically anomalous as literal.
Table 1 shows examples of 2-terms literal sentences, that are
not analogies, and 4-terms sentences that are analogies.

with the performance of humans on the same task.
The authors observed a sudden improvement with
the davinci-003 model, which corresponds to the
beginning of the release of instruction-tuned mod-
els by OpenAI (Ouyang et al., 2022). These results
also suggest that abstract analogical reasoning may
be an emergent ability of the larger models. This
was also demonstrated by Wei et al. (2022), who ob-
served a sudden improvement in the classification
of fine-grained figurative language when the mod-
els are scaled up. These works were a motivation
for the present study in the context of metaphorical
analogies. We tested a large number of models
of different sizes, including open-source ones, to
better understand how the sizes and model types
impact their ability to recognise complex analogies.

Wijesiriwardene et al. (2023b) and Sultan and
Shahaf (2023) recently released resources for the
identification of analogical pairs of short texts.
While Sultan and Shahaf (2023) do not distinguish
metaphors from other analogies, Wijesiriwardene
et al. (2023b) proposed a scale of complexity for
analogical relations, with metaphors occupying the
highest level. The open research topic of analogical
reasoning between documents explored in this pre-
vious study beyond the scope of our study. Instead,
we frame our experiments to explore the behavior
of the models when they are provided with the min-
imal linguistic information necessary to create an
analogy and a metaphor, in zero-shot settings.

While good performance can be achieved when
the models are fine-tuned on analogy datasets,
(Griciūtė et al., 2022; Yuan et al., 2023), we are
interested in understanding how LMs represent
metaphors without explicit fine-tuning. In this re-
spect, the present work is more in line of perplexity-
based experiments of Ushio et al. (2021b). In con-
trast, we do not focus on improving the perplexity
metrics but on the comparison between vanilla per-
plexity scores across models.

3.2 Metaphors
Metaphor processing in NLP comprises many
methods developed for metaphor identification
(Turney et al., 2011; Tsvetkov et al., 2014; Mao
et al., 2019; Wachowiak and Gromann, 2023), but
also generation (Veale, 2016; Stowe et al., 2021;
Chakrabarty et al., 2021b), textual (Mao et al.,
2018) and multimodal (Kulkarni et al., 2024) inter-
pretation, metaphor understanding through entail-
ment (Agerri et al., 2008; Chakrabarty et al., 2021a;
Stowe et al., 2022), among other tasks. Ge et al.
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Dataset Format n_sent n_set n_ins Labels Example

Cardillo 2-term 520 2 260 Literal The murder weapon was a chainsaw.
Metaphor His editing style was a chainsaw.

Jankowiak 2-term 360 3 120 Literal These marks are bruises.
Metaphor Failures are bruises.
Anomaly Bottles are bruises.

Green 4-term 120 3 40 Literal Answer is to riddle what solution is to problem
Metaphor Answer is to riddle what key is to lock
Anomaly Answer is to riddle what jersey is to number

Table 1: Analogy datasets included in the experiments: n_sent indicate the number of sentences; n_set, the number
of sentences per instance; and n_ins, and the number of instances. All datasets are balanced in terms of labels.

(2023) provide a comprehensive recent survey on
the topic.

An early approach to metaphoric mapping detec-
tion that resonates with our perplexity-based study
is the measurement of the preference of predicates
for semantic classes of arguments (Fass and Wilks,
1983), formalized by Resnik (1997) as a WordNet
based selectional preference (SP) and SP strength
measure. Mason (2004); Shutova et al. (2010); Li
et al. (2013) rely on the assumption that metaphoric
verb-object pairs will tend to appear with lower as-
sociation strength than literal compositions. More
recently, Zhang and Liu (2022) models SP viola-
tions as incongruity between target words and their
contexts.

In a similar work to ours, Pedinotti et al. (2021)
investigated the plausibility of metaphoric asso-
ciations for LMs. BERT’s ability to identify the
boundaries of metaphoric creativity is studied with
literal sentences, conventional metaphors, creative
metaphors and nonsensical sentences, and observed
that the average pseudo-likelihood scores decreases
in this order for the four considered categories, in
accordance with human ratings of semantic plausi-
bility. We expand the analysis to additional models
and datasets, including 4-term analogies, and com-
pare perplexity-based results to generation-based
results for instructed models.

4 Experimental Details: Model Selection
and Perplexity Computation

Our aim in this paper is to evaluate a wide range
of diverse LMs in terms of architecture and size,
which are presented below.

Models. In our experiments, we consider the
masked language models BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), decoder-
only LM GPT-2 (Radford et al., 2019), GPT-J
(Wang and Komatsuzaki, 2021), OPT (Zhang et al.,

2022), OPT-IML (Iyer et al., 2022), Galactica (Tay-
lor et al., 2022), Bloom (Hasanain and Elsayed,
2022) and Bloomz (Muennighoff et al., 2023) ,
Llama-2 and Llama-3 (Touvron et al., 2023) , and
the encoder-decoder LM T5 (Raffel et al., 2020),
Flan-T5 (Chung et al., 2022), Flan-UL2 (Tay et al.,
2023). Finally, we consider the recent Mistral
(Jiang et al., 2023) and Sparse Mixture of Experts
Mixtral models (Jiang et al., 2024). All the model
weights are taken from HuggingFace, where the
complete list of the models we used can be found in
Appendix 6. In addition to those open-source LMs,
we consider the OpenAI commercial API models.
We use GPT-3 (Brown et al., 2020a), GPT-3.5 In-
struct (Ouyang et al., 2022), GPT-3.5 and GPT-4
(Bubeck et al., 2023).4

Perplexity. Perplexity measures how well a LM
predicts a given sentence. In that respect, this mea-
sure can provide a good proxy to compare how
natural or likely different types of sentences are.
Following previous work (Brown et al., 2020a;
Ushio et al., 2021b), for comparing the sentence
likelihood we compute perplexity on each candi-
date sentence and choose the one with the lowest
perplexity5. For decoder-only LMs such as GPT
(Radford et al.), we compute the perplexity of a
tokenized sentence x “ rx1...xms as

fpxq “ exp

˜
´ 1

m

mÿ

j“1

logPlmpxj |xj´1q
¸

(1)

where Plmpx|xq is the likelihood of the next token
given the precedent tokens. For masked language
models (MLM) such as BERT (Devlin et al., 2019),

4In the main body of the paper we provide results for the
largest models, as well as representative models for all families
in the size experiments, but in the appendix we include results
for all models.

5We use https://github.com/asahi417/lmppl to com-
pute perplexity.
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Figure 1: Medians of the ratios between the perplexities of the metaphoric and literal instances (solid lines) and
between the anomalous and metaphoric instances (dashed lines) for decoder only models on the left, masked and
encoder-decoder models on the right, for the Jankowiak dataset (upper plots) and Green dataset (lower plots).

pseudo-perplexity (Salazar et al., 2020) is used in-
stead, which replaces the likelihood P in Equa-
tion 1 by Pmaskpxj |xzjq, the pseudo-likelihood
(Wang and Cho, 2019) to predict the masked token
xj . For encoder-decoder LMs such as T5 (Raf-
fel et al., 2020), we compute Plm on the decoder,
which is conditioned by the encoder. We should em-
phasize that perplexity values are model-dependent.
Thus, in this work we have not attempted to mea-
sure perplexity values across LMs, but only for
comparing sentences within the same LM. 6

5 Language Model Representation of
Metaphoric Analogies

In this section, we aim to understand how LMs
identify metaphors in comparison to other types
of analogies or literal statements, and how models
can identify them from semantically anomalous
sentences. To this end, we rely on three datasets
containing sets of metaphoric and literal sentences,
which are presented in Section 5.1. Following this,
we rely exclusively on zero-shot experiments, first
by computing perplexity scores (Section 5.2) and
then by studying the abilities of the models to iden-
tify metaphors by following instructions (Section
5.3).

5.1 Metaphors and analogy datasets

In our evaluation, we focus on datasets that contain
metaphors. Because of this, we exclude other well-

6In the following experiments, due to computational re-
source limitation, we use the bitsandbytes python module to
load the models larger than 13B parameters with quantization.

known analogy datasets such as Google-analogies
(Mikolov et al., 2013) or BATS (Gladkova et al.,
2016), as they include analogies directly linked to
well-defined lexical relations (e.g. capital-of). The
three datasets considered in our experiments are
summarized in Table 1. They are all composed of
sets within which one element of the pairs remains
identical and the second one varies.

Our data have two different formats. The
Cardillo and Jankowiak datasets are sentences
formed from two concepts based on the pattern x
is-a y, where the problem to solve is the nature of
the relation between x and y. The Green data are
quadruples of the form tpxi, xjq, pyi, yjqu where
the relation of interest stands between pxi, xjq and
pyi, yjq. Green and Jankowiak contain metaphoric,
anomalous and literal sentences, while Cardillo
only contains metaphoric and literal sentences.

Cardillo. This dataset (Cardillo et al., 2010,
2017) was initially created for studies within ex-
perimental psychology and contains 260 pairs of x
is-a y instances. Each instance in the pair is com-
posed of one literal and one metaphoric sentence.7

We group the initial dataset from Cardillo et al.
(2010) with the extension released in Cardillo et al.
(2017). In addition to the set of instance pairs, each
sentence has been annotated by a large number of
participants on a scale of figurativeness that we also
consider in our perplexity analysis.

7Liu et al. (2022) created a large dataset of x is-a y
metaphoric pairs but they do not contain negative examples.
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Jankowiak. The Jankowiak dataset (Jankowiak,
2020) results from a similar study. In addition
to literal and metaphorical sentences, it contains
anomalous x is-a y sentences. It contains 120 sets
of three sentences sharing the same concrete end
word y, and the start words x are in the same range
of frequencies.

Green. The Green dataset (Green et al., 2010)
contains 120 quadruples organised in 40 sets. Each
set contains one incorrect analogy (referred to as
anomaly), one near analogy, and one far analogy
(metaphor in our context). 8 For this dataset con-
sisting of word pairs and not full sentences, we
construct minimal sentences of the form A is to B
what C is to D, where pA,Bq is the first pair and
pC,Dq is the second pair.

5.2 Perplexity analysis

The metaphoric, anomalous and literal sentences
from each dataset are fed into the model, and the
perplexity is computed over each sentence, as ex-
plained in Section 4.

Results. For all datasets and for the vast major-
ity of models, the median of the perplexities of
metaphoric examples is higher than the median
of literal ones, which is similar to the findings of
Pedinotti et al. (2021) when analysing BERT-like
models.9 Full results and statistical significance
of the difference in perplexity scores between the
three classes are shown in Tables 7,8 and 9 in Ap-
pendix, Section B.2.

Figure 1 shows the variation of the perplexity
ratios between metaphoric and literal examples
and between anomalous and metaphoric examples,
for the Jankowiak and the Green dataset. For
the Green dataset, model perplexities are closer
between metaphors and anomalies than between
metaphors and literal instances. The ratios re-
main relatively stable when the size of the mod-
els increase, but we observe that the gap between
metaphors and anomaly values increases for the
largest decoder-only models. In contrast, in the
Jankowiack dataset, metaphoric examples have
closer perplexity scores to the literal ones than to
the anomalous ones among most decoder-only mod-
els, and show unstable trends among the masked

8Kmiecik et al. (2019) released a similar corpus with 720
quadruples divided into near, far and incorrect analogies, but
unlike Green, the far analogies were not all metaphors.

9Perplexity scores distributions for Llama3-Inst70B can be
found in the Appendix Figure 5 as an example.

Figure 2: Correlation with human judgment for the
perplexity setting on the Cardillo dataset.

and encoder-decoder models.
Finally, as an example of the impact of instruc-

tion tuning on the representation of metaphors, we
see that T5 and Flan-T5 models show different
score distributions, particularly in the Jankowiak
dataset. More comparison between instructed and
non instructed version of the models can be found
in Section B.2 of the Appendix. Across all the con-
sidered datasets, Flan-T5 models score the literal
examples of each set lower than the other classes
in a large majority of cases. This specificity on
Flan-T5 models appears in the next experiment.

Correlation between perplexity and figurative-
ness. Humans perceive sentences as more or less
metaphoric, rather than merely as binary categories.
As explained in Section 5.1, Cardillo et al. (2010,
2017) enriched their dataset with human ratings for
each instance according to figurativeness. We study
the correlation between all the previously obtained
perplexities and the human judgments of figura-
tiveness using Spearman correlation ρ. As shown
in Figure 2, all models correlate positively with
figurativeness. This means that sentences which
are more figurative, tend to be have a lower pseudo
log-likelihood according to the LMs.

FLAN-T5XXL obtains the highest Spearman cor-
relation ρ of .41, and the Flan-T5 family correla-
tion improves with the model size. BERTBASE and
BERTLARGE also obtain competitive correlations,
respectively .37 and .35. There is a weaker correla-
tion for all other models including the largest ones
(see the complete results in the Appendix, Table
11). The relatively low correlation between per-
plexity and figurativeness can be explained by the
various levels of conventionality or creativity of the
metaphors in the Cardillo dataset. Some frequently
encountered metaphors are still perceived as very
figurative. For example The exhibition was a smash.
is both common and judged highly figurative.
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5.3 Can LMs identify metaphors from literal
and anomalous sentences?

In this setting, we explicitly ask the models spe-
cialised in generation to produce a response to iden-
tify literal, metaphoric and anomalous sentences
of each set at once with a prompt10, in the form
of multiple-choice question tasks. This allows us
to integrate OpenAI models for which perplexity
values are not accessible. We process the generated
answers by each model11 and provide the over-
all results based on accuracy. We run the exper-
iments with all possible permutations of the sen-
tences within each set (shuffling the order in which
literal, metaphoric and anomalous sentences are
presented in the prompt) because we identified a
bias toward the generation of some sequences of
labels in the models.12

Results. Accuracy scores for the models anal-
ysed in this setting are shown in Table 2. In this
setting, Flan-T5XXL loses its advantage over the
Llama2 and Mistral models. Unlike the other mod-
els, its generated answers do not always contain
distinct labels for the elements of a set, especially
for the Cardillo and Jankowiak datasets that contain
three sentences per set. For those two datasets, the
gap in accuracy with the other models is above 16
points. All the models have difficulties processing
the Green dataset, made of 4-term instances, with
the exception of GPT-4 that reaches an accuracy of
78.6%.

Error analysis. An error analysis of the results
on the Green and Jankowiak datasets evaluated
through the generation setting is shown in Table 3.
For both datasets and all models, we observe that
the confusion between literal and anomalous sen-
tences is significantly less frequent than the confu-
sion between metaphors and anomalies. With GPT-
4, the confusion between metaphors and anomalies
drops significantly for both datasets on all error
types.

10An example prompt is available in Appendix C.1.
11The default hyper-parameters are used for all models. The

minimum or maximum output length are adjusted to ensure
a complete answer. Generation answers are processed semi-
automatically, verifying manually those answers that do not
conform exactly with the expected output.

12This bias is reported in the Appendix (Tables 12 and 13).

Model Card. Jank. Green

FLAN-T5XXL 78.9 57.4 37.6
Llama2-chat70B 85.6 73.6 56.4
Llama3-Instr70B 88.7 89 64.3
Mixtral-Instr8x7B 76.5 84.1 55.3
Mixtral-Instr8x22B 82 81.9 67.1

GPT-3.5turbo-inst. 65.9 61.5 38.8
GPT-3.5turbo 70.5 59.8 41.2
GPT-4 91.8 91.4 78.6

Random 50.0 33.3 33.3

Table 2: Accuracy of the generated answers for the
three datasets Cardillo, Jankowiak and Green in the
instruction generation setting (gen).

Model Jank. Green

LM MA LA LM MA LA

FLAN-T5XXL 282 521 116 214 220 15
Llama2-chat70B 127 345 99 86 111 92
Llama3-Instr70B 80 117 41 111 92 54
Mixtral-Instr8x7B 127 141 75 130 123 60
Mixtral-Instr8x22B 90 253 45 37 153 35

GPT-3.5turbo-inst. 260 433 138 140 165 136
GPT-3.5turbo 179 450 234 137 140 143
GPT-4 79 89 18 92 48 14

Table 3: Error analysis for the Jankowiak and Green
datasets in the generation setting (gen). The non-
directional confusion between literal and metaphor
(LM), metaphor and anomaly (MA) and literal and
anomaly (LA) labels are shown for all the models evalu-
ation on generation.

6 Do Metaphors Have an Impact on How
LMs Solve Analogies?

In the previous section, we tested the capabili-
ties of language models in explicitly recognising
metaphors. The results show how models find them
less likely than literal sentences. A natural ques-
tion that may arise is whether this behavior has an
impact on how LMs solve analogies more gener-
ally. In particular, our aim is to understand whether
LMs are capable of solving analogies irrespective
of whether they are metaphorical or not.

6.1 Data

We rely on the SAT analogy dataset (Turney, 2006)
for our experiments. SAT is composed of 374
multiple-choice word analogy questions from the
SAT college entrance exam in the US. This dataset
has been used in the context of NLP to evaluate how
models recognise analogies (Brown et al., 2020b;
Ushio et al., 2021b,a; Chen et al., 2022; Kumar and
Schockaert, 2023). One advantage of this dataset
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Input: weave is to fabric what ... Label: Met.

1) illustrate is to manual 4) bake is to oven
2) hang is to picture ñ 5) write is to text
3) sew is to thread

Table 4: Example set of the SAT dataset where the
correct analogy 5) has been labeled as a metaphor.

over other benchmarks is that the dataset was not
openly available on the internet, which mitigates
possible concerns of data contamination in LMs.
Each set in the SAT contains a stem word pair, and
five other candidate pairs, forming a correct anal-
ogy and four anomalies with the stem pair. The
task consists of selecting the correct analogy.

SAT annotation Each of the 374 questions of
the SAT dataset contains a single correct analogy,
and a subset of them are metaphoric analogies, as
in the example presented Table 4. Our aim is to
divide SAT correct analogies between metaphoric
and non-metaphoric ones. This extended annota-
tion enables a new experiment in which we assess
the SAT performance of different types of analo-
gies, metaphorical or not. Moreover, in the unlikely
case that any of the closed language models that
we analysed had been trained with the original SAT
analogies, this information was not available to the
model. Given the difficulty of the task, the anno-
tation process required two rounds of annotation,
detailed in the Appendix Section E.1.

A common reason for disagreement after the first
round was that, sometimes, annotators could not
think of a context in which two pairs of concepts
could be used metaphorically. When one annotator
had a clear example in mind, he or she was usually
able to convince the others that an analogy was
metaphoric during the discussions. For instance,
the example playwright is to actor what composer
is to musician, is easier to label after seeing the
example The playwright made him the gong in the
symphony of his play. Disagreement often occurred
with the analogies when concrete domains were not
very distant from each other13. We therefore asked
all annotators to suggest and share examples prior
to the second round of annotations. In total, 103
instances were labelled as metaphoric, and 239 as
non-metaphoric.

13This difficulty is related to the practical delimitation and
granularity of domains.

Figure 3: Boxplot showing the distribution of the per-
plexity scores for the three classes literal sentences
(Lit), metaphor (Met) and anomalies (Ano) for the
Llama370B-instr model in SAT. Results for all models
can be found in the Appendix, Table 10.

Figure 4: Accuracy results of the perplexity setting ex-
periment on SAT. The results for the metaphoric class
are displayed in the dashed lines, while the results for
the non-metaphoric class are shown in the solid lines.

6.2 Experimental results

Experimental setting. The experimental setting
is similar to the ones set out in the previous section.
In particular, we test LMs using perplexity, follow-
ing the same methodology outlined in Section 5.2.
In this case, out of the five choices, the instance
with the lowest perplexity is selected as the correct
option. In addition, the large instructed LMs are
tested through text generation, prompted to output
the correct answer among the five choices14. Then,
we simply report the accuracy on the metaphoric
and non-metaphoric subsets of SAT.

14As in Section 5, experiments are run on all possible per-
mutations of the correct answer position to neutralise the effect
of sentence position bias in the prompt. The prompt used for
this experiment is available in Appendix E.3.
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Perplexity analysis. The SAT* perplexity scores
of the metaphoric and non-metaphoric analogies
are in the same range of values for most models
(Figure 3 shows the results for Llama370B-instr). A
Mann-Whitney U rank test on two independent
samples for the two classes (two-sided, p<0.05)
shows significance in the difference between the
two groups for only 6 of the 51 models tested (see
Table 10 in the Appendix). In fact, a majority of
models have slightly larger perplexity scores on av-
erage for the non-metaphoric analogies than for the
metaphoric ones. The SAT dataset is designed to
be a difficult test, containing infrequent words and
non-obvious analogies. This allows us to study the
behavior of the models and their ability to identify
correct analogies when presented with metaphoric
and non-metaphoric far analogies with a similar
level of perplexity.

Results. Figure 4 shows the accuracy on the
metaphorical and non-metaphorical subsets of SAT
in the perplexity setting.15 In general, model perfor-
mance improves with size. Smaller models show
a gap in accuracy between questions involving
metaphors and other types. This gap diminishes
when the model size increases until the accuracy
for the metaphor class becomes similar to that of
the simple analogy class in the larger models. We
observe a decrease of the performance of the largest
Llama370B-inst and Mixtral8x22B models that might
eventually be caused by more constrained expecta-
tions on the input format (e.g. special input tokens
for Mixtral models and system prompt for Llama3).

Table 5 shows the results of the generation ex-
periments for the large instructed models in com-
parison with the perplexity setting. While models
tend to perform better for non-metaphoric analo-
gies in the perplexity setting, they obtain better
results on the metaphors in the generation setting.
A possible explanation for this result is that the
metaphors of SAT* have in fact more chances to
appear in natural sentences than the artificially con-
structed non-metaphoric analogies. Llama370B-inst
and Mixtral8*22-inst perform better in the generation
than in the perplexity setting, reinforcing the hy-
pothesis that perplexity may not be the best metric
when using these models in applications, even for
the task of detecting plausible sentences or analo-
gies. Moreover, we can observe again that GPT-4
performed better than the other models, although
the conclusions that can be drawn from this model

15See Table 10 in the Appendix for the full results.

Model PPL GEN

Lit Met Lit Met

FLAN-T5XXL *55.6 42.7 41.6 44.5
Llama2-chat70B 59.4 56.3 41.0 *49.5
Llama3-Instr70B 46.9 43.7 55.8 *62.5
Mixtral-Instr8x7B 50.6 50.5 45.4 47.6
Mixtral-Instr8x22B 49.0 49.5 50.5 *55.7

GPT-3.5turbo 28.5 32.6
GPT-4 72.6 75.0

Table 5: Accuracy results in the perplexity (PPL) and
generation settings (GEN ) for the literal and metaphor
classes in SAT. Bold numbers show the highest accuracy
scores overall. The statistical significance of the gap
between literal and metaphoric accuracy scores is cal-
culated with a two independent samples t-test (p<0.05),
and indicated with * on the higher score in the table.

are limited due to its closed nature.

7 Conclusion

In this paper, we have analysed the capabilities of
LMs to perceive and identify metaphors. Using
perplexity as a proxy to measure plausibility in
LMs, we observe that, in general, LMs perceive
metaphors as less likely, and are often perceived
closer to anomalous sentences than literal ones. In
general, LMs struggle more often to distinguish
metaphors from anomalous sentences even when
instructed to do so, although this gap diminishes
with newer and larger models.

As a result of this finding, we also investigated
whether these results would be reflected in how
models can distinguish metaphors from anomalies
in a wider context. The results show that, at least
for the new generation of LM-based conversational
agents, this does not appear to be as problematic.

Several follow-up questions remain unaddressed
in spite of these findings. What is the role of
metaphors in generative models? Do LMs generate
(new) metaphors in the context of a conversation,
or do they resort to existing expressions and lit-
eral sentences? In the context of computational
linguistics and semantics, it would be interesting
to better understand how metaphors are internally
represented or encoded in this new generation of
LMs.

Limitations

There is a body of work in the literature that has
questioned analogy evaluation as a reliable way to
probe NLP models, and, in particular, word em-
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beddings (Linzen, 2016; Schluter, 2018; Nissim
et al., 2020). In our paper, we are not interested in
analogy as an evaluation benchmark, and rather as
input data to extract insights. Nonetheless, some
of the criticism of the aforementioned papers with
respect to word analogies can also be applied to
language models. In relation to this, we have not
attempted to perform extensive prompt engineer-
ing in this work, as we were interested in knowing
the trends and raw behaviour of models rather than
obtaining the best results. This was also prompted
due to computational constraints (see Appendix
F for details on the computational resources and
time). It is likely, however, that some results may
differ if other prompts or evaluation protocols were
considered.

In this work, we did not study the model be-
havior in relation to the frequency of the semantic
associations in corpora. Since some metaphors
are more common than other literal associations,
this extended control analysis may reveal other be-
havior patterns not captured in our experiments.
Our experiments focus solely on English corpora,
therefore findings may differ for other languages,
especially less-resourced and languages from other
families. Finally, data contamination may have an
impact on the results, which we could not anal-
yse extensively. To mitigate this, we considered
datasets that are not openly available and enriched
existing data, thereby ensuring that these new an-
notations had not been seen by any of the models.
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We have not identified any potential misuse of this
research. No personal data was required in the
annotation of the SAT analogy dataset and all the
annotators are co-authors of this paper.
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Model Size Name on HuggingFace

M
as

ke
d

L
M BERTBASE 110M bert-base-cased

BERTLARGE 355M bert-large-cased

RoBERTaBASE 110M roberta-base
RoBERTaLARGE 355M roberta-large

E
nc

od
er

-D
ec

od
er

L
M

T5SMALL 60M t5-small
T5BASE 220M t5-base
T5LARGE 770M t5-large
T53B 3B t5-3b
T511B 11B t5-11b

Flan-T5SMALL 60M google/flan-t5-small
Flan-T5BASE 220M google/flan-t5-base
Flan-T5LARGE 770M google/flan-t5-large
Flan-T5XL 3B google/flan-t5-xl
Flan-T5XXL 11B google/flan-t5-xxl

Flan-UL2 20B google/flan-ul2
UL2 20B google/ul2

D
ec

od
er

-o
nl

y
L

M

GPT-2 124M gpt2
GPT-2MEDIUM 355M gpt2-medium
GPT-2LARGE 774M gpt2-large
GPT-2XL 1.5B gpt2-xl

GPT-J125M 125M EleutherAI/gpt-neo-125M
GPT-J2.7B 2.7B EleutherAI/gpt-neo-2.7B
GPT-J6B 6B EleutherAI/gpt-j-6B
GPT-J20B 20B EleutherAI/gpt-neox-20b

OPT125M 125M facebook/opt-125m
OPT350M 350M facebook/opt-350m
OPT1.3B 1.3B facebook/opt-1.3b
OPT13B 13B facebook/opt-13b
OPT30B 30B facebook/opt-30b
OPT66B 66B facebook/opt-66b

OPT-IML1.3B 1.3B facebook/opt-iml-1.3b
OPT-IML30B 30B facebook/opt-iml-30b
OPT-IMLM-1.3B 1.3B facebook/opt-iml-max-1.3b
OPT-IMLM-30B 30B facebook/opt-iml-max-30b

Bloom176B 176B bigscience/bloom
Bloomz176B 176B bigscience/bloomz

Llama27B 7B meta-llama/Llama-2-7b-hf
Llama213B 13B meta-llama/Llama-2-13b-hf
Llama270B 70B meta-llama/Llama-2-70b-hf

Llama2-chat7B 7B meta-llama/
Llama-2-7b-chat-hf

Llama2-chat13B 13B meta-llama/
Llama-2-13b-chat-hf

Llama2-chat70B 70B meta-llama/
Llama-2-70b-chat-hf

Llama3-Inst8B 8B meta-llama/
Meta-Llama-3-8b-Instruct

Llama3-Inst70B 70B meta-llama/
Meta-Llama-3-70b-Instruct

Mistral7B 7B mistralai/Mistral-7B-v0.1
Mistral- 7B mistralai/
Inst7B Mistral-7B-Instr.-v0.2

sM
oE

Mixtral8x7B 56B mistralai/Mixtral-8x7B-v0.1
Mixtral- 56B mistralai/
Inst8x7B Mixtral-8x7B-Instr.-v0.1
Mixtral- 176B mistralai/
Inst8x22B Mixtral-8x22B-Instr.-v0.1

Table 6: The model checkpoints used in the LM baselines on HuggingFace model hub. All the models can be
obtained at https://huggingface.co.
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B Perplexity setting experiments result

B.1 Graphics of the perplexity experiment
results

The boxplots of the metaphoric, literal and anoma-
lous instances for Llama3-Inst70B perplexity scores
for the three datasets are shown Figure 5.

B.2 Result tables for all models
Tables 7, 8 and 9 include the full experimental
results of Section 5.2. They show the proportions of
sets where sentences with literal, metaphoric, and
anomalous content exhibit the lowest perplexity
for all the datasets, and the statistical significance
test results for the differences in perplexity scores
obtained by the metaphoric, literal and anomalous
instances.

B.3 Correlation between perplexity scores
and human ratings of figurativeness

Table 11 shows the correlation with human ratings
of figurativeness for the Cardillo dataset with all
studied models.

C Generation experiments

In this section we provide details for the generation
experiments presented in Section 5.3.

C.1 Prompt used in the generation
experiments

An example prompt used for text generation in
order to label all the sentences of a set at once.

Example : Green

I will give you three sentences and I would like you
to tell me which one is "anomalous", which one is
"literal", and which one is a "metaphor". There is ex-
actly one anomalous sentence, one metaphor, and one
literal sentence among the three provided sentences.
Here are the three sentences:

1. flock is to goose what wolfpack is to wolf

2. flock is to goose what constellation is to star

3. flock is to goose what pond is to turtle

Please provide the answer in separate lines for each
sentence.
Answer:
Sentence 1) is

C.1.1 Specificities of the Mixtral and Llama-3
models prompts.

Mixtral models. The use of special tokens is
recommended in the Mixtral models prompts to

obtain the best performances 16. We modify the
prompt according to the guideline.

<s> [INST] I will give you three sentences and I
would like you to tell me which one is "anoma-
lous", which one is "literal", and which one is a
"metaphor". There is exactly one anomalous sen-
tence, one metaphor, and one "literal sentence among
the three provided sentences. Here are the three sen-
tences:

{SENTENCES LIST}

Please provide the answer in separate lines for each
sentence. [/INST] Answer:
Sentence 1) is

Llama3 models. The output of the Llama-3 mod-
els with the original prompt did not contain the
expected answer to the task. We added the fol-
lowing system prompt to the original prompt. The
results presented for Llama3 were all generated
after the integration of this system prompt.

You always answer in three lines, with one sentence
index (for example "1)","2)" or "3)" ) followed by the
words "is metaphoric", "is literal" or "is anomalous"
on each line.

C.2 Bias of the models toward label sequences

We run a first batch of generation experiments using
our generation prompt, and find that all the mod-
els are biased toward some sequences of sentence-
label pairs. For example, in the case of the Cardillo
dataset, all the models tend to answer that the first
sentence of the set is metaphoric and the second
is literal much more often than the opposite. This
bias of the models is presented in Appendix Ta-
bles 12 and 13. As a consequence, we ran the
experiments with all possible permutations of the
sentences within each set, making distribution of
label sequences uniform.

D Experiments on the SAT dataset

E Annotation Guidelines for Adding
Metaphorical Labels in SAT

The proportional analogies to label are made of
exactly four words xi, xj , yi and yj . The relation
between the four words can be paraphrased by the
sentence xi is to xj what yi is to yj . For example,
Dancing is to walking what singing is to talking.

16see https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1
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Model Family Model %Lit. is lowest pvalue p<0.05 Med.
M/L

BERT BERTBASE 73.5 .0 T 2.14
BERTLARGE 72.3 .0 T 1.7

RoBERTa RoBERTaBASE 64.6 .0 T 2.22
RoBERTaLARGE 70.0 .0 T 2.31

T5 T5SMALL 76.9 .0 T 2.62
T5BASE 66.5 .0 T .36
T5LARGE 67.7 .0 T .2
T53B 42.3 .9992 F 0.0
T511B 50.8 .2257 F 0.0

UL2 UL2 61.5 .0002 T 0.17

Flan-T5 Flan-T5SMALL 78.8 .0 T 2.49
Flan-T5BASE 77.7 .0 T 2.35
Flan-T5LARGE 80.0 .0 T 2.44
Flan-T5XL 77.3 .0 T 2.14
Flan-T5XXL 82.3 .0 T 2.59

Flan-UL2 Flan-UL2 80.8 .0 T 2.37

GPT-2 GPT-2 60.8 .0 T 1.5
GPT-2MEDIUM 62.7 .0 T 1.45
GPT-2LARGE 61.9 .0 T 1.43
GPT-2XL 63.8 .0 T 1.49

GPT-J GPT-J125M 56.5 .0039 T 1.39
GPT-J2.7B 57.3 .019 T 1.3
GPT-J6B 62.7 .0 T 1.6
GPT-J20b 61.5 .0 T 1.45

GPT-3 GPT-3ada 63.1 .0 T 1.54
GPT-3babbage 67.3 .0 T 1.63
GPT-3curie 67.7 .0 T 1.68
GPT-3davinci 67.7 .0 T 1.75

OPT OPT125M 64.2 .0 T 1.5
OPT350M 63.1 .0 T 1.4
OPT1.3B 68.5 .0 T 1.51
OPT13B 68.5 .0 T 1.53
OPT30B 68.5 .0 T 1.59
OPT66B 66.9 .0 T 1.54

OPT-IML OPT-IML1.3B 67.3 .0 T 1.54
OPT-IML30B 69.6 .0 T 1.54

OPT-IML OPT-IMLM-1.3B 65.8 .0 T 1.49
(MAX) OPT-IMLM-30B 70.4 .0 T 1.59

Bloom Bloom175B 61.9 .0 T 1.36
Bloomz Bloomz175B 66.5 .0 T 1.49

Llama2 Llama27B 63.1 .0 T 1.34
Llama213B 63.5 .0 T 1.38
Llama270B 60.8 .0 T 1.36

Llama2-Chat Llama2-Chat7B 57.3 .0007 T 1.26
Llama2-Chat13B 63.1 .0 T 1.32
Llama2-Chat70B 65.0 .0 T 1.45

Llama3-Inst Llama3-Inst8B 66.5 .0 T 1.51
Llama3-Inst70B 68.8 .0 T 1.88

Mistral Mistral7B 65.0 .0 T 1.4
Mixtral8x7B 62.7 .0 T 1.37

Mistral-Inst Mistral-Inst7B 64.6 .0 T 1.47
Mixtral-Inst8x7B 61.5 .0 T 1.28
Mixtral-Inst8x22B 66.9 .0 T 1.36

Table 7: Ratios of instances for which the literal sentences have a lower perplexity than the metaphoric sentences in
the Cardillo dataset according to model family and size (perplexity setting). The following two columns show the
significance in the difference of perplexity scores between the set of literal sentences and metaphoric sentences. A
paired samples Wilcoxon test is used (p<0.05). The last column shows the median of the ratios between the score of
the metaphoric and literal sentences in each set.
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Model %L
is lowest

%M
is lowest

%A
is lowest

%
L<M<A

pvalue
L-M

pL-M
<0.05

pvalue
M-A

pM-A
<0.05

Med.
M/L

Med.
A/M

BERTBASE 85.8 9.2 5.0 47.5 .0 T .102 F 5.156 1.192
BERTLARGE 80.0 12.5 7.5 45.8 .0 T .0362 T 4.118 1.543
RoBERTaBASE 53.3 34.2 12.5 32.5 .0002 T .0001 T 1.719 3.793
RoBERTaLARGE 43.3 43.3 13.3 30.0 .2513 F .0 T 1.012 4.894

T5SMALL 70.8 11.7 17.5 35.0 .0 T .6776 F 3.047 .887
T5BASE 79.2 11.7 9.2 44.2 .0 T .3309 F 3.541 1.209
T5LARGE 29.2 34.2 36.7 7.5 .9918 F .9646 F .483 .728
T53B 33.3 40.8 25.8 19.2 .6729 F .1363 F .779 2.145
T511B 49.2 34.2 16.7 25.8 .0602 F .0136 T 1.413 1.462
UL2 65.8 22.5 11.7 33.3 .0 T .0667 F 2.58 1.322

Flan-T5SMALL 85.8 9.2 5.0 56.7 .0 T .0011 T 2.529 1.278
Flan-T5BASE 84.2 9.2 6.7 47.5 .0 T .0806 F 3.505 1.207
Flan-T5LARGE 52.5 34.2 13.3 25.0 .002 T .085 F 1.585 1.279
Flan-T5XL 81.7 15.0 3.3 56.7 .0 T .0 T 2.3 1.704
Flan-T5XXL 77.5 19.2 3.3 55.0 .0 T .0 T 2.518 1.986
Flan-UL2 73.3 21.7 5.0 45.0 .0 T .0002 T 2.37 1.636

GPT-2 58.3 25.8 15.8 42.5 .0 T .0 T 1.592 1.945
GPT-2MEDIUM 36.7 50.8 12.5 26.7 .9724 F .0 T 0.755 2.911
GPT-2LARGE 41.7 44.2 14.2 30.0 .1797 F .0 T .979 2.698
GPT-2XL 35.8 52.5 11.7 25.8 .6566 F .0 T .87 3.006

GPT-J125M 21.7 62.5 15.8 15.8 .9999 F .0 T .662 3.269
GPT-J2.7B 31.7 55.8 12.5 22.5 .9956 F .0 T .593 4.341
GPT-J6B 38.3 52.5 9.2 28.3 .8928 F .0 T .763 3.795
GPT-J20b 50.0 37.5 12.5 37.5 .2047 F .0 T 1.047 2.885

GPT-3ada 54.2 35.8 10.0 40.0 .0013 T .0 T 1.427 2.517
GPT-3babbage 50.0 40.0 10.0 40.0 .0474 T .0 T 1.158 3.002
GPT-3curie 51.7 41.7 6.7 35.8 .0399 T .0 T 1.165 3.033
GPT-3davinci 49.2 43.3 7.5 34.2 .0806 F .0 T 1.122 3.273

OPT125M 44.2 30.0 25.8 21.7 .0001 T .3836 F 1.387 1.14
OPT350M 36.7 45.8 17.5 19.2 .585 F .0006 T .876 1.62
OPT1.3B 40.8 44.2 15.0 25.0 .3443 F .0 T 1.025 1.83
OPT13B 52.5 36.7 10.8 36.7 .0039 T .0 T 1.291 2.332
OPT30B 48.3 40.8 10.8 35.8 .0227 T .0 T 1.205 2.107
OPT66B 43.3 43.3 13.3 27.5 .2122 F .0 T 1.077 2.151

OPT-IML1.3B 40.0 42.5 17.5 26.7 .3224 F .0 T .99 1.684
OPT-IML30B 44.2 42.5 13.3 27.5 .0519 F .0 T 1.118 1.999
OPT-IMLM-1.3B 41.7 43.3 15.0 25.8 .3501 F .0 T 1.016 1.794
OPT-IMLM-30B 46.7 42.5 10.8 30.8 .0476 T .0 T 1.11 2.059

Bloom175B 52.5 39.2 8.3 34.2 .0079 T .0 T 1.225 2.524
Bloomz175B 60.8 30.0 9.2 37.5 .0 T .0041 T 1.928 1.558

Llama27b 52.5 33.3 14.2 29.2 .0022 T .0021 T 1.334 1.229
Llama213B 47.5 35.8 16.7 25.8 .0926 F .0012 T 1.192 1.398
Llama270B 50.0 35.0 15.0 27.5 .0283 T .001 T 1.259 1.35
Llama2-Chat7B 50.0 36.7 13.3 26.7 .0143 T .0004 T 1.195 1.685
Llama2-Chat13B 40.8 45.0 14.2 20.8 .8471 F .0 T .877 1.535
Llama2-Chat70B 50.8 33.3 15.8 35.0 .0094 T .0001 T 1.259 1.525

Llama3-Inst8B 52.5 39.2 8.3 37.5 .0114 T .0 T 1.293 2.119
Llama3-Inst70B 51.7 38.3 10.0 37.5 .0012 T .0 T 1.406 3.019

Mistral7B 45.0 37.5 17.5 26.7 .1122 F .006 T 1.133 1.413
Mixtral8x7B 48.3 38.3 13.3 27.5 .079 F .0065 T 1.171 1.473
Mistral-Inst7B 45.0 36.7 18.3 30.0 .0727 F .0006 T 1.118 1.901
Mixtral-Inst8x7B 45.8 38.3 15.8 27.5 .2222 F .0006 T 1.147 1.712
Mixtral-Inst8x22B 54.2 27.5 18.3 33.3 .0 T .0115 T 1.653 1.349

Table 8: The first three columns show the ratios of sets for which the literal (L), metaphoric (M) and anomalous
(A) sentences have the lowest perplexity in the Jankowiak dataset according to model family and size (perplexity
setting).%L<M<A shows the ratio of sets for which perplexity scores follow this order. The following four columns
show the significance in the difference of perplexity scores between the set of literal and metaphoric sentences, and
then between the set of metaphoric and anomalous sentences. A paired samples Wilcoxon test is used (p<0.05).
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Model %L
is lowest

%M
is lowest

%A
is lowest

%
L<M<A

pvalue
L-M

pL-M
<0.05

pvalue
M-A

pM-A
<0.05

Med.
M/L

Med.
A/M

BERTBASE 65.0 15.0 20.0 30.0 .0 T .592 F 2.277 0.765
BERTLARGE 70.0 12.5 17.5 47.5 .0001 T .0544 F 1.946 1.213
RoBERTaBASE 80.0 2.5 17.5 52.5 .0 T .4236 F 4.189 1.251
RoBERTaLARGE 80.0 10.0 10.0 45.0 .0 T .1702 F 2.654 1.139

T5SMALL 95.0 0.0 5.0 45.0 .0 T .6721 F 5.281 .907
T5BASE 62.5 17.5 20.0 27.5 .0 T .9016 F 7.618 .651
T5LARGE 72.5 10.0 17.5 45.0 .0 T .4709 F 4.287 1.335
T53B 70.0 7.5 22.5 25.0 .0 T .8841 F 4.242 .487
T511B 80.0 5.0 15.0 32.5 .0 T .9231 F 6.613 .677
UL2 57.5 12.5 30.0 32.5 .0 T .8298 F 4.139 .907

Flan-T5SMALL 87.5 0.0 12.5 40.0 .0 T .8587 F 4.807 .805
Flan-T5BASE 87.5 5.0 7.5 35.0 .0 T .805 F 4.261 .78
Flan-T5LARGE 85.0 5.0 10.0 30.0 .0 T .9861 F 5.106 .684
Flan-T5XL 92.5 2.5 5.0 40.0 .0 T .823 F 5.756 .91
Flan-T5XXL 80.0 7.5 12.5 45.0 .0 T .255 F 4.288 1.24
Flan-UL2 85.0 7.5 7.5 55.0 .0 T .0265 T 4.345 1.278

GPT-2 75.0 10.0 15.0 35.0 .0 T .6624 F 1.937 .913
GPT-2MEDIUM 70.0 15.0 15.0 42.5 .0 T .2996 F 2.096 1.057
GPT-2LARGE 72.5 12.5 15.0 45.0 .0 T .075 F 2.299 1.202
GPT-2XL 85.0 5.0 10.0 45.0 .0 T .2101 F 2.211 .98

GPT-J125M 60.0 12.5 27.5 27.5 .0 T .8733 F 1.98 .864
GPT-J2.7B 82.5 2.5 15.0 47.5 .0 T .408 F 1.959 0.975
GPT-J6B 87.5 5.0 7.5 55.0 .0 T .1668 F 1.891 1.202
GPT-J20b 85.0 7.5 7.5 47.5 .0 T .0916 F 1.945 1.315

GPT-3ada 77.5 12.5 10.0 45.0 .0 T .3425 F 1.984 1.078
GPT-3babbage 77.5 10.0 12.5 45.0 .0 T .3573 F 2.292 1.125
GPT-3curie 87.5 2.5 10.0 47.5 .0 T .3184 F 2.506 1.014
GPT-3davinci 92.5 2.5 5.0 62.5 .0 T .0341 T 2.203 1.414

OPT125M 77.5 7.5 15.0 37.5 .0 T .7741 F 2.197 .911
OPT350M 77.5 5.0 17.5 40.0 .0 T .6957 F 1.901 .913
OPT1.3B 92.5 2.5 5.0 52.5 .0 T .195 F 2.004 1.123
OPT13B 95.0 2.5 2.5 55.0 .0 T .085 F 2.166 1.194
OPT30B 97.5 .0 2.5 60.0 .0 T .0385 T 2.286 1.141
OPT66B 97.5 .0 2.5 57.5 .0 T .0879 F 2.212 1.107

OPT-IML1.3B 90.0 2.5 7.5 52.5 .0 T .2423 F 1.964 1.032
OPT-IML30B 90.0 2.5 7.5 52.5 .0 T .1159 F 2.246 1.121
OPT-IMLM-1.3B 85.0 2.5 12.5 45.0 .0 T .3279 F 1.951 .988
OPT-IMLM-30B 97.5 0.0 2.5 57.5 .0 T .0624 F 2.166 1.136

Bloom175B 80.0 5.0 15.0 52.5 .0 T .1877 F 2.084 1.167
Bloomz175B 87.5 2.5 10.0 55.0 .0 T .0446 T 2.161 1.185

Llama-27b 80.0 15.0 5.0 50.0 .0 T .0341 T 1.747 1.245
Llama-213B 82.5 10.0 7.5 60.0 .0 T .0184 T 1.713 1.202
Llama-270B 77.5 17.5 5.0 55.0 .0001 T .0011 T 1.785 1.322
Llama2-Chat7B 82.5 10.0 7.5 60.0 .0 T .0018 T 2.091 1.325
Llama2-Chat13B 90.0 5.0 5.0 62.5 .0 T .0204 T 1.975 1.132
Llama2-Chat70B 80.0 15.0 5.0 62.5 .0 T .0001 T 2.11 1.344

Llama3-Inst8B 95.0 2.5 2.5 65.0 .0 T .0043 T 2.147 1.314
Llama3-Inst70B 82.5 10.0 7.5 60.0 .0 T .0139 T 2.412 1.332
Mistral7B 82.5 7.5 10.0 52.5 .0 T .0191 T 2.153 1.136

Mixtral8x7B 82.5 10.0 7.5 60.0 .0 T .0041 T 1.976 1.313
Mistral-Inst7B 82.5 10.0 7.5 62.5 .0 T .0003 T 2.311 1.329
Mixtral-Inst8x7B 80.0 12.5 7.5 52.5 .0 T .0019 T 2.149 1.378
Mixtral-Inst8x22B 77.5 7.5 15.0 60.0 .0 T .0024 T 2.214 1.236

Table 9: The first three columns show the ratios of sets for which the literal (L), metaphoric (M) and anomalous
(A) sentences have the lowest perplexity in the Green dataset according to model family and size (perplexity
setting).%L<M<A shows the ratios of sets for which perplexity scores follow this order. The following four columns
show the significance in the difference of perplexity scores between the set of literal and metaphoric sentences, and
then between the set of metaphoric and anomalous sentences. A paired samples Wilcoxon test is used (p<0.05).
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Model pvalue
L<A

pL<A
<0.05

pvalue
M<A

pM<A
<0.05

pvalue
L<M

pL<M
<0.05

pvalue
Acc. L-M

pAcc. L-M
<0.05

%Lit.
is lowest

%Met.
is lowest

BERTBASE .0 T .0 T .6787 F .3057 F 34.7 29.1
BERTLARGE .0 T .0 T .1583 F .0879 F 34.3 25.2
RoBERTaBASE .0 T .0001 T .7688 F .083 F 39.7 30.1
RoBERTaLARGE .0 T .025 T .1813 F .555 F 42.3 38.8

T5SMALL .0 T .0 T .4271 F .6919 F 29.3 27.2
T5BASE .0 T .0 T .0973 F .0742 F 29.3 20.4
T5LARGE .0 T .0 T .6088 F .4069 F 32.6 28.2
T53B .0 T .0 T .862 F .2241 F 36.8 30.1
T511B .0 T .0 T .1066 F .0216 T 39.7 27.2

Flan-T5SMALL .0 T .0 T .2046 F .0981 F 29.7 21.4
Flan-T5BASE .0 T .0 T .0135 T .0425 T 33.9 23.3
Flan-T5LARGE .0 T .0 T .0024 T .0009 T 41.0 23.3
Flan-T5XL .0001 T .0016 T .8248 F .555 F 42.3 38.8
Flan-T5XXL .169 F .0473 T .9573 F .0286 T 55.6 42.7
Flan-UL2 .1298 F .2246 F .0963 F .606 F 50.6 47.6

GPT-2 .0 F .0 T .0398 T .1305 F 34.3 26.2
GPT-2MEDIUM .0 T .0 T .235 F .3371 F 36.4 31.1
GPT-2LARGE .0 T .0 T .2262 F .1503 F 38.1 30.1
GPT-2XL .0 T .0001 T .3808 F .6338 F 37.7 35.0

GPT-J125M .0 T .0 T .085 F .0342 T 37.7 26.2
GPT-J1.3B .0 T .0 T .236 F .3456 F 39.3 34.0
GPT-J6B .0127 T .0168 T .132 F .0609 F 49.8 38.8
GPT-J20b .0077 T .0153 T .4348 F .207 F 45.2 37.9

GPT-3davinci .0604 F .5223 F .7779 F .4249 F 50.6 55.3

OPT125M .0 T .0 T .9119 F .2114 F 36.0 29.1
OPT350M .0 T .0 T .293 F .0342 T 37.7 26.2
OPT1.3B .0024 F .0002 T .5922 F .0122 T 43.1 29.1
OPT30B .096 F .147 F .7362 F .5581 F 48.1 44.7
OPT66B .1401 F .3924 F .9563 F .9246 F 49.0 49.5

OPT-IML1.3B .0006 T .0003 T .7934 F .2951 F 43.9 37.9
OPT-IML30B .0666 F .0781 F .5541 F .3125 F 50.6 44.7
OPT-IMLM-1.3B .0003 T .0004 T .7761 F .1552 F 43.1 35.0
OPT-IMLM-30B .1221 F .0676 F .4202 F .2218 F 51.9 44.7

Llama-27b .5361 F .0685 F .0053 T .3357 F 52.3 46.6
Llama-213B .8903 F .3698 F .0985 F .3682 F 57.7 52.4
Llama-270B .7528 F .4882 F .0565 F .8109 F 54.8 53.4
Llama2-Chat7B .5661 F .4373 F .1395 F .7228 F 53.6 51.5
Llama2-Chat13B .9327 F .9185 F .298 F .8809 F 58.2 57.3
Llama2-Chat70B .946 F .6535 F .1786 F .5965 F 59.4 56.3

Llama3-Inst8B .8849 F .9923 F .7068 F .7263 F 58.2 60.2
Llama3-Inst70B .0089 T .0454 T .9355 F .5902 F 46.9 43.7

Mistral7B .2952 F .2511 F .0561 F .9628 F 49.8 49.5
Mixtral8x7B .1081 F .1586 F .0164 T .8135 F 48.1 49.5
Mistral-Inst7B .3453 F .4334 F .0385 T .3124 F 53.6 47.6
Mixtral-Inst8x7B .2714 F .3441 F .1188 F .9809 F 50.6 50.5
Mixtral-Inst8x22B .2538 F .2993 F .7561 F .9246 F 49.0 49.5

Table 10: The first four columns shows significance in the gap of perplexity scores between the anomalies that has
the lowest perplexity of the four incorrect options in each set (A) and the literal instances (L) or the metaphoric
instances (M). A paired samples Wilcoxon test is used (p<0.05). The next two columns show the the statistical
significance between the set of perplexity values of the literal and the metaphoric instances using a Mann-Whitney
U test. This test is used because metaphoric and non-metaphoric analogies are not paired in the SAT. The following
two columns , pvalue Acc. L-M show the result of two independent samples t-tests to show if the accuracy of the
models for non-metaphoric examples is significantly better than its accuracy on metaphoric examples. The last
two columns show the ratios of instances for which the non-metaphoric analogy on the left, and the metaphoric
analogy on the right, have the lowest perplexity of their set in the SAT dataset, according to model family and size
(perplexity setting).
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Figure 5: Boxplots of the Llama3-Inst70B perplexity scores for the three datasets and three classes: literal (Lit),
metaphoric (Met) and anomalous (Ano). Outliers with the highest scores do not appear in the plots.

We want to decide if xi and xj can form a
metaphoric mapping with yiand yj .

Given four words xi, xj , yi and yj :

1. Find the relation between the two elements
of each pair. You can imagine relevant con-
texts in which they can be used. For example,
dancing implies steps that follow a music, and
singing often implies saying words following
a music.

If a word has multiple senses, consider its
meaning in the context of the pair. For ex-
ample, in the following analogy, Abash is to
embarrassment what annoy is to irritation, the
word irritation is polysemic. It it may take the
meaning of an inflammation of the skin or be a
near synonym of annoyance. Here, in the con-
text of the word annoy, its emotional meaning
is the only one to consider. This usage of the
word may be a metaphoric sense, but it should
not influence the label. We are only interested
in the relation between the provided words.

(a) Try to infer the relation between xi and
xj

(b) Try to infer the relation between yi and
yj

The relations should be similar.

2. Consider the relation between the two pairs
pxi, xjq and pyi, yjq.

• Do they belong to the same domain? If
xi and yi or xj and yj are either near
synonyms or antonyms, then it is not
a metaphor. For example, worry is to
panic what happiness is to bliss is not a
metaphor.

• Try to recombine the pairs and form sen-
tences using xi and yj or yi and xj . If
one of the two combinations work, it may
be a metaphor. For example, given invest
money and pour liquid, you can construct
the metaphor pour money.

• Try to talk about xi and xj using yi and
yj and then to talk about yi and yj using
xi and xj . If you cannot think of a nat-
ural sentence, then do not label it as a
metaphor.

3. Label the quadruple :

• 0 : analogy that is not a metaphor
• 2 : analogy that is also a metaphor
• 1 : unsure

E.1 SAT annotations

First annotation round. Three annotators includ-
ing two native speakers and two with a background
in metaphor studies and linguistics labeled the 374
analogies of SAT after an initial training session
and presentation of the guidelines (Appendix E).
The labels were 0 for non-metaphoric, 1 for unsure
and 2 for metaphoric. At the end of this process, in
spite of the training sessions and provided guide-
lines, the pairwise agreement between annotators
was low (Spearman ρ “ 0.17; std“ 0.16).

Second annotation round. In the second anno-
tation round, we included an additional qualified
native speaker and first asked all participants to
place analogies in context. The source of disagree-
ment was mainly due to the difficulty of imagin-
ing a relevant context where the 4-term analogy
could be used to make a meaningful metaphor. The
four participants were asked to create sentences
whenever they thought that a metaphoric sentence
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Model Familly Model Spearman ρ

BERT BERTBASE .37
BERTLARGE .35

RoBERTa RoBERTaBASE .24
RoBERTaLARGE .29

T5 T5SMALL .32
T5BASE .11
T5LARGE .23
T53B -.14
T511B -.05

UL2 UL2 .09

Flan-T5 Flan-T5SMALL .33
Flan-T5BASE .34
Flan-T5LARGE .38
Flan-T5XL .38
Flan-T5XXL .41

Flan-UL2 Flan-UL2 .39

GPT-2 GPT-2 .2
GPT-2MEDIUM .19
GPT-2LARGE .22
GPT-2XL .21

GPT-J GPT-J125M .1
GPT-J2.7B .12
GPT-J6B .21
GPT-J20b .21

GPT-3 GPT-3ada .22
GPT-3babbage .25
GPT-3curie .25
GPT-3davinci .27

OPT OPT125M .29
OPT13B .29
OPT30B .32
OPT66B .3

OPT-IML OPT-IML1.3B .29
OPT-IML30B .3

OPT-IML OPT-IMLM-1.3B .28
(MAX) OPT-IMLM-30B .31

Bloom Bloom175B .19
Bloomz Bloomz175B .27

Llama2 Llama-27b .19
Llama-213B .19
Llama-270B .18

Llama2-Chat Llama2-Chat7B .11
Llama2-Chat13B .17
Llama2-Chat70B .22

Llama3-Inst Llama3-Inst8B .25
Llama3-Inst70B .27

Mistral Mistral7B .17
Mixtral8x7B .18

Mistral-Inst Mistral-Inst7B .17
Mixtral-Inst8x7B .14
Mixtral-Inst8x22B .21

Table 11: Spearman ρ correlation between human rat-
ings of figurativeness and peplexity scores for the in-
stances of the Cardillo dataset, according to model fam-
ily and size (perplexity setting).

Answer [M, L] [L, M] [M, M] [L, L]

Flan-T5XXL 61.2 29.4 9.4 0
Llama2-chat70B 57.1 42.9 0 0
Llama3-Instr.70B 58.7 38.3 3.1 0
Mixtral-Instr.8x7B 71.0 24.6 3.5 0.6
Mixtral-Instr.8x22B 67.3 31.3 1.3 0
GPT-3.5turbo-instr. 78.7 15.8 0.2 0
GPT-3.5turbo 78.1 21.7 0 0
GPT-4 57.9 41.5 0.6 0

Table 12: Imbalance of the models’ answers on the
Cardillo dataset. Experiments are run with all possible
permutations of sentence within each set, with each
correct sequence appearing an equal number of times in
each position.

could be created. For example, given the two pairs
psap, treeq and pblood,mammalq, one can imag-
ine telling a kid who is damaging a tree "Be care-
ful, you are hurting it. Look, it is bleeding". The
sentences were shared among all the participants
and a new labelling task was completed, leading
to a significant pairwise inter-annotator agreement
(Spearman ρ “ 0.48; std“ 0.17).

The final SAT labels were obtained by averaging
the scores of the four participants. We labeled as
non-metaphoric all the quadruples scoring lower
to 1 on average and metaphoric all those scoring
above 1. 32 instances with an average score of
1 were filtered out. Table 4 contains an example
of a metaphoric instance of the SAT dataset after
annotation. In total, 103 instances were labelled as
metaphoric, and 239 as non-metaphoric.

E.2 SAT* perplexity experiments

Table 10 shows a comparison of the models on the
task of solving the analogy questions of SAT in the
perplexity setting. The sentence in each set with
the lowest perplexity is selected as the correct anal-
ogy. Accuracy is shown in two distinct columns
for metaphoric and non-metaphoric analogies.

E.3 Generation experiment prompts

Prompt G2 . The correct answer of the exam-
ple below is 1., it is classified as non-metaphoric
in SAT. Identical modification to the prompt as
the ones described in Appendix section C.1.1 are
applied to Mixtral and Llama3 models.
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Answer [M, L, A] [M, A, L] [A, L, M] [A, M, L] [L, A, M] [L, M, A]

Green Flan-T5XXL 0 0 0.4 7.5 0 0.4
Llama2-chat70B 16.2 6.2 14.6 4.2 24.2 17.9
Llama3-Instr.70B 23.8 39.6 14.6 18.3 0.8 0.8
Mixtral-Instr.8x7B 42.5 35.0 4.6 6.2 0.8 2.1
Mixtral-Instr.8x22B 33.3 19.6 1.7 0.4 12.9 16.2
GPT-3.5turbo-instr. 75.8 17.1 0.4 0.4 1.2 4.6
GPT-3.5turbo 73.3 3.3 7.9 5.0 0.4 8.8
GPT-4 19.6 28.8 21.2 13.8 9.2 7.5

Jankowiak Flan-T5XXL 0.8 0.7 9.7 34.2 1.5 7.4
Llama2-chat70B 8.5 6.4 34.0 22.8 15.3 12.9
Llama3-Instr.70B 19.2 18.6 14.6 16.7 12.1 13.6
Mixtral-Instr.8x7B 20.1 18.5 18.9 16.9 8.1 13.9
Mixtral-Instr.8x22B 27.9 18.5 9.3 8.8 10.4 18.8
GPT-3.5turbo-instr. 46.5 25.6 1.7 3.1 6.7 11.5
GPT-3.5turbo 53.5 9.9 4.7 6.0 4.9 20.3
GPT-4 22.4 21.5 13.5 13.5 13.8 14.0

Table 13: Imbalanced distribution of the sequence of labels in the models’ answers on the Green and Jankowiak
datasets. Experiments are run with all possible permutations of the sentences within each set, with each possible
sequence of labels being the correct answer an equal number of times. Flan-T5XXL label distribution does not sum
to 100 in the table because the model outputs a large proportion of incorrect sequences such as [M,M,M], not shown
here.

Prompt 3: Find the correct analogy
Example: SAT

Answer the question by choosing the correct option.
Which of the following is an analogy?

1. beauty is to aesthete what pleasure is to hedo-
nist

2. beauty is to aesthete what emotion is to dema-
gogue

3. beauty is to aesthete what opinion is to sympa-
thizer

4. beauty is to aesthete what seance is to medium

5. beauty is to aesthete what luxury is to ascetic

The answer is

F Computational and Annotation Time

Computation time. In terms of experiments, we
have run a wide range of models of different sizes
and settings, leading to a high computational cost.
Most of the experiments have been run on a 4 40GB
A100 GPUs.

We estimate the total execution time to be 100
hours overall in this infrastructure, with some ex-
periments for small models having been run on
local GPUs as well.

Annotation time. In order to annotate the SAT
dataset, four annotators that have contributed as
authors of the paper have dedicated an overall 80
hours, which includes the annotation and discus-

sion processes.
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