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Abstract

Selectively processing noisy utterances while
effectively disregarding speech-specific ele-
ments poses no considerable challenge for hu-
mans, as they exhibit remarkable cognitive
abilities to separate semantically significant
content from speech-specific noise (i.e. filled
pauses, disfluencies, and restarts). These abil-
ities may be driven by mechanisms based on
acquired grammatical rules that compose ab-
stract syntactic-semantic structures within utter-
ances. Segments without syntactic and seman-
tic significance are consistently disregarded in
these structures. The structures, in tandem with
lexis, likely underpin language comprehension
and thus facilitate effective communication. In
our study, grounded in linguistically motivated
experiments, we investigate whether large lan-
guage models (LLMs) can effectively perform
analogical speech comprehension tasks. In par-
ticular, we examine the ability of LLMs to ex-
tract well-structured utterances from transcrip-
tions of noisy dialogues. We conduct two eval-
uation experiments in the Polish language sce-
nario, using a dataset presumably unfamiliar
to LLMs to mitigate the risk of data contami-
nation. Our results show that not all extracted
utterances are correctly structured, indicating
that either LLMs do not fully acquire syntactic-
semantic rules or they acquire them but can-
not apply them effectively. We conclude that
the ability of LLMs to comprehend noisy utter-
ances is still relatively superficial compared to
human proficiency in processing them.

1 Introduction

In the field of natural language understanding
(NLU), efforts are directed towards simulating
human language comprehension using language
modelling techniques. A crucial aspect of this pur-
suit involves the development of large language
models (LLMs), which play a pivotal role in nu-
merous natural language processing (NLP) tasks
(Vaswani et al., 2017; Rajpurkar et al., 2016; Yang

et al., 2019), tailored for comprehension, genera-
tion, and manipulation of natural language. NLU
research also aims to identify LLMs’ shortcom-
ings, to reverse-engineer phenomena that LLMs fail
to address. Despite impressive capabilities, LLMs
have not achieved the comprehensive and nuanced
linguistic competency inner to human beings (Mao
et al., 2023) and their further study is necessary.

LLMs undergo training on extensive and varied
datasets, which include textual data, code-based
data, structured datasets, and other data sources.
Textual data exhibits significant diversity, compris-
ing edited texts, content from social media plat-
forms as well as speech transcriptions, such as
parliamentary proceedings or pretended dialogues
within narratives or subtitles. Despite spoken lan-
guage’s dominance in daily communication and the
availability of high-quality transcription tools, it re-
mains unexplored whether processing transcribed
utterances is challenging for LLMs. Motivated by
this observation, we aim to examine whether LLMs
can effectively address challenges akin to those
faced by humans during comprehending utterances.

Speech understanding is a complex cognitive
process that plays a fundamental role in human
communication. The nature of speech comprehen-
sion is multifaceted, influenced by neurological,
cognitive and linguistic factors. This study focuses
on the linguistic dimension. When decoding spo-
ken messages, humans struggle with phonologi-
cal difficulties (Vitevitch and Luce, 1998), includ-
ing phonological similarity and ambiguity among
words, and individual phonemic variations. This as-
pect is irrelevant to the current study, as we solely
investigate the processing of texts (transcriptions).
The comprehension of spoken utterances can be af-
fected by syntactic complexity. Processing complex
sentences may increase a cognitive cost and result
in comprehension difficulties (Friederici, 2002).
The semantic aspects of speech understanding are
thoroughly researched. For instance, Rodd et al.
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(2016) investigated the process of word-sense dis-
ambiguation and its associated challenges.

To comprehend an utterance, separating semanti-
cally significant content from speech-specific noise
is crucial. The ability to filter out noise and se-
lectively compose only the semantically relevant
information is inherent to humans. Since it remains
unexplored whether LLMs can perform this task
effectively, we address this issue through linguisti-
cally motivated evaluation tasks in the Polish lan-
guage scenario. In Section 2, we introduce the
proposed approach with its primary objective to
determine whether LLMs are capable of identify-
ing well-structured utterances in transcriptions of
authentic spontaneous utterances that incorporate
noisy speech-specific segments. In Sections 3 and
4, we outline the experimental setup and discuss
the results of the empirical evaluation. Section 5
provides the contextual backdrop for our research,
while Section 6 concludes our research findings.

2 Proposed approach

Processing spoken data is often more challenging
when contrasted with processing genuine written
texts. Firstly, spoken words may be obscured by
background sounds, resulting in transcription gaps.
Secondly, the application of automated transcrip-
tion and punctuation recovery tools can yield lexi-
cal and punctuation errors in transcriptions. Thirdly,
the written mode tends to be more standardised,
whereas the spoken mode often features informal
and colloquial language. Finally, and most impor-
tantly in the context of this study, speech-specific
elements such as fillers, self-corrections, and false
starts increase the complexity of understanding spo-
ken data compared to written texts.

In the era of robust and advanced LLMs, util-
ising them for processing transcribed spoken data
emerges as a rational choice. Nevertheless, uncer-
tainties arise regarding their ability to identify in-
tended content to be comprehended in possibly
noisy utterances. This study examines whether
LLMs possess the competence to selectively pro-
cess noisy utterances while ignoring non-fluency
features. We investigate the capabilities of LLMs
in (1) extracting well-formed sentences determined
by abstract syntactic-semantic structures (see Sec-
tion 2.1) from noisy utterances; (2) disregarding
speech-specific elements (see Section 2.2) that do
not contribute to utterance understanding.

To ascertain the ability of LLMs to disregard

speech-specific elements and to recognise well-
formed sentences within noisy utterances, we em-
ploy the prompting methodology (see Section 2.3).
Based on predefined prompts, LLMs are instructed
to identify and subsequently output all tokens com-
posing well-structured utterances. LLMs’ perfor-
mance in extracting refined utterances and filtering
non-fluency features is evaluated against a gold-
standard dataset (see Section 2.4).

2.1 Abstract syntactic-semantic structure
Each sentence serves an intentional function and
conveys meaning. The principles governing sen-
tence construction, specifically those encompassing
syntactic and semantic aspects, are inherently com-
positional. Syntax, responsible for allowed compo-
sitions, operates in tandem with semantics, i.e. the
composition of well-formed expressions is contin-
gent upon syntactic rules intrinsically linked with
semantic rules. Syntactic rules, founded on word or-
der, agreement, and government principles, dictate
the permissible compositions of words, phrases,
and clauses. Semantic rules, in turn, determine how
the meaning of these composed expressions is de-
rived from the meanings of their components (Par-
tee, 1984, 2004; Jacobson, 2014). In language ac-
quisition, humans internalise these rules and, draw-
ing on their linguistic competence, are able to pro-
duce and process inherently structured sentences.
The question of whether humans derive separate
syntactic and semantic structures or a single uni-
fied compositional structure remains challenging to
answer due to the lack of direct access to cognition
mechanisms. As a compromise solution, we refer
to this structure as the abstract syntactic-semantic
structure (AS).

The process of composing inner ASs is a funda-
mental feature of human language comprehension.
When reading or hearing sentences, humans parse
them in line with their linguistic competence, sub-
consciously constructing ASs of these sentences.
The ASs function as links or interfaces for decoding
sentences to their intended meanings, i.e. enabling
their understanding. While processing speech, hu-
mans encounter an additional challenge, namely the
necessity to selectively disregard speech-specific
elements (see Section 2.2). Composing these ele-
ments with semantically relevant content violates
syntactic and/or semantic rules. Only segments re-
sulting from an inner filtering process are permitted
to compose a coherent and cohesive AS – the foun-
dation for comprehending language.
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Figure 1: The original utterance transcription is depicted in the upper UD tree. The bottom UD tree, obtained via
filtering speech-specific elements from the upper tree, serves as an approximation of the abstract syntactic-semantic
structure of the well-formed sentence "to ja pani podam maila, a pani mi prześle szczegóły" (Eng. I will give you my
e-mail address and you will send me the details).

The exact form of the AS established through
cognitive parsing (Ding et al., 2016) remains in-
determinate. Various proposals have emerged re-
garding its potential representations to facilitate
linguistic research and support NLP. One widely
adopted framework is Universal Dependencies
(UD, de Marneffe et al., 2021), which primarily
focuses on syntactic relations but also includes
semantics facets, such as the distinction between
functional and content words, thematic role ex-
tensions, and named entities. UD trees also cover
speech-specific phenomena. Thereupon, we anchor
our research within this framework and use UD
trees to approximate ASs.

2.2 Examined speech-specific phenomena

Conversations involve at least two speakers and
are structured into alternating turns. A turn that
is a continuous utterance of a speaker serves as
a primary unit for linguistic analysis. Apart from
an intended content, utterances may also include
interruptions or extra elements commonly found in
spoken language: non-linguistic tokens, disfluen-
cies, and restarts.

2.2.1 Non-linguistic tokens

Non-linguistic tokens are segments distinctive to
spoken language, i.e. silent and non-silent pauses
(fillers). Both types of pauses occur when the
speaker momentarily suspends their speech produc-
tion. Intervals of silence can be transcribed as ‘...’
and inarticulate sounds can be denoted as ‘(yy)’ in
transcripts. Pauses are annotated with the discourse
UD dependency type (see Figure 1).

2.2.2 Disfluencies
Disfluencies are interruptions or irregularities that
disrupt the smoothness of speech and serve as in-
dicators of uncertainty and hesitation, or the need
to clarify or amend a statement. Disfluencies are
commonly rectified through speech corrections. In-
stances of disfluency cases include (1) repetitions,
e.g. ‘two, ei... eight, one, five’, (2) substitutions,
e.g. ‘I received... we received a message’, (3) refor-
mulations, e.g. ‘We lost eight... seventy pounds’.
Disfluencies are annotated as dependents of their
corrections and are labelled with the reparandum
dependency type.

2.2.3 Restarts
Restarts refer to clauses or phrases that lack syn-
tactic connections to the antecedent string of to-
kens. These phenomena occur when a speaker aban-
dons the ongoing utterance and initiates a new one,
e.g. ‘cause I don’t have a..., I don’t remember the
password’ (the underlined string should be ignored
while composing the utterance meaning). Restarts
are annotated with the parataxis:restart UD type.

2.3 Prompt-driven cognisance of
well-structured utterances

The prompting technique consists in explicitly in-
structing LLMs to solve specific NLP tasks (Rad-
ford et al., 2019). Given a predefined prompt,
LLMs are directed to generate or analyse texts ac-
cording to the verbal instructions included in this
prompt. The prompting technique is valuable in
tailoring LLMs to specific NLP tasks and attaining
a degree of control over their responses.

In this approach, we prompt LLMs to extract
well-structured utterances while filtering speech-
specific elements. Despite the remarkable zero-
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shot capabilities of LLMs, we apply the few-shot
paradigm (Brown et al., 2020) that involves provid-
ing input-output examples. The pairs of noisy input
utterances and well-structured output utterances
guide LLMs towards better performance.

The prompt-driven process of recognising well-
formed sentences within noisy utterances is illus-
trated in Figure 1. In the input utterance (i.e. tokens
of the upper UD tree), LLM seeks to identify noisy
substrings: the discourse fillers ‘...’ and ‘(yy)’, the
reparandum subtree ‘to...’, as well as the false start
‘To niech pani...’. Fillers and repetition strings rep-
resent conventional forms of noise that LLM should
easily detect. However, identifying substitutions,
reformulations, and false starts poses non-trivial
challenges, requiring deeper analysis of input ut-
terances. After filtering out non-fluency features,
LLM should output tokens that compose a gram-
matically coherent utterance, in line with its inher-
ent syntactic-semantic rules acquired during train-
ing. LLM does not see UD trees of input utterances
nor is it required to produce AS approximations
(i.e. UD trees or other human-conceptualised lin-
guistic representations). Instead, LLM is expected
to internalise ASs, akin to human language process-
ing, and employ rules used to build them to identify
tokens of well-formed sentences. Since predicting
ASs is not a prerequisite for comprehending sen-
tences, LLM is not instructed to do this.

2.4 Definition of evaluation tasks

Probing is a valuable methodology for uncover-
ing abilities and limitations of NLP models, while
solving specialised tasks (Conneau et al., 2018). It
contributes to the interpretation of the information
embedded in their internal representations.

The proposed probing tasks are designed to as-
sess the linguistic competency of LLMs in recog-
nising speech-specific noise and extracting well-
structured and coherent utterances. Our objec-
tive is to gain a deeper understanding of whether
LLMs have learned to distinguish semantically
relevant content from speech-specific noise dur-
ing training on extensive textual data. In all tasks,
we benchmark LLMs’ output against the gold-
standard dataset, wherein tokens of well-structured
utterances are annotated as positive instances and
speech-specific tokens are negative instances.

2.4.1 Well-structure-task
It tests whether all tokens of well-structured utter-
ances are preserved in utterances output by LLMs.

In particular, we test whether extracted tokens
indeed constitute well-formed and coherent sen-
tences, as determined by UD approximations.
Example: In Figure 1,1 the well-structured utter-
ance (the bottom tree) adheres to the predicate-
argument structure of the predicate ‘podam’ (Eng.
I will give).

2.4.2 Discourse, reparandum, and restart
These tasks test whether all tokens of a particular
speech-specific type are correctly removed from
utterances output by LLMs. The additional goal of
these tasks is to identify which speech-specific phe-
nomenon poses the greatest challenge for LLMs.
Discourse-task The idea of this task is to check
whether LLM recognises non-linguistic tokens (i.e.
pauses and inarticulate sounds) and correctly filters
them out from final utterances.
Example: In Figure 1, there are three discourse
subtrees marked with (brown boxes) that should
not appear in the final utterance.
Reparandum-task This task investigates whether
LLM recognises disfluencies (i.e. repetitions, sub-
stitutions, and reformulations) and correctly re-
moves them.
Example: There is one reparandum token marked
with (a blue box). This token together with its
dependent discourse token (i.e. the string ‘to...’)
should be excluded from the ultimate utterance.
Restart-task This task tests whether LLM
recognises all tokens of false start subtrees.
Example: There is one token with the
parataxis:restart label. Its head-subtree marked
with (a green box) represents the false start
‘To niech pani...’ that should not be in the final
utterance.

3 Experimental setup

3.1 Tested models
In this study, we examine various LLMs with the
transformer architecture (Vaswani et al., 2017).
First, we probe two powerful iterations of the
Generative Pre-trained Transformer (Brown et al.,
2020): GPT-3.5 and GPT-4, which are pre-trained
to predict the next token in a document. GPT-
3.5 is notable for its outstanding performance in
NLU tasks. GPT-4 (OpenAI, 2023), in turn, is a
multi-modal model that exhibits human-level per-
formance on various benchmarks. Furthermore,

1All probing tasks are illustrated based on the example
provided in Figure 1.
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we evaluate publicly available LLMs, specifically
Llama 2 (Touvron et al., 2023) and Mistral 7B
(Jiang et al., 2023). Lastly, we examine Bielik
(Ociepa et al., 2024), the recently released Polish
LLM, which is derived from Mistral 7B.

Interacting via API, we prompt LLMs to extract
tokens of well-structured utterances from noisy in-
put utterances. As we aim for maximal determinism
in LLMs’ output, the temperature and the inference
parameter n are set to 0 and 1, respectively.

3.2 Probing dataset
DiaBiz (Pęzik et al., 2022) is a large, annotated,
multi-modal dataset comprising recorded and tran-
scribed phone conversations in Polish. Its subset
of 101 dialogues (3421 turns and 82,806 tokens)
was manually annotated following the UD guide-
lines (de Marneffe et al., 2021). Each turn has
an assigned conventional UD structure. If a turn
comprises multiple sentences, their UD trees are
interlinked using the parataxis label. In addition
to the standard UD dependency types, the utter-
ance trees contain the discourse, reparandum and
parataxis:restart types.

We use the UD-annotated DiaBiz subset to con-
struct a probing dataset. The new dataset is struc-
tured in a JSON format (see Appendix A), where
each turn token is assigned the status value, either
True (indicating its presence in a well-structured
utterance) or False (denoting a speech-specific to-
ken unsuitable for inclusion in LLM’s output). The
dataset comprises 75,107 True-tokens, resulting
in an average of 21.95 tokens per well-structured
utterance. The remaining 7699 False-tokens build
subtrees of 5577 speech-specific phenomena (see
the labels-column in Table 3). These subtree to-
kens are slated for removal. Hence, in the context
of discourse, LLMs are tasked with eliminating
almost only speech-specific discourse tokens. For
each reparandum, LLMs are expected to remove
an average of two tokens, and for each restart, they
should identify and filter out an average of 8 tokens.

The discourse dependencies typically align with
individual tokens, whereas reparandum and the
heads of parataxis:restart allow for the removal
of other nested speech-specific dependencies. For
example, the second discourse token belongs to
the reparandum subtree (see the bottom UD tree
in Figure 1). In the JSON structure, each token of
a speech-specific subtree is annotated either as True
(indicating its removal in a particular probing task)
or False (indicating its preservation in a probing

task). A single token may be annotated as True in
the context of multiple speech phenomena.

3.3 Prompt engineering

Various factors are considered to engineer prompts
that effectively guide LLM in extracting well-
formed sentences from noisy utterances. First, we
check whether providing an illustrative explana-
tion of speech phenomena or incorporating explicit
input-output examples (few-shot) in prompts en-
hances informativeness, finding the latter approach
more beneficial. Second, regarding input and out-
put formats, we note that only GPT-4 can reliably
process JSON structures. As GPT-3.5 and other
LLMs often generate incorrect JSON, they should
be instructed to use strings for both input and out-
put. Third, regarding the prompt language, i.e. En-
glish vs. Polish, we test different scenarios for the
Polish Bielik LLM and observe that the instruction
language has negligible impact on the resulting
answer. We draft diverse prompts and empirically
test LLMs with these prompts on a small set of 50
turns.

The final prompts (see Appendix B) are de-
signed to be universally applicable across all LLMs
rather than tailored to a specific LLM. They in-
struct LLMs to remove speech-specific disruptions
and output acceptable utterances (i.e. well-formed
phrases, sentences or sequences thereof). In addi-
tion to task-specific instructions, the prompts in-
clude a repertoire of speech-specific phenomena to
be addressed and details regarding input and output
formats, illustrated by examples.

4 Results

4.1 First experiment

To assess LLMs’ ability to extract well-structured
utterances from noisy transcriptions, their out-
comes are compared to gold standard utterances
from the probing dataset. The extraction quality
is measured using accuracy, precision, recall, F1-
measure, and true negative rate (TNR), see Table 1.

The results confirm the superior performance
of GPTs compared to open LLMs, particularly in
recall (or sensitivity) values. GPT-4 and GPT-3.5
show high efficiency in extracting complete struc-
tures, with recall rates of 97% and 94%, respec-
tively. In contrast, Bielik demonstrates significantly
lower recall values of 74-75%, and Mistral and
Llama perform even worse, yielding structures that
are only approximately 50% complete.
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LLM accuracy precision recall F1 TNR CPT

Llama 0.50 0.95 0.47 0.63 0.78 73.4
Mistral 0.56 0.98 0.52 0.68 0.91 70.1

GPT-3.5 0.92 0.97 0.94 0.95 0.69 91.9
GPT-4 0.94 0.97 0.97 0.97 0.69 93.5

Bielik 0.74 0.95 0.75 0.84 0.63 78.1
BielikPL 0.73 0.96 0.74 0.83 0.69 75.7

Table 1: Evaluation of LLMs’ performance in extract-
ing well-structured utterances from noisy transcriptions.
The subscript PL denotes prompts formulated in Polish.
CPT indicates the ratio of characters per turn.

To examine the disparity in recall values more
closely, we conduct a comparative analysis of the
number of extracted characters per turn.2 GPT-4,
achieving the highest recall value, retrieves an av-
erage of 93.5 characters per turn (see the last col-
umn in Table 1). Open LLMs, in turn, demonstrate
lower recall values and lower character-per-turn
ratios. Calculating a correlation between character
counts and recall value reveals strong coefficients:
Pearson’s at 0.93 and Spearman’s at 0.95. Further-
more, GPT-4’s ratio of 93.5 characters per turn on
average is remarkably closer to the gold standard
ratio of 93.4. These nearly identical ratios suggest
that GPT-4’s extractions are relatively complete,
resulting in the higher recall value.

High and comparable precision scores among
LLMs indicate accurate extraction of positive in-
stances, i.e. tokens associated with ASs. We fur-
ther investigate LLM outputs for the correctness
and completeness of their predicate-argument struc-
tures, evaluating missing dependency types and
analysing their significance. Table 2 provides a sta-
tistical summary of missing dependency types, av-
eraged across the UD dependency type categories:
core arguments, non-core dependents, nominal de-
pendents, function words, and other dependents.

The most serious errors stem from the absence
of core arguments, which are vital for the coher-
ence of predicate-argument structures. In Bielik’s
extracted utterances, over a quarter of core argu-
ments are absent, signifying serious deficiencies
in their ASs. Similarly, Mistral’s and Llama’s out-
puts frequently miss multiple core arguments. GPT-
4’s outputs, in turn, omit only 1.4% of core argu-
ments, followed by GPT-3.5 with 3%, denoting that
most GPT-extracted utterances are well-structured

2Possible automatic tokenisation errors make token com-
parison unreliable. Therefore, we opt to count characters per
turn to mitigate this risk.

and coherent, albeit not all of them. Non-core de-
pendents, with an average absence of 9-10% for
GPTs, 23-29% for Bielik, 53-60% for Mistral and
Llama, along with nominal dependents and func-
tion words, exhibiting an average omission of 23-
27% for Bielik, 40-60% for Mistral and Llama,
also contribute to the grammatical disruption of
the extracted utterances. Last but not least, the ab-
sence of predicates poses a significant deficiency,
particularly evident in GPT-3.5 and open LLMs,
where 8% and 22-35% tokens annotated as roots
(within Other dependents) are incorrectly filtered
out. This highlights a serious problem of missing
crucial constituents, which concurrently impacts
the overall quality of extracted utterances.

The vast majority of tokens in the input data,
specifically 90.7%, constitute well-structured utter-
ances. This simplifies the task for the tested mod-
els and may mask their limitations in accurately
identifying speech-specific elements that should be
classified as negative instances. For a precise eval-
uation of rejected tokens, i.e. those which LLMs
consider to be speech-inherent elements, we cal-
culate true negative rates (TNR). The TNR scores,
indicating the quality of detected speech-specific
segments, are lower in comparison to the accuracy
scores of extracting well-structured utterances by
Bielik and GPTs. The TNR scores for these three
models stand at 63-69%, while the average accu-
racy score is 73.5% for Bielik and even 93% for
GPTs. This suggests that GPTs and Bielik incor-
porate many infrequent speech-specific tokens into
the ultimate utterances. Llama and Mistral, in turn,
show significantly higher TNR scores, with Mis-
tral achieving 91%, indicating effective in-depth
control over speech-specific noise.

The final issue concerns out-of-vocabulary
(OOV) words, which are not part of input utter-
ances and ideally should not appear in LLMs’ out-
put. LLMs are prompted to filter words rather than
generate new ones or modify existing ones. Follow-
ing the prompt instructions is a major challenge
for Llama and Mistral that incorrectly generate
18K and 13K OOV words, respectively. Bielik is
more accurate in following instructions, as it out-
puts 3.6K OOV words in the experiment with the
English prompt and 2.6K OOV words with the Pol-
ish prompt. Both GPTs output a small number of
OOV words: GPT-3.5 generates 467 OOV words,
whereas GPT-4 produces 188 (see Appendix C for
a detailed analysis of OOV words).
The OOV words are currently not categorised as
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Dependency category Llama Mistral GPT-3.5 GPT-4 Bielik BielikPL
avg. ratio avg. ratio avg. ratio avg. ratio avg. ratio avg. ratio

Core arguments ccomp, iobj, nsubj, obj, xcomp
925.5 59.50 793.33 45.10 65.00 2.99 33.60 1.44 433.17 27.52 441.67 26.46

Non-core dependents advcl, advmod, discourse:interj, expl, obl, vocative
1548.50 55.99 1591.17 53.02 208.33 9.96 136.50 8.87 729.33 23.51 728.83 29.15

Nominal dependents acl, amod, appos, nmod, nummod
555.00 50.17 452.20 39.45 29.80 3.11 8.60 0.56 272.40 23.74 255.60 22.95

Function words aux, case, cop, det, mark
1446.60 57.49 1442.60 59.42 104.00 4.31 44.20 1.97 664.00 26.65 627.80 24.92

Other dependents cc, conj, dep, fixed, flat, list, orphan, parataxis, punct, root
1522.60 55.41 1199.60 50.97 227.50 10.75 162.38 4.45 825.00 24.26 927.89 26.10

Table 2: Evaluation of dependency category instances missing in LLMs’ outputs compared to gold-standard trees of
well-structured utterances. avg. – the average number of missing instances within a dependency type class; ratio –
the percentage of missing instances relative to gold standard.

Type gold-standard Llama Mistral GPT-3.5 GPT-4 Bielik BielikPL
labels single [# (%)] tokens tokens ratio tokens ratio tokens ratio tokens ratio tokens ratio tokens ratio

discourse 3720 3780 (4.6) 3791 3125 82.4 3769 99.4 3203 84.5 3420 90.2 2859 75.4 2961 78.1
reparandum 1719 3880 (4.7) 3926 2966 75.5 3511 89.4 2531 64.5 2346 59.8 2198 56.0 2489 63.4
restart 138 1096 (1.3) 1109 728 65.6 896 80.8 330 29.8 362 32.6 481 43.4 580 52.3

Table 3: LLM performance in filtering speech-specific tokens from transcriptions. Explanation: labels – the number
of speech-specific instances; single – single speech-specific tokens outside well-formed utterances; tokens – the
number of tokens filtered or to be filtered by LLMs; ratio – the percentage of tokens correctly filtered by LLMs.

false positives because they could be considered
favourable improvements in other NLP tasks.

4.2 Second experiment

To gauge the speech-specific phenomenon posing
the greatest challenge for LLMs, we compare their
outputs against the probing dataset. We measure the
percentage of filtered-out tokens associated with
a particular speech-specific phenomenon, within
the set of all tokens responsible for encoding this
phenomenon in the probing dataset (see Table 3).

The results confirm the noticeable superiority of
Mistral in effectively filtering discourse, reparan-
dum and restart segments, compared to all other
LLMs. The discourse phenomenon is relatively
easy to identify for all LLMs except Bielik, as indi-
cated by the ratio of 99% for Mistral, 84-90% for
GPTs, 82% for Llama and only 75-78% for Bielik.
Among phenomena that all LLMs except Mistral
struggle to filter, the second most challenging one
is reparandum. The most effective LLM – Mistral –
removes almost 90% reparandum segments. Llama
excludes about 75% reparandum instances, while
GPTs and Bielik filter out just over half of the
tokens constituting repetitions, substitutions and
reformulations.

As evidenced by the low restart values, such
as 30% for GPTs, 40-50% for Bielik and 66%

for Llama, LLMs struggle to recognise the restart
phenomenon. This suggests that LLMs face dif-
ficulty in identifying unfinished statements (false
starts) which are intended to be replaced by restarts.
Instead, most of these unfinished statements are
treated by LLMs as syntactically or semantically
sound parts of utterances. False starts that should
be filtered out may be realised as proper clauses
that are acceptable in other contexts. Their subtrees
are typically extensive, averaging around 8 nodes
(an 8-token clause can constitute a well-formed
sentence in Polish). The absence of graphic or to-
pographic clues makes it challenging to identify
restarts as semantically irrelevant within the cur-
rently investigated contexts. Nevertheless, recog-
nising and filtering out entire false start subtrees
is imperative for constructing well-structured and
coherent utterances and only Mistral achieves high
efficiency in accomplishing this removal task.

4.3 Empirical observations

The results of the first experiment might suggest
that LLMs, especially GPTs, excel at detecting
speech-specific noise and extracting sentences that
adhere to ASs. However, a closer examination of
speech-related phenomena, which should not be in-
corporated into output utterances according to the
proposed evaluation approach, reveals that Bielik
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and GPTs commit errors in filtering out noise. The
most challenging phenomenon is restart. Compar-
atively less challenging, though still error-prone,
are repetitions, substitutions, and reformulations
(i.e. reparandum). The process of filtering non-
linguistic elements labelled with the discourse type
poses no challenge for tested LLMs. Conversely,
Mistral demonstrates remarkable efficacy in filter-
ing speech-specific segments. However, its filter-
ing tends to be overly aggressive, excluding not
only speech noise but also elements of predicate-
argument structure (e.g. about 50% arguments). As
a consequence, output utterances are incorrectly
structured and lack coherence.

In summary, GPTs prioritise precision and care-
ful error avoidance, resulting in residual speech
noise, while Mistral’s aggressive filtering strategy
leads to serious grammatical errors. Regardless of
the approach, the errors produced by LLMs reveal
their defective language competence. The acquisi-
tion of deep syntactic and semantic rules remains
an open issue, requiring careful consideration in
LLM development.

5 Related works

Probing state-of-the-art LMs for their syntactic and
semantic knowledge is a widely adopted diagnostic
approach. Numerous studies have attempted to ex-
amine LMs using controlled test sets. Some studies
focus on designing probing tests to directly inspect
the model’s internal structure and identify its re-
gions correlated with linguistic information (Shi
et al., 2016; Tenney et al., 2019b; Peters et al., 2018;
Jawahar et al., 2019; Tenney et al., 2019a; Lin et al.,
2019). For instance, Tenney et al. (2019a) demon-
strate that BERT can effectively execute multiple
stages of an NLP pipeline, including POS tagging,
parsing, named entity recognition, semantic role
labelling, and coreference resolution. They localise
BERT’s regions where linguistic information is em-
bedded and which are responsible for each task.

Parallel investigations endeavour to probe mod-
els to measure their proficiency and limitations in
representing language, with a particular focus on
syntactic and semantic knowledge (Conneau et al.,
2018; Marvin and Linzen, 2018; Poliak et al., 2018;
Hewitt and Manning, 2019; Weissweiler et al.,
2022). For example, Weissweiler et al. (2022) dis-
cover that LMs can classify sentences as instances
of a particular linguistic construction, but they can-
not extract the conveyed meaning and effectively

employ it within a given context. Our research
aligns with the latter line of work, focusing on
LLM’s linguistic competence.

Since our research partially explores speech un-
derstanding, we mention recent studies focusing
on probing speech models for syntax. Shah et al.
(2021) probe them to discern their ability to en-
code linguistic information, including the depth of
syntax trees. Similarly, Shen et al. (2023) conduct
probing tests on speech models to identify the loci
where syntactic structures are embedded.

Speech processing typically involves two main
stages – automatic speech recognition (ASR) and
NLU, with an intermediate step often dedicated
to detecting and possibly removing disfluencies
(Chen et al., 2022; Wagner et al., 2024). Lou and
Johnson (2020) aim at developing joint models
that integrate ASR with disfluency removal. This
approach results in refined transcripts, which stan-
dard NLP and NLU tools can subsequently process.
In our evaluation approach, we test the capability
of LLMs to detect and filter out noise. However,
our goal is not to employ LLMs as noise detectors;
rather, we seek to determine whether LLMs can pri-
oritise the meaningful parts of utterances (i.e. well-
structured sentences) while ignoring noise during
processing noisy utterances.

6 Conclusions

In this study, we have introduced an approach
aimed at evaluating the capabilities of LLMs within
the realm of processing transcribed noisy utter-
ances in Polish. Our primary focus is to ascertain
whether LLMs possess adequate linguistic compe-
tence to detect well-structured sentences in noisy
utterances.

To conduct this research, we leverage the prompt-
ing technique, in which the currently most power-
ful GPTs, two open LLMs (Llama and Mistral)
and a Polish LLM (Bielik) are tasked with iden-
tifying speech-inherent noise and extracting well-
structured utterances. The models’ outcomes are
rigorously evaluated using the probing dataset de-
rived from the UD-annotated subset of DiaBiz.

Recognising speech-specific phenomena, espe-
cially false starts, presents a challenge for the tested
LLMs. Mistral appears proficient in filtering out
false starts and other speech-specific noise. This
proficiency, however, does not stem from its lan-
guage comprehension ability; rather, it arises from
its strategy for aggressive filtering, wherein it elim-
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inates not only noise but also required components
of predicate-argument structures, resulting in gram-
matical errors. GPTs generally exclude fewer re-
quired arguments and semantically crucial modi-
fiers but erroneously retain many speech-specific
segments.

Numerous studies confirm that transformer-
based LMs acquire individual syntactic and seman-
tic rules and can perform syntactic- and semantic-
based NLP tasks. Our experimental results also
indicate that LLMs possess linguistic competence.
However, this competence may be superficial or
insufficient, as LLMs struggle to identify complete
and coherent sentences in noisy utterances. This
superficial competence prevents the full internal-
isation of ASs underlying human language com-
prehension. Deeper syntactic-semantic understand-
ing is necessary for handling restarts and other
speech noise to enable seamless conversation of
LLMs (or large multimodal models) with humans.
Alternatively, LLMs may be unable to apply all
syntactic-semantic rules they have acquired, result-
ing in limited performance. In this case, psycholin-
guistic factors, such as shallow heuristics mixed
with syntactic algorithms (Ferreira, 2003) or ratio-
nal statistical inference (Gibson et al., 2013), could
impact the behaviour of LLMs, as suggested by an
anonymous reviewer. The application of psycholin-
guistic research methods may be highly valuable
for the future evaluation of LLMs.

We anticipate that our novel evaluation approach
will inspire further research into selective language
processing. Considering that ASR outcomes used
in voice assistants and other speech-based systems
require additional text processing, and texts are pre-
dominantly processed with LLMs, LLMs should
handle both written texts and spontaneous speech
transcriptions. This ability is crucial for enabling
human-like dialogue with machines. Moreover, by
integrating speech and text understanding, our ap-
proach lays the groundwork for evaluating LLMs
and potentially large multimodal models.

7 Limitations

Given the specific demands of our experimental
setup, which entail the availability of datasets with
annotated speech-specific elements, we have de-
liberately chosen to focus on a single, albeit less
widely studied language, compared to pervasive
English-only research. We use Polish for several
reasons. First, the DiaBiz dataset is relatively new

and likely unfamiliar to LLMs, and thus the possi-
bility of data contamination is eliminated. Second,
the utterances are transcribed with high precision,
including all non-linguistic and speech-specific el-
ements. Third, this choice poses an additional chal-
lenge for LLMs, requiring them to process a non-
dominant language and a non-dominant text do-
main (i.e. training data for LLMs, except Bielik, al-
legedly encompass only a limited amount of Polish
speech transcriptions). Building upon the preceding
point, certain conclusions can also be drawn regard-
ing LLMs’ competence in cross-linguistically cap-
turing universal linguistic properties, particularly
those related to grammatical relations. Despite the
evident constraint in language scope and general-
isation, we hope this research will be positively
received by the NLP community, creating opportu-
nities for broader research in the future.

Our study follows the direction proposed by Con-
neau et al. (2018) to examine LLMs’ capabilities
and limitations. Therefore, our analyses have obvi-
ous limitations, as we do not inspect LLM’s inter-
nal architectures to identify specific regions related
to distinct linguistic features. We thus lack insight
into LLMs’ layers where speech-specific elements
are recognised and syntactic-semantic structures
are internalised. We plan to address this limitation
in future research on open LLMs.
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A Appendix

An excerpt of the JSON structure used in the prob-
ing dataset.

"1": {
"token": "To",
"status": false,
"speech_type": {

"discourse": false,
"reparandum": false,
"restart": true},

"dep_type": "advmod:emph"},
"2": {

"token": "niech",
"status": false,
"speech_type": {

"discourse": false,
"reparandum": false,
"restart": true},

"dep_type": "aux:imp"},
"3": {

"token": "pani",
"status": false,
"speech_type": {

"discourse": false,
"reparandum": false,
"restart": true},

"dep_type": "root"},
"4": {

"token": "...",
"status": false,
"speech_type": {

"discourse": true,
"reparandum": false,
"restart": true},

"dep_type": "discourse"},
"5": {

"token": "to",
"status": false,
"speech_type": {

"discourse": false,
"reparandum": true,
"restart": false},

"dep_type": "reparandum"},
"6": {

"token": "...",
"status": false,
"speech_type": {

"discourse": true,
"reparandum": true,
"restart": false},

"dep_type": "discourse"},
"7": {

"token": "to",
"status": true,
"speech_type": null,
"dep_type": "advmod:emph"},

"8": {
"token": "ja",
"status": true,
"speech_type": null,
"dep_type": "nsubj"},

9": {
"token": "pani",
"status": true,
"speech_type": null,
"dep_type": "iobj"},

"10": {
"token": "podam",
"status": true,
"speech_type": null,
"dep_type": "parataxis:restart"},

"11": {
"token": "maila",
"status": true,
"speech_type": null,
"dep_type": "obj"},

"12": {
"token": ",",
"status": true,
"speech_type": null,
"dep_type": "punct"},

"13": {
"token": "(yy)",
"status": false,
"speech_type": {

"discourse": true,
"reparandum": false,
"restart": false},

"dep_type": "discourse"},
"14": {

"token": "a",
"status": true,
"speech_type": null,
"dep_type": "cc"

},
"15": {

"token": "pani",
"status": true,
"speech_type": null,
"dep_type": "nsubj"

},
"16": {

"token": "mi",
"status": true,
"speech_type": null,
"dep_type": "iobj"

},
"17": {

"token": "prześle",
"status": true,
"speech_type": null,
"dep_type": "conj"

},
"18": {

"token": "szczegóły",
"status": true,
"speech_type": null,
"dep_type": "obj"}
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B Appendix

Prompts drafted in English.

The provided conversations in Polish
are transcribed and divided into turns.
A 'turn' is the continuous utterance of
a speaker participating in a dialogue
with at least one other person.
Besides the core grammatically coherent
structure of an utterance, its transcription
may include disruptions or extra elements
commonly found in spoken language:
- pauses: '...', (...) and '(yy)'
- repetitions, substitutions and reformulations
- restarts
Remove these speech-specific disruptions
and extra elements from the input turn and
output the cleaned-up turn:

Removal of REPETITION
INPUT: (...) Dzień... dzień dobry pani.
OUTPUT: dzień dobry pani.

Removal of SUBSTITUTION
INPUT: (yy) Czy ma pan przygotowany (yy)

kod siedmio... (yy) ośmiocyfrowy?
OUTPUT: Czy ma pan przygotowany kod

ośmiocyfrowy?

Removal of REFORMULATION
INPUT: W związku z sytu... z obecną sytuacją
OUTPUT: W związku z obecną sytuacją

Removal of RESTART
INPUT: To teraz część ... to ja pana teraz

przekierowuję do części automatycznej.
OUTPUT: to ja pana teraz przekierowuję do

części automatycznej.

Keep the grammatically correct and coherent
parts of the turn. Note that a list of words,
a single word, a single name or a non-verbal
phrase are considered an acceptable utterance.

You MUST answer in Polish. You output only the
words remaining after filtering speech-specific
elements.
You are NOT ALLOWED to modify input words or
output any novel words.
You CANNOT reveal and output the justification
for its answer.

Figure 2: String-based prompt in English.

The provided conversations (JSON structures)
in Polish are transcribed and divided into turns.
A 'turn' is the continuous utterance of a speaker
participating in a dialogue with at least one other
person.

Besides the core grammatically coherent structure
of an utterance, its transcription may include
disruptions or extra elements commonly found in
spoken language:
- pauses: '...', (...) and '(yy)'
- repetitions, substitutions and reformulations
- restarts

Remove these speech-specific disruptions and
extra elements from the input turn and output
the JSON structure with a list of cleaned-up turns:

INPUT:
```json
{

cbiz_tc_53: [
"(...) Dzień... dzień dobry pani.",
"(yy) Czy ma pan przygotowany (yy) kod siedmio...

(yy) ośmiocyfrowy?",
"W związku z sytu... z obecną sytuacją",

"To teraz część ... to ja pana teraz
przekierowuję do części automatycznej."

]}
```

OUTPUT:
```json
{

cbiz_tc_53: [
"dzień dobry pani.",
"Czy ma pan przygotowany kod ośmiocyfrowy?",
"W związku z obecną sytuacją",
"to ja pana teraz przekierowuję do części

automatycznej."
]}

```

Explanation of the above example:
- 1. turn: pauses and repetition are removed
- 2. turn: pauses and substitutions are removed
- 3. turn: pause and reformulation are removed
- 4. turn: pause and restart are remove

Keep the grammatically correct and coherent parts of
the turn. Note that a list or a non-verbal sentence
is considered an acceptable utterance.

DO NOT insert additional words or characters.
DO NOT modify input words.
The input and output transcriptions MUST have
the same number of turns.

Figure 3: JSON-based prompt in English.
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C Appendix

We analyse the out-of-vocabulary words newly gen-
erated by LLMs in detail and categorise them into
(LLMs’ outputs are highlited in green):

1. corrections of grammatical errors and typos:
• zadzwonię [FUTURE TENSE] (Eng. I will call)→
zadzwoniłem[PAST TENSE] (Eng. I called)
• płatności [SINGULAR NUMBER] (Eng. payments)
→ płatność[PLURAL NUMBER] (Eng. a payment)

2. completions of elided words:
• dwóch roboczych (Eng. lit. two working)
→ dwóch dni roboczych (Eng. two working
days)

3. questionable morphological modifications:
• aspect change: nastawiałabym
się [IMPERFECTIVE] (Eng. I would set my-
self up)→ nastwiłabym się[PERFECTIVE]

• gender change: zajęłam [FEMININE] (Eng. I
occupied)→ zająłem[MASCULINE]

4. completing false starts instead of removal:
• Rozumiem, że... (yy) jeszcze raz jakbym...
Przepraszam, jakby mogła pani jeszcze
powtórzyć (Eng. I understand that...
(yy) again I’m like... I’m sorry,
could you repeat once again) →
Rozumiem, że [chodzi o płatność kartą].
Przepraszam, jakby mogła pani jeszcze
powtórzyć.

5. Adding English translations instead of or
with Polish output:
• (yy) Tak, potwierdzam. (Eng. (yy) Yes, I con-
firm.)→ Tak, potwierdzam. (I confirm.)

6. Adding explanations:
• Aha. → Aha. (This is a non-verbal sound
and not considered an utterance.)

7. Incorrect language identification:
• No SMS-em (Eng. Well, by text message)→
Brak SMS-ów (Eng. No SMS-s).
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