
Proceedings of the 1st Workshop on Data Contamination (CONDA), pages 22–40
August 16, 2024 ©2024 Association for Computational Linguistics

A Taxonomy for Data Contamination in Large Language Models

Medha Palavalli and Amanda Bertsch and Matthew R. Gormley
School of Computer Science
Carnegie Mellon University

[mpalaval, abertsch, mgormley]@cs.cmu.edu

Abstract

Large language models pretrained on extensive
web corpora demonstrate remarkable perfor-
mance across a wide range of downstream tasks.
However, a growing concern is data contami-
nation, where evaluation datasets may be con-
tained in the pretraining corpus, inflating model
performance. Decontamination, the process of
detecting and removing such data, is a potential
solution; yet these contaminants may originate
from altered versions of the test set, evading de-
tection during decontamination. How different
types of contamination impact the performance
of language models on downstream tasks is not
fully understood. We present a taxonomy that
categorizes the various types of contamination
encountered by LLMs during the pretraining
phase and identify which types pose the highest
risk. We analyze the impact of contamination
on two key NLP tasks—summarization and
question answering—revealing how different
types of contamination influence task perfor-
mance during evaluation.

1 Introduction

Advancements in machine learning have tradition-
ally relied on benchmark datasets to evaluate and
compare model performance (Raji et al., 2021; Gu-
ruraja et al., 2023). With the surge of large lan-
guage models (LLMs) in recent years, these bench-
marks are now leveraged to showcase remarkable
abilities across diverse tasks.

However, the shelf life of benchmarks is incred-
ibly low, with Roberts et al. (2023) demonstrat-
ing that newer models with updated training cutoff
dates are iteratively rendering existing benchmarks
stale. The presence of internet-sourced data in both
pretraining and evaluation datasets increases the
risk of data contamination (Brown et al., 2020; Ma-
gar and Schwartz, 2022) and challenges the notion
of fair evaluation for models pretrained on massive
corpora. Both GPT-3 and C4 training corpora were
found to contain test data for several benchmarks

(Dodge et al., 2021; Raffel et al., 2020; Brown et al.,
2020), raising serious concerns about the validity
of evaluation scores for many pretrained models
(Lee et al., 2022; Chang et al., 2023b).

The research community lacks consensus on
best practices for data contamination, and differ-
ent works define contamination in subtly differ-
ent ways. Without standardization of terminol-
ogy, it is difficult to develop best practices for
contamination– or even to characterize the problem
at all. To address this gap, we suggest a formal def-
inition of contamination and taxonomize subtypes
of contamination (§ 2). We map prior work on both
the detection and impact of contamination into this
taxonomy, revealing several understudied forms of
contamination (§ 2.3). We also measure the impact
of different types of contamination on downstream
summarization (§ 4) and QA (§ 5) performance
through continued pretraining experiments assess-
ing indirect/approximate test set contamination ef-
fects.

Our findings reveal that for GPT-2 Large mod-
els, it is often the case that having in-domain data
present during training is as beneficial as having
the test data present during training. Moreover, we
observe that certain contamination types exhibit
task-dependent effects on evaluation performance,
further complicating decontamination best prac-
tices. Our findings enable recommendations for
identifying and mitigating problematic contamina-
tion during LLM development to ensure reliable
evaluations (§ 7).

2 Taxonomy

Consider a model M : X → Y which, given an in-
put of some type x ∈ X , outputs text ŷ ∈ Y . While
x can be of any format, we will restrict ourselves
to cases where ŷ is in the space of the natural lan-
guage (Y ⊆ Σ∗ for some alphabet in Σ). Let D be
the test set, consisting of |D| examples ⟨xi, ŷi⟩.

22

C
on

ta
m

in
at

io
n

Instance Level
Contamination
(§2.1.2)

Augmenting Karmakar et al. (2022)

Noising Yang et al. (2023)

Masking Karmakar et al. (2022)

Dataset Level
Contamination
(§2.1.1)

Distribution Jiang et al. (2024)

Selection
Jiang et al. (2024); Zhang et al. (2023); Cao et al.
(2024); Sainz et al. (2023b); Li and Flanigan (2023)

N
ot

C
on

ta
m

in
at

io
n

Transductive Learning
(§2.2.3) Jiang et al. (2024); Ouchi et al. (2019); Sainz et al. (2023a)

Prior Task Understanding
(§2.2.2) Li and Flanigan (2023); Sainz et al. (2023a)

Language Understanding
(§2.2.1) ()

Figure 1: Taxonomy of Contamination, with some representative works in the literature that address each category.

2.1 Contamination

We define contamination as any leakage of infor-
mation that provides a signal for the correct label
for at least one example in the test set D. When con-
tamination occurs, some subset of the pretraining
data can be characterized as the result of a function
f(D), which may be a composition of multiple con-
tamination functions f = f (1) ◦ f (2) ◦ · · · ◦ f (n).
We characterize types of contamination by their
dataset-level (§ 2.1.1) and example-level (§ 2.1.2)
properties. Figure 1 provides an overview of our
taxonomy.

2.1.1 Dataset-level Properties
For dataset-level contamination, consider a func-
tion g that leaves the individual examples ⟨xi, ŷi⟩
intact. In the simplest case, g is the identity func-
tion; this is the leakage of a full test set, e.g. from
scraping a file containing the test set instances and
labels. The following are types of functions g(D)
can take on.

• Selection: A function that selects some group
of examples D′ ⊂ D, such that only a subset
of the test set is leaked. This is likely when the
test data is drawn from several sources, only
some of which appear in the pretraining data;
when some of the test data is more recent than
other data and the pretraining data contains an
older snapshot of the contamination source;
or when the data is contained in several docu-
ments and the cleaning of the pretraining data
only removes some of these documents. Ver-

batim contamination refers to when g is the
identity function.

• Distribution: A function which combines the
contaminated data D with some additional,
non-contaminating documents, such that the
examples from D are not all sequential in the
pretraining data. This can occur during data
shuffling, or if the contamination comes from
multiple documents. Practically, this means
that the contaminated region of the pretraining
data g(D) spans more tokens.

2.1.2 Instance-level Properties
In instance-level contamination, the function f ap-
plies some function h to each individual leaked
example f(D) = {h(⟨xi, ŷi⟩)}|D|

i=1.1 A few rep-
resentative examples in this class are enumerated
below:

• Masking: A function that removes some or
all of the input (can be done in combination
with the output), e.g. h(⟨xi, ŷi⟩) = ŷi or re-
moving all incorrect answer choices in a mul-
tiple choice question. This primarily qualifies
as contamination for generation tasks; for a
classification task, leaking the label-space in
advance may not be a concern if the labels
don’t have inherent contextual value without
the input, such as binary labels like 0s and 1s
or positives and negatives. However, if the

1Note that this is a strict subset of all functions applied to
the leaked dataset, f(D); however, we distinguish this set of
functions that operate on individual examples.

23

labels carry meaningful information on their
own, their premature disclosure would indeed
constitute contamination. Note that masking
all of the output, leaving only the inputs from
the test set, is generally considered to be a type
of transductive learning, not contamination;
see § 2.2.3 for more discussion.

• Noising: A function that modifies the surface
form of the example, e.g. by paraphrasing
the inputs or outputs, by presenting the out-
put before the input, or by using silver rather
than gold labels for each example. Note that
this can also take the form of alternate cor-
rect answers being present in the pretraining
data: for instance, in book summarization, a
different summary of the book being present
in the pretraining data is still contamination.

• Augmenting: A function that adds additional
context, which may or may not be relevant to
the example. For instance, for a task where
the model must answer an open-ended ques-
tion at test time, an augmented contaminated
example in pretraining would be a multiple-
choice test with the same questions. While
this provides the correct answer, it also intro-
duces new (distractor) information that is not
present at test time. Another example would
be including additional context paragraphs for
QA in addition to the necessary context and
answer. Note the difference between example-
level augmenting and dataset-level distribu-
tion.

2.2 Phenomena that aren’t Contamination
For clarity, we describe several phenomena
that lead to improved performance on test sets
downstream but are not considered contamination
under our taxonomy.

2.2.1 Language Understanding
Pretraining enables models to produce (generally)
fluent text and encodes some representation
of meaning for words commonly used in task
definitions; for instance, the model has some
representation of meaning for the labels “positive”
and “negative” in sentiment analysis. While this
representation is likely helpful for performing
downstream tasks (Min et al., 2022), this is not
inherently contamination.

2.2.2 Prior Task Understanding

We define prior task understanding as an ability
to perform a task learned from non-contamination
sources, and such prior knowledge has been demon-
strated to boost model performance when evaluated
on unseen instances of said task (Li and Flanigan,
2023). For instance, fine-tuning a model on a train-
ing dataset for the task is clearly not contamina-
tion of the test set, although it generally improves
performance on that test set; likewise, pretraining
on other related datasets is not contamination for
a given test set. For closed-book QA and tasks
requiring world knowledge, prior task understand-
ing from training data is essential. Closed-book
QA demands answering without external resources,
relying solely on the model’s training on similar
question-answer pairs or related datasets.

In general, scrutinizing the training data’s
sources and nature is crucial to maintain model
integrity and generalizability. Prior task under-
standing may violate the assumption of “zero-shot”
performance: that the model has not seen training
data for that task.

2.2.3 Transductive Learning

Transductive learning (Vapnik, 1998) incorporates
an unlabeled test set into training. During training,
the raw text inputs of the test set can be used, but
the labels are not seen. The model, once trained,
is then evaluated on the same test set during the
test phase. Transductive LM fine-tuning has shown
to consistently improve neural models in both in-
domain and out-of-domain settings (Ouchi et al.,
2019), although concerns have been raised about
blurring the line between training and evaluation
(Jiang et al., 2024).

We generally do not consider pretraining on the
inputs of the test set to be contamination,2 although
we note that this will likely improve performance,
in the same manner than pretraining on training
set text improves downstream performance by pro-
viding some domain adaptation to the testing do-
main (Gururangan et al., 2020; Krishna et al., 2023).
Some prior work refers to the presence of inputs-
only in the pretraining data as contamination for
classification tasks (Jiang et al., 2024; Ouchi et al.,
2019); however, under our taxonomy, we consider
this a type of transductive learning.

2A key exception is tasks where the input/output distinction
does not apply, such as perplexity evaluation on a dataset
D = {x1, . . . , x|D|} of sentences xi.

24

2.3 Mapping prior work exploring
contamination into this taxonomy

The effects of selection have been explored by ex-
periments that compare LLM performance over
time (Li and Flanigan, 2023; Cao et al., 2024),
prompting the model to generate samples from spe-
cific dataset splits (Sainz et al., 2023b), and train-
ing LLMs that select some subset of an evaluation
dataset (Zhang et al., 2023; Jiang et al., 2024).

Jiang et al. (2024) also explores the effects of
the frequency in which contaminated data appears
distributed throughout the pretraining data.

Through zero-shot experimentation on the
Codex model (Chen et al., 2021), Karmakar et al.
(2022) investigates the effects of prompts mask-
ing out input specifications and prompts with aug-
mented objectives. Additionally, Yang et al. (2023)
showcases memorization of evaluation samples by
prompting LLMs with noisy samples.

A prior position paper (Sainz et al., 2023a) de-
fined three categories of data contamination: their
guideline contamination falls under our definition
of prior task understanding; their raw text contami-
nation is tranductive learning; and their annotation
contamination equates to our definition of data con-
tamination in § 2.1. Our work further categorizes
and explores types of annotation contamination.

2.4 Detecting Data Contamination

Methods with access to pretraining data Early
research on LLM data contamination primarily em-
ployed methods akin to high-order n-gram over-
lap detection between pretraining and evaluation
data (Radford et al., 2019a; Brown et al., 2020;
Wei et al., 2021; Touvron et al., 2023). Tools for
qualitative analysis on large-scale corpora (such
as Data Portraits (Marone and Durme, 2023) and
the ROOTS Search Tool (Piktus et al., 2023)) have
further increased the practicality of this type of con-
tamination detection. However, these approaches
have several limitations: they remain fairly compu-
tationally expensive, assume access to pretraining
data, and generally can only detect contamination
when a cluster of several test set examples co-occur
(as most methods leverage data sketching (Broder,
1997) tools that are only effective for sequences
above a certain length).

Yang et al. (2023) proposes an LLM-based de-
contamination method, which leverages embedding
similarity search followed by evaluation with a
strong language model (e.g. GPT-4), to identify

and mitigate contamination. This is computation-
ally costly but can identify noisy contamination

Methods without access to pretraining data
Some approaches are capable of detecting contam-
ination without direct access to pretraining data,
but assume that the test data has not been mod-
ified or distributed across the pretraining corpus.
These methods leverage metadata from the dataset
to detect contamination, e.g. by leveraging dataset
ordering (Sainz et al., 2023b) or the assignment of
examples to specific data splits (Golchin and Sur-
deanu, 2023). Golchin and Surdeanu (2024) intro-
duce the Data Contamination Quiz, a streamlined
method that efficiently detects and estimates ver-
batim contamination in LLMs by crafting multiple
choice questions that prompt a model to correctly
dataset-specific content among similar but noisy
alternatives.

Chang et al. (2023a) detect contamination of
books (which serve as inputs for many long-context
evaluation datasets) using domain specific features–
a name cloze test and a publication-year evaluation.
This is powerful for detecting the presence of the
exact text of the book, but its efficacy on detecting
related artifacts (e.g. summaries of the book, which
may serve as test set outputs) is unknown.

Shi et al. (2023) introduces a new detection
method MIN-K% PROB, which is capable of de-
tecting whether a piece of text was in the pretrain-
ing corpora by leveraging the variability of the
tokens’ probabilities according to the model. This
has the potential to detect distributed or masked
contamination, but is not robust to noising opera-
tions, which change the token sequence.

Most contemporary data-contamination detec-
tion techniques are designed to identify contamina-
tion of full, non-distributed test datasets, resulting
in a significant gap in detecting noisy or partial
contamination. The methods most well-adapted
to detect noisy contamination, while powerful, re-
quire access to pretraining data and expensive oper-
ations; more work is necessary to lower the barrier
to detection.

3 Methodology

In all our experiments, we employ GPT-2 Large
(Radford et al., 2019b).3 This will be referred to as
the initial model. Since the pretraining corpus for
GPT-2 is not publicly accessible, there is a chance

3Our implementation uses nanoGPT (Karpathy, 2023) ini-
tialized with OpenAI’s gpt2-large weights.

25

that these learned weights of GPT-2 might be con-
taminated. Consequently, the outcomes of our ex-
periments serve as a conservative estimate or lower
bound on the effects of data contamination.

For each of our datasets, we create
train/in-domain/test splits of equal size,
aiming to establish a fair and comparable evalu-
ation environment. To disentangle the effects of
exposure to test data during pretraining from
those of prior task understanding, we constructed
an in-domain data split, allowing us to train
models on task-relevant but uncontaminated data
for comparison against the various contaminated
settings. To partially mitigate the potential recency
bias from continued pretraining, we incorporate
an additional 10,000 samples of Open AI’s
WebText (Radford et al., 2019b) into the continued
pretraining data.

During continued pretraining, we use a blocksize
of 1024 tokens with a batchsize of 1. For finetun-
ing, the training data is seen sample by sample.
To obtain deterministic results during our experi-
ments, we set the temperature to zero and capped
the maximum completion length at 200 tokens.

3.1 Training Settings

We consider several settings for incorporating data:

• ZERO-SHOT (not contamination): prompt the
initial model with the test sample and a simple
instruction for the task.

• BASELINE (not contamination): finetune ini-
tial model with train split

• CHEATING (contamination at fine-tuning time,
rather than pre-training): finetune initial
model with test split

• Contamination Setting(s) (standard contam-
ination during pretraining): continued pre-
training with f (test split) and finetune with
train split; the details of each contamination
setting are specific to the task (§ 4 and § 5)

• In-Domain Setting(s) (not contamination):
continued pretraining with f (in-domain
split) and finetune with train split—for each
contamination setting in § 4 and § 5, there is
an associated in-domain model.

For each setting+dataset, we average results over
models trained on 3 random shuffles of the data.
Standard deviations are computed over these 3 runs
and error bars indicate ± one standard deviation.

4 Case Study: Summarization

For this case study, we use the following summa-
rization datasets: XSum (Narayan et al., 2018),
SAMSum (Gliwa et al., 2019), and CNN/Daily
Mail (Nallapati et al., 2016). We explore 5 contam-
ination settings:

1. VERBATIM (dataset level, selection): f =
identity function on test split

2. DISTRIBUTION (dataset level, distribution):
f = shuffle test data with WebText

3. MASKED (instance level, masking): h = mask
out input documents in test split

4. NOISED (instance level, noising): h = swap in
GPT-3.54 generated summaries on test split

5. REFORMATTED (instance level, noising): h =
swap format from document-summary to
summary-document for test data

Table 5 provides examples of each setting.

4.1 Results
In this section, we consider the overall performance
of each contamination method across summariza-
tion datasets. Figure 2 shows an example of the
results from one task and one metric (SAMSum,
ROUGE-L). See Appendix A for full results on all
tasks and metrics, specifically Figures 4, 5, 6 or
Table 3.

Consistently, the CHEATING setting outperforms
all others; this is expected, given that deliberately
finetuning on the test data is an extreme form of
contamination.

Overall, continued pretraining with the approx-
imate contamination methods improves perfor-
mance above the BASELINE setting, often substan-
tially. This suggests that exposure to these forms
of contamination during pretraining can impact the
reliability of evaluations on this data downstream.

While VERBATIM setting performs slightly bet-
ter than the other contamination settings, this im-
provement isn’t significant for most settings. Note
that most contaminated settings outperform the
baseline, and exist within a standard deviation of
each other. This suggests that the performance
boost may simply be attributed to the increase
in in-domain data seen during the training stage
rather than encountering the test split during con-
tinued pretraining.

Note that for the most part, the VERBATIM and
INDOMAIN-VERBATIM settings perform on par

4gpt-3.5-turbo-0125 with temperature=0.5

26

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

24

26

28

6

1

3

7

4 5

2

R
ou

ge
-L

In-Domain Contamination

Figure 2: Bar Chart of all SAMSum models compared for Rouge-L.

with each other. This trend seems to hold true
for the other contamination and in-domain model
pairs. The comparable performance further sug-
gests that exposure to contaminated data may not
be the primary factor boosting model performance
in the contamination settings studied.

Dataset R-1 R-2 R-L R-Lsum

CNN 38.70 14.14 24.90 32.11
SAMSum 37.92 13.78 28.73 28.75

XSum 24.21 4.89 16.60 16.60

Table 1: Rouge scores (R-) for summaries generated by
GPT-3.5. These summaries are used as silver labels for
our NOISED contamination setting.

While the majority of these settings have metrics
that fall within one standard deviation of each other,
there are exceptions. For instance, in the case of the
XSum dataset, the NOISED setting fails to surpass
the BASELINE. This discrepancy can be attributed
to the idiosyncrasies of the XSum dataset, where
ground truth summaries may deviate significantly
from typical summaries, thus posing a challenge
for the model in generating accurate outputs. Table
1 shows that the summaries generated by GPT-3.5
(Brown et al., 2020) for the XSum dataset have
lower rouge scores than the other two datasets.

Additionally, underperformance of the MASKED

contamination setting compared to the BASELINE

across all datasets is noteworthy, suggesting that
exposure only to summaries during pretraining may
fail to achieve the benefits of seeing in-domain
data.

5 Case Study: Question Answering

For this case study, we consider open-ended QA
with SQuAD (Rajpurkar et al., 2016) and multiple-

choice QA with the Children’s Book Test (CBT)
(Hill et al., 2016). We explore 6 contamination
settings:

1. VERBATIM (dataset level, selection): f =
identity function on test split

2. DISTRIBUTION (dataset level, distribution):
f = shuffle test data with WebText

3. MASKED (instance level, masking): h = mask
out context passage in test split

4. NOISED (instance level, noising): h = en-
counter GPT-3.5 generated answers to test
split questions

5. REFORMATTED (instance level, augmenting/-
masking)5: hSQuAD = introduce 3 distractor
multiple choice answer options; hCBT = mask
out incorrect answer options

6. AUGMENTED (instance level, augmenting):
h = prompt GPT-3.5 to add additional content
to the context passages in the test split

Table 6 provides examples of each setting.

5.1 Results

In this section, we consider the overall performance
of each contamination method across Question An-
swering datasets. Figure 3 shows an example of
the results from one task and one metric (SQuAD,
Exact Match). See Appendix B for full evaluation
results on all tasks and metrics, specifically Figures
7, 8 or Table 4.

Once again, the CHEATING setting outperforms
all others by a noticeable margin. With the ex-
ception of the MASKED setting for the SQuAD

5For SQuAD, this is a form of augmented contamination,
as additional (distractor) information is introduced. For CBT,
this is a form of masked contamination, as information is
removed.

27

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED AUGMENTED VERBATIM CHEATING

40

45

50

55

7

1

4

8

5

6

2 3

E
xa

ct
M

at
ch

In-Domain Contamination

Figure 3: Bar Chart of all SQuAD models compared for Exact Match.

dataset, all contaminated settings exhibit better per-
formance compared to the BASELINE setting by
a considerable margin. This indicates that the in-
creased data diversity experienced by both the in-
domain and contaminated models during training
improved their performance during evaluation.

Dataset Exact Match F1 Score

SQuAD 74.56 88.15
CBT 77.21 79.78

Table 2: Exact match and F1 scores for answers gener-
ated by GPT-3.5.

Note that the NOISED setting performs almost
as well as the VERBATIM contamination setting.
We attribute this to the fairly high quality of silver
labels generated by GPT-3.5 (see Table 2).

Exposure to in-domain data during pretraining
appears to improve model performance. However,
our results show that contaminated settings such as
NOISED, VERBATIM, and DISTRIBUTION tend to
outperform the corresponding in-domain settings
during evaluation. This suggests that seeing data
from the test set positively impacts model per-
formance for question answering tasks. Note that
for these three model setups, the format of context,
question, and answer is almost consistent with the
format and content seen during evaluation time.

Reformatting (augmenting) free-form questions
from SQuAD into multiple-choice answers dur-
ing pretraining appears to have a negative effect
on model performance, though it still outperforms
the BASELINE setting. Conversely, converting
multiple-choice questions from CBT into free-form
questions (masking) during pretraining yields pos-
itive results, with the REFORMATTED setting out-
performing most other contaminated settings.

Furthermore, we observe variations in the per-
formance of AUGMENTED setting across the two
datasets. While this setting perform well for
SQuAD, its performance is not as impressive for
CBT. This discrepancy may be attributed to the
nature of data augmentation, where the additional
information provided for SQuAD is more relevant
and beneficial to the wikipedia paragraphs com-
pared to the irrelevant introductions, such as ‘once
upon a time’ style introductions generated by GPT-
3.5 for these book excerpts, added to CBT stories.
It is important to note that since this information
doesn’t significantly contribute to the task, this
form of augmentation falls in a blurry space be-
tween distribution and augmentation branches of
the taxonomy. It could also be viewed as unrelated
information being added between samples during
pretraining, complicating its categorization.

6 Analysis

Unsurprisingly, the CHEATING and VERBATIM con-
tamination settings consistently outperform the
BASELINE across both tasks. The in-domain set-
tings’ consistent outperformance of the BASELINE

underscores the advantages of exposure to related
samples during pretraining (Krishna et al., 2023).

Far more concerning is that several approximate
contamination settings outperform both the BASE-
LINE and their respective in-domain settings, sug-
gesting that the model in these settings benefits not
only from seeing in-domain text but from unfairly
leveraging prior knowledge of the test examples. In
particular, the NOISED setting, which is generally
not detectable with existing decontamination meth-
ods, produces scores inflated over BASELINE in all
datasets, and scores more than one standard devia-
tion above its corresponding in-domain setting in

28

several datasets.
The MASKED setting generally performs around

or worse than the BASELINE, possibly due to the
more extreme formatting mismatch between this
data and the test data. We expect that the MASKED

setting may be encountered in the wild if a file of
outputs for the dataset is in the pretraining data;
the limited impact of this contamination on down-
stream performance is thus good news, though
more investigation would be necessary to conclu-
sively say MASKED contamination is not a concern.

For many of the contaminated settings and their
corresponding in-domain settings, the effect of ap-
proximate contamination is not greater than affect
of in-domain data seen during pretaining. How-
ever, research has shown that memorization in
LLMs significantly grows as the size of the model
increases (Carlini et al., 2023). The number of
times a sample has been duplicated in the pre-
training corpora has also been shown to increase a
model’s memorization capabilities (Carlini et al.,
2023; Golchin and Surdeanu, 2023).

Some behavior is task- or dataset-specific, em-
phasizing that there is no one-size-fits-all approach
to data curation: the importance of removing each
type of contamination from the pretraining corpus
is at least partially linked to the specific task’s for-
matting. However, some types of approximate con-
tamination do lead to inflated scores, emphasizing
that considering a more broad definition of contam-
ination when de-contaminating pretraining corpora
is a worthwhile endeavor.

7 Conclusion

Our analysis highlights the importance of data for-
mat, with models performing better when pretrain-
ing data matches the evaluation format. We also
observe task-specific effects, with certain contam-
ination methods benefiting particular tasks more
than others. Additionally, we find that some late-
stage pretraining contamination can actually be un-
helpful to downstream performance, if it occurs in a
substantially different format from the downstream
task. Our findings underscore gaps in current de-
contamination practices, which primarily focus on
full-dataset-level contamination and are often un-
able to detect approximate or noisy contamination.

We demonstrate that different types of contam-
ination can have variable effects on model perfor-
mance, highlighting the need for careful consid-
eration during training and evaluation. With the

creation of our taxonomy, we hope to promote stan-
dardization regarding the definition and categories
of contamination within the research community,
facilitating clear communication and collaboration,
while also enabling precise detection and mitiga-
tion of contamination in pretraining data. We rec-
ommend researchers decontaminating pretraining
corpora for LLMs prioritize developing techniques
that address noisy evaluation data, while also en-
suring rigorous scrutiny to prevent any shuffled
or interleaved evaluation data from inadvertently
persisting in the pretraining data. It is not enough
to merely remove instances of the full test dataset
in the pretraining corpus; fragments or noised ver-
sions of the test set can also inflate performance.
We hope our work inspires future work on detecting
and mitigating specific types of contamination.

8 Limitations

Due to resource constraints, we only investigate
the impact of encountering contaminated data to-
wards the end of pretraining (i.e. with continued
pretraining), rather than randomly throughout pre-
training. This may introduce recency bias, influ-
encing our findings. Additionally, our focus on a
single language model limits the generalizability of
our results. GPT-2 pretraining data is not publicly
accessible so our results may only offer an approx-
imation of contamination effects. Different model
architectures, training procedures, and datasets may
yield varying impacts of contamination. Conduct-
ing experiments on larger LLMs could potentially
reveal more pronounced effects of contamination,
as larger models have been shown to exhibit greater
tendencies of memorization (Carlini et al., 2023).
Further research involving multiple models and
comprehensive evaluations is needed to establish
more robust conclusions across diverse settings.

Acknowledgements

The authors would like to thank Lori Levin for her
early guidance and the anonymous reviewers for
their thoughtful comments. This work was sup-
ported in part by grants from 3M, the Pittsburgh
Supercomputing Center, and the National Science
Foundation Graduate Research Fellowship under
Grant No. DGE2140739.

29

References
A.Z. Broder. 1997. On the resemblance and con-

tainment of documents. In Proceedings. Compres-
sion and Complexity of SEQUENCES 1997 (Cat.
No.97TB100171), pages 21–29.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Jialun Cao, Wuqi Zhang, and Shing-Chi Cheung. 2024.
Concerned with data contamination? assessing coun-
termeasures in code language model.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023. Quantifying memorization across neural lan-
guage models.

Kent K. Chang, Mackenzie Cramer, Sandeep Soni, and
David Bamman. 2023a. Speak, memory: An archae-
ology of books known to chatgpt/gpt-4.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2023b. A survey on evaluation of large language
models.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Jesse Dodge, Maarten Sap, Ana Marasović, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colos-
sal clean crawled corpus. In Proceedings of the

2021 Conference on Empirical Methods in Natural
Language Processing, pages 1286–1305, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70–79, Hong
Kong, China. Association for Computational Linguis-
tics.

Shahriar Golchin and Mihai Surdeanu. 2023. Time
travel in llms: Tracing data contamination in large
language models.

Shahriar Golchin and Mihai Surdeanu. 2024. Data con-
tamination quiz: A tool to detect and estimate con-
tamination in large language models.

Sireesh Gururaja, Amanda Bertsch, Clara Na, David
Widder, and Emma Strubell. 2023. To build our
future, we must know our past: Contextualizing
paradigm shifts in natural language processing. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
13310–13325, Singapore. Association for Compu-
tational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions.

Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Scha-
effer, Siru Ouyang, Jiawei Han, and Sanmi Koyejo.
2024. Investigating data contamination for pre-
training language models.

Anjan Karmakar, Julian Aron Prenner, Marco
D’Ambros, and Romain Robbes. 2022. Codex hacks
hackerrank: Memorization issues and a framework
for code synthesis evaluation.

Andrej Karpathy. 2023. nanogpt.

Kundan Krishna, Saurabh Garg, Jeffrey P. Bigham, and
Zachary C. Lipton. 2023. Downstream datasets make
surprisingly good pretraining corpora.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

30

https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2403.16898
http://arxiv.org/abs/2403.16898
http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/2305.00118
http://arxiv.org/abs/2305.00118
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
http://arxiv.org/abs/2308.08493
http://arxiv.org/abs/2308.08493
http://arxiv.org/abs/2308.08493
http://arxiv.org/abs/2311.06233
http://arxiv.org/abs/2311.06233
http://arxiv.org/abs/2311.06233
https://doi.org/10.18653/v1/2023.emnlp-main.822
https://doi.org/10.18653/v1/2023.emnlp-main.822
https://doi.org/10.18653/v1/2023.emnlp-main.822
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/2401.06059
http://arxiv.org/abs/2401.06059
http://arxiv.org/abs/2212.02684
http://arxiv.org/abs/2212.02684
http://arxiv.org/abs/2212.02684
https://github.com/karpathy/nanoGPT
http://arxiv.org/abs/2209.14389
http://arxiv.org/abs/2209.14389
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577

pages 8424–8445, Dublin, Ireland. Association for
Computational Linguistics.

Changmao Li and Jeffrey Flanigan. 2023. Task con-
tamination: Language models may not be few-shot
anymore.

Inbal Magar and Roy Schwartz. 2022. Data contamina-
tion: From memorization to exploitation.

Marc Marone and Benjamin Van Durme. 2023. Data
portraits: Recording foundation model training data.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048–11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Hiroki Ouchi, Jun Suzuki, and Kentaro Inui. 2019.
Transductive learning of neural language models for
syntactic and semantic analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3665–3671, Hong Kong,
China. Association for Computational Linguistics.

Aleksandra Piktus, Christopher Akiki, Paulo Villegas,
Hugo Laurençon, Gérard Dupont, Alexandra Sasha
Luccioni, Yacine Jernite, and Anna Rogers. 2023.
The roots search tool: Data transparency for llms.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019a. Language
models are unsupervised multitask learners.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019b. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Inioluwa Deborah Raji, Emily M. Bender, Amanda-
lynne Paullada, Emily Denton, and Alex Hanna. 2021.
Ai and the everything in the whole wide world bench-
mark.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Manley Roberts, Himanshu Thakur, Christine Herlihy,
Colin White, and Samuel Dooley. 2023. Data con-
tamination through the lens of time.

Oscar Sainz, Jon Campos, Iker García-Ferrero, Julen
Etxaniz, Oier Lopez de Lacalle, and Eneko Agirre.
2023a. NLP evaluation in trouble: On the need to
measure LLM data contamination for each bench-
mark. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 10776–
10787, Singapore. Association for Computational
Linguistics.

Oscar Sainz, Jon Ander Campos, Iker Garcia-Ferrero,
Julen Etxaniz, , and Eneko Agirre. 2023b. Did chat-
gpt cheat on your test?

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Danqi Chen, and
Luke Zettlemoyer. 2023. Detecting pretraining data
from large language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Vladimir Vapnik. 1998. Statistical learning theory. John
Wiley & Sons.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2021. Finetuned
language models are zero-shot learners. CoRR,
abs/2109.01652.

31

http://arxiv.org/abs/2312.16337
http://arxiv.org/abs/2312.16337
http://arxiv.org/abs/2312.16337
http://arxiv.org/abs/2203.08242
http://arxiv.org/abs/2203.08242
http://arxiv.org/abs/2303.03919
http://arxiv.org/abs/2303.03919
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D19-1379
https://doi.org/10.18653/v1/D19-1379
http://arxiv.org/abs/2302.14035
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2111.15366
http://arxiv.org/abs/2111.15366
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
http://arxiv.org/abs/2310.10628
http://arxiv.org/abs/2310.10628
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://hitz-zentroa.github.io/lm-contamination/blog
https://hitz-zentroa.github.io/lm-contamination/blog
http://arxiv.org/abs/2310.16789
http://arxiv.org/abs/2310.16789
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E.
Gonzalez, and Ion Stoica. 2023. Rethinking bench-
mark and contamination for language models with
rephrased samples.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,
Matthew Jagielski, Florian Tramèr, and Nicholas Car-
lini. 2023. Counterfactual memorization in neural
language models.

32

http://arxiv.org/abs/2311.04850
http://arxiv.org/abs/2311.04850
http://arxiv.org/abs/2311.04850
http://arxiv.org/abs/2112.12938
http://arxiv.org/abs/2112.12938

A Full results for Summarization Case Study

We present the full results of the summarization case study. For each setting and dataset, we have included
a table of the Rouge metrics along with their standard deviations. The data is also presented through a
series of bar charts for easier interpretability of the results for the reader. Standard deviations are measured
over the results of the 3 models trained on random shuffles of the data.

Dataset Model
Contaminated Contaminated

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUMPretraining Fine-tuning
Data Data

CNN

ZERO-SHOT - - 21.98 ± 0.26 5.076 ± 0.01 13.63 ± 0.10 18.51 ± 0.10
BASELINE - × 27.22 ± 0.53 7.436 ± 0.13 18.15 ± 0.43 24.90 ± 0.36
CHEATING - ✓ 33.60 ± 0.58 10.198 ± 0.16 20.52 ± 0.33 29.61 ± 0.32
VERBATIM ✓ × 29.84 ± 0.48 9.488 ± 0.14 19.50 ± 0.38 26.98 ± 0.40

DISTRIBUTION ✓ × 29.73 ± 0.33 9.557 ± 0.13 19.50 ± 0.22 27.12 ± 0.26
MASKED ✓ × 28.34 ± 0.22 8.326 ± 0.13 18.01 ± 0.29 25.96 ± 0.20
NOISED ✓ × 31.31 ± 0.52 8.821 ± 0.15 19.19 ± 0.32 28.85 ± 0.30

REFORMATTED ✓ × 29.21 ± 0.28 8.887 ± 0.13 18.88 ± 0.29 26.27 ± 0.30
INDOMAIN-VERBATIM × × 29.81 ± 0.48 9.277 ± 0.13 18.93 ± 0.25 26.88 ± 0.31

INDOMAIN-DIST. × × 28.86 ± 0.30 8.910 ± 0.13 18.41 ± 0.27 26.10 ± 0.30
INDOMAIN-MASK × × 28.87 ± 0.39 8.493 ± 0.15 18.24 ± 0.30 26.40 ± 0.29
INDOMAIN-NOISE × × 31.16 ± 0.42 8.596 ± 0.10 18.85 ± 0.26 26.53 ± 0.35

INDOMAIN-REFORM. × × 28.80 ± 0.31 8.681 ± 0.12 18.75 ± 0.24 26.07 ± 0.32

SAMSum

ZERO-SHOT - - 11.73 ± 0.14 1.357 ± 0.01 8.377 ± 0.19 9.331 ± 0.16
BASELINE - × 32.95 ± 0.57 10.22 ± 0.15 25.83 ± 0.32 25.59 ± 0.29
CHEATING - ✓ 36.36 ± 0.53 12.31 ± 0.14 28.41 ± 0.33 28.48 ± 0.33
VERBATIM ✓ × 34.34 ± 0.45 10.76 ± 0.16 26.98 ± 0.40 27.04 ± 0.38

DISTRIBUTION ✓ × 33.73 ± 0.51 10.32 ± 0.15 26.48 ± 0.31 26.56 ± 0.33
MASKED ✓ × 33.05 ± 0.46 10.46 ± 0.15 25.77 ± 0.30 25.81 ± 0.28
NOISED ✓ × 33.62 ± 0.43 10.27 ± 0.16 26.50 ± 0.37 26.49 ± 0.38

REFORMATTED ✓ × 33.63 ± 0.39 10.25 ± 0.15 26.37 ± 0.31 26.46 ± 0.34
INDOMAIN-VERBATIM × × 33.61 ± 0.46 10.27 ± 0.14 26.39 ± 0.30 26.46 ± 0.35

INDOMAIN-DIST. × × 33.55 ± 0.42 10.26 ± 0.11 26.32 ± 0.33 26.44 ± 0.35
INDOMAIN-MASK × × 32.87 ± 0.41 10.47 ± 0.12 25.74 ± 0.35 25.74 ± 0.31
INDOMAIN-NOISE × × 33.67 ± 0.37 10.33 ± 0.13 26.38 ± 0.29 26.47 ± 0.28

INDOMAIN-REFORM. × × 33.52 ± 0.34 10.24 ± 0.16 26.24 ± 0.28 26.34 ± 0.29

XSum

ZERO-SHOT - - 12.52 ± 0.11 2.059 ± 0.00 9.035 ± 0.16 10.27 ± 0.17
BASELINE - × 26.28 ± 0.48 6.424 ± 0.12 19.80 ± 0.32 19.81 ± 0.33
CHEATING - ✓ 29.87 ± 0.41 8.334 ± 0.13 22.97 ± 0.43 22.98 ± 0.42
VERBATIM ✓ × 26.53 ± 0.51 6.820 ± 0.12 20.08 ± 0.33 20.03 ± 0.37

DISTRIBUTION ✓ × 26.61 ± 0.42 6.885 ± 0.13 20.12 ± 0.37 20.11 ± 0.37
MASKED ✓ × 24.50 ± 0.46 5.677 ± 0.12 18.16 ± 0.29 18.39 ± 0.31
NOISED ✓ × 26.16 ± 0.39 6.599 ± 0.12 19.72 ± 0.35 19.72 ± 0.35

REFORMATTED ✓ × 26.27 ± 0.43 6.623 ± 0.12 19.86 ± 0.29 19.86 ± 0.30
INDOMAIN-VERBATIM × × 26.43 ± 0.41 6.745 ± 0.14 19.99 ± 0.27 19.99 ± 0.40

INDOMAIN-DIST. × × 26.34 ± 0.40 6.666 ± 0.12 19.85 ± 0.32 19.85 ± 0.32
INDOMAIN-MASK × × 24.31 ± 0.39 5.521 ± 0.13 18.02 ± 0.29 18.04 ± 0.34
INDOMAIN-NOISE × × 26.31 ± 0.46 6.607 ± 0.11 19.80 ± 0.36 19.81 ± 0.28

INDOMAIN-REFORM. × × 25.29 ± 0.32 6.280 ± 0.12 19.04 ± 0.35 19.06 ± 0.30

Table 3: Results for all 13 models trained on XSum, SAMSum, and CNN/Daily Mail Datasets. The table showcases
evaluation metrics, with the best-performing model scores bolded and the second best italicized.

33

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

26

28

30

32

34

7

1

4

6

2

5
3

R
ou

ge
-1

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

7

8

9

10

7

1

2

6

5 4

3

R
ou

ge
-2

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

18

19

20

21

6

1

2

7

4

5

2

R
ou

ge
-L

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

24

26

28

30

7

1

3

6

2

5

4

R
ou

ge
-L

su
m

In-Domain Contamination

Figure 4: Bar Chart of all CNN/Daily Mail models compared for each metric

34

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

32

34

36

7

1

3

6

5 4

2

R
ou

ge
-1

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

10

11

12

7

1

4
3

5 6

2

R
ou

ge
-2

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

26

28

6

1

3

7

4 5

2

R
ou

ge
-L

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

26

28

7

1

3

6

5 4

2

R
ou

ge
-L

su
m

In-Domain Contamination

Figure 5: Bar Chart of all SAMSum models compared for each metric

35

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

24

26

28

30

4

1

2

7

6 5
3

R
ou

ge
-1

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

6

7

8

9

6

1

2

7

5 4
3

R
ou

ge
-2

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

18

20

22

24

5

1

2

7

6 4
3

R
ou

ge
-L

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED VERBATIM CHEATING

18

20

22

24

5

1

2

7

6 4 3

R
ou

ge
-L

su
m

In-Domain Contamination

Figure 6: Bar Chart of all XSum models compared for each metric

36

B Full results for Question Answering Case Study

We present the full results of the QA case study. For each setting and dataset, we have included a table of
the exact match and f1 metrics along with their standard deviations. The data is also presented through a
series of bar charts for easier interpretability of the results for the reader. Standard deviations are measured
over the results of the 3 models trained on random shuffles of the data.

Dataset Model Contaminated Contaminated Exact Match F1 ScorePretraining Data Fine-tuning Data

SQuAD

ZERO-SHOT - - 1.178 ± 0.11 4.180 ± 0.22
BASELINE - × 41.76 ± 1.01 55.72 ± 0.85
CHEATING - ✓ 55.73 ± 0.94 66.47 ± 0.80
VERBATIM ✓ × 53.38 ± 0.94 65.07 ± 0.96

DISTRIBUTION ✓ × 52.76 ± 0.89 64.92 ± 0.88
MASKED ✓ × 38.77 ± 0.96 51.93 ± 0.78
NOISED ✓ × 52.72 ± 0.89 64.65 ± 0.89

REFORMATTED ✓ × 48.08 ± 0.91 61.85 ± 0.94
AUGMENTED ✓ × 53.58 ± 0.98 65.51 ± 0.90

INDOMAIN-VERBATIM × × 52.44 ± 0.89 64.52 ± 0.92
INDOMAIN-DIST. × × 51.90 ± 0.91 64.43 ± 0.87
INDOMAIN-MASK × × 44.62 ± 0.93 58.95 ± 1.00
INDOMAIN-NOISE × × 50.63 ± 0.85 63.60 ± 0.86

INDOMAIN-REFORM. × × 51.30 ± 0.95 63.72 ± 0.95
INDOMAIN-AUGMENT × × 52.94 ± 0.94 64.24 ± 0.89

CBT

ZERO-SHOT - - 1.192 ± 0.12 3.290 ± 0.21
BASELINE - × 19.41 ± 0.99 19.84 ± 0.90
CHEATING - ✓ 54.27 ± 0.85 56.39 ± 0.96
VERBATIM ✓ × 52.06 ± 0.88 53.91 ± 0.89

DISTRIBUTION ✓ × 50.82 ± 0.97 51.21 ± 0.97
MASKED ✓ × 46.51 ± 0.84 47.43 ± 0.93
NOISED ✓ × 49.59 ± 0.86 50.44 ± 0.96

REFORMATTED ✓ × 51.46 ± 0.93 52.96 ± 0.86
AUGMENTED ✓ × 49.09 ± 1.00 50.32 ± 0.89

INDOMAIN-VERBATIM × × 44.19 ± 0.87 45.06 ± 0.96
INDOMAIN-DIST. × × 42.85 ± 0.92 46.06 ± 0.90
INDOMAIN-MASK × × 40.77 ± 0.96 40.18 ± 0.93
INDOMAIN-NOISE × × 49.02 ± 0.97 49.11 ± 0.98

INDOMAIN-REFORM. × × 50.01 ± 0.86 51.12 ± 0.86
INDOMAIN-AUGMENT × × 50.46 ± 0.93 51.62 ± 0.84

Table 4: Results for all 15 models trained on the SQuAD and CBT dataset. The table showcases evaluation metrics,
with the best-performing model scores bolded and the second best italicized.

37

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED AUGMENTED VERBATIM CHEATING

40

45

50

55

7

1

4

8

5

6

2 3

E
xa

ct
M

at
ch

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED AUGMENTED VERBATIM CHEATING

50

55

60

65

7

1

4

8

5

6

2 3

F1
Sc

or
e

In-Domain Contamination

Figure 7: Bar Chart of all SQuAD models compared for each metric

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED AUGMENTED VERBATIM CHEATING

20

30

40

50

8

1

4

7

5
3

6
2

E
xa

ct
M

at
ch

In-Domain Contamination

BASELINE DISTRIBUTION MASKED NOISED REFORMATTED AUGMENTED VERBATIM CHEATING

20

30

40

50

60

8

1

4

7
5

3
6

2

F1
Sc

or
e

In-Domain Contamination

Figure 8: Bar Chart of all CBT models compared for each metric

38

C Examples for each contamination type

We provide examples of each of the functions from the different contamination types we are testing,
applied to a sample from each dataset from the case studies.

Sample

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Summary: Anita is at Bologna station.

Distribution

⟨ some open web text ⟩

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Summary: Anita is at Bologna station.

⟨ some more open web text ⟩
Masking Summary: Anita is at Bologna station.

Noising

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Summary: Anita confirms her location at the Bologna station to Jenny and Tomy,
reassuring them that everything is running smoothly.

Reformatting

Summary: Anita is at Bologna station.

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Table 5: Applying the different contamination techniques to a sample from the SAMSum dataset.

39

Sample

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

Distribution

⟨ some open web text ⟩

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

⟨ some more open web text ⟩

Masking Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

Noising

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Answer: Bey Hive

Reformatting

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Options:
A) The Beehivers
B) The Bey Hive
C) The Beyontourage
D) The Bey Flock

Answer: The Bey Hive

Augmenting

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions. This fervent fan base actively engages with Beyoncé’s music, performances, and
philanthropic endeavors.

Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

Table 6: Applying the different contamination techniques to a sample from the SQuAD dataset.

40

