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Abstract
In traditional research approaches, sensory perception and emotion classification have traditionally been considered
separate domains. Yet, the significant influence of sensory experiences on emotional responses is undeniable. The
natural language processing (NLP) community has often missed the opportunity to merge sensory knowledge with
emotion classification. To address this gap, we propose SensoryT5, a neuro-cognitive approach that integrates
sensory information into the T5 (Text-to-Text Transfer Transformer) model, designed specifically for fine-grained
emotion classification. This methodology incorporates sensory cues into the T5’s attention mechanism, enabling a
harmonious balance between contextual understanding and sensory awareness. The resulting model amplifies
the richness of emotional representations. In rigorous tests across various detailed emotion classification datasets,
SensoryT5 showcases improved performance, surpassing both the foundational T5 model and current state-of-the-art
works. Notably, SensoryT5’s success signifies a pivotal change in the NLP domain, highlighting the potential
influence of neuro-cognitive data in refining machine learning models’ emotional sensitivity.
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1. Introduction

Affective computing stands at the intersection of
technology and human emotions (Li et al., 2017),
whereby sentiment analysis and emotion recog-
nition are generally merged to give machines a
semblance of human-like emotional understand-
ing. Specifically, sentiment analysis (SA) seeks to
decode the attitudes and viewpoints of opinion hold-
ers using computational methods (Lu et al., 2023),
providing a coarse-grained categories of polarities:
positive, negative, or neutral (Long et al., 2019b).
Driven by recent advancements in deep learning
and bolstered by vast labeled datasets, discriminat-
ing sentiments in standard contexts has become
progressively more tractable. Cutting-edge mod-
els, including the likes of BERT (Devlin et al., 2018),
XLNet (Yang et al., 2019), and the T5 (Raffel et al.,
2020) series, have consistently set benchmarks,
achieving high accuracies on an array of sentiment
classification tasks.

By contrast, emotion analysis (EA) has received
less notable results in recent years. One of the
reasons is that different from SA offering a coarse-
grained outlook, EA paints a detailed picture. That
is, EA not only distinguishes between basic senti-
ments but also identifies nuanced emotions such
as joy, anger, sadness, surprise, and among others
(Ekman, 1992). Thus, the task of EA is complicated
by the sheer variety of emotional categories. For in-

stance, distinguishing closely related emotions like
"contentment" and "happiness" or "annoyance" and
"anger" requires a discerning approach, especially
when the medium is textual content. Thus, this
study introduces a SensoryT5 model, tailored to in-
fuse sensory data, which is cognitively more related
to emotions and includes linguistically more en-
riched features, into neural architectures, to achieve
a profound comprehension of emotions.

The relationship between emotion and percep-
tion/sensation has been verified repeatedly in vari-
ous disciplines. From a neuroscientific perspective,
emotion and sensory information are processed in
an overlapping neural region, i.e., the amygdala
(Šimić et al., 2021). Shifting the lens to psychol-
ogy, emotion and perception are intertwined (Zadra
and Clore, 2011). For example, the sense of taste
shows an inherent link with reward and aversion
mechanisms, such as sucrose being perceived as
sweet and desirable, whereas quinine being recog-
nized as bitter and repulsive (Yamamoto, 2008). In
addition, emotion as a kind of interoception forms
an indispensable part of human sensations, when a
wide definition of sensory perception adopted (Con-
nell et al., 2018; Lynott et al., 2020). In terms of
the linguistic conceptualization of emotions, people
more frequently use figurative language instead of
literal emotion terms to convey emotions (Fainsilber
and Ortony, 1987; Lee, 2018), and the conceptual
metaphor EMOTION IS PERCEPTION is grounded
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in abundant language usages to show that the hu-
man senses are fruitful sources for verbalizing emo-
tions (e.g., sweet and bitter) (Lakoff and Johnson,
1980; Kövecses, 2019; Müller et al., 2021).

Given the intertwined relation between emotion
and perception/sensation, this study posits that in-
corporating sensory information into a computa-
tional framework can capture the nuanced interplay
between them, hence offering a reflection of intri-
cate human affective understanding. Specifically,
we utlize the Lancaster Sensorimotor Norms (Ly-
nott et al., 2020), which include language-specific
lexical properties representing the correlation be-
tween conceptualized lexical meanings and sen-
sory modalities.

Our work boasts three pivotal advancements: (1)
We introduce SensoryT5, an innovative architec-
ture that enhances transformer-based fine-grained
emotion classification models by seamlessly em-
bedding sensory knowledge. Marking one of the
pioneering endeavors, SensoryT5 is adapted at har-
monizing both the nuances of contextual attention
and the intricacies of sensory information-based at-
tention. (2) The SensoryT5 leverages sensorimotor
norms within transformer text classification frame-
works, contributing to the ongoing efforts to incorpo-
rate neuro-cognitive data in NLP tasks. Thus, our
work not only demonstrates the practical benefits
of this integration in improving emotion classifica-
tion tasks, but also encourages continued interdis-
ciplinary dialogue and research between the do-
mains of language processing and neuro-cognitive
science. (3) Assessments across multiple real-
world datasets pertinent to fine-grained emotion
classification affirm that our approach amplifies the
efficacy of pre-existing models considerably, even
surpassing contemporary state-of-the-art method-
ologies on selected datasets. This endeavor un-
derscores the value of cognition-anchored data
in sculpting attention models. Our findings illumi-
nate the untapped potential of sensory informa-
tion in refining emotion classification, carving fresh
prospects for exploration within the realm of affec-
tive computing in NLP.

2. Related work

2.1. Emotion analysis

Over recent years, the domain of pre-trained lan-
guage models (PLMs) and large language mod-
els (LLMs) has witnessed marked advancements.
Noteworthy developments include models like
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), GPT-3 (Brown et al., 2020), T5 (Raffel et al.,
2020), PaLM (Chowdhery et al., 2022), LLaMA
(Touvron et al., 2023) and ChatGPT (OpenAI,
2023). These models, through rigorous pre-training

on vast text corpora using self-supervised learning,
have the ability to autonomously generate intricate
representations. This capability has significantly
advanced the field, setting new benchmarks in nu-
merous tasks, notably in sentiment analysis (Devlin
et al., 2018; Zhang et al., 2023). An in-depth explo-
ration by Zhang et al. (2023) elucidated the perfor-
mances of LLMs in sentiment and emotion analysis
tasks. The study has highlighted that, while LLMs
excel over PLMs in few-shot learning scenarios,
PLMs remain superior for more nuanced tasks that
demand a deeper understanding of emotions or
structured emotional data. Among the discussed
models, T5 (Raffel et al., 2020) stands out due to its
innovative ’text-to-text’ transfer approach, in which
every NLP challenge is remodelled as a text-to-
text problem. Consequently, T5 frequently sets the
state-of-the-arts in emotion analysis when utilized
as the base model.

However, despite the considerable improve-
ments made with these PLMs/LLMs, some re-
search gaps remain relatively fulfilled. Present mod-
els, although they possess sophisticated neural
architectures capable of discerning patterns from
immense text datasets, often overlook the intricate
nature of emotion—a dynamic interplay of cognitive
and physiological responses triggered by various
stimuli (Khare et al., 2023). Sensory perceptions,
pivotal in shaping these responses, serve as the
bedrock upon which our cognitive processes evalu-
ate and generate emotions (Niedenthal and Wood,
2019). Integrating these models with sensory data
can potentially elevate their performance, nudging
them closer to approaching human-like comprehen-
sion. This presents a significant research oppor-
tunity: equipping already potent PLMs/LLMs with
an element of sensory perception, an aspect they
conventionally lack. With our proposed SensoryT5
model, our ambition is to fill this gap by synergizing
the strengths of T5 and augmenting it with sensory
knowledge, thereby enabling a deeper and more
nuanced understanding of emotions.

2.2. Cognition-grounded resources:
Sensorimotor norms

In recent years, there is an emergent trend
that neuro-cognitive data and computational ap-
proaches are synergized in NLP studies. This in-
terdisciplinary synergy unlocks new dimensions in
understanding language, sentiment, and emotion,
reflecting more accurately the human experience
and mental processing. For instance, Long et al.
(2019b) improved the attention model for sentiment
analysis by incorporating a eye-tracking dataset.
Chen et al. (2021) incorporated brain measure-
ment data for modeling word embedding. Wan
et al. (2023) demonstrated the superiority of neural
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networks for metaphor detection by leveraging sen-
sorimotor knowledge. These studies collectively
underscore a broader shift in the field towards a
more integrated approach to NLP. By weaving in
neuro-cognitive data, researchers are equipping
computational models with a richer and more intri-
cate understanding of human language and cog-
nition, which are often overlooked by traditional
data-driven methods.

Given the intimate connection between emotion
and perception as demonstrated in various studies
reviewed in the last section, this study assumes
that a cognitively and linguistically motivated repre-
sentation of words in text based on sensorimotor
knowledge would improve the performance of com-
putational models for emotion analysis. That is not
only because sensory inputs are crucial sources of
emotions, but also because emotional responses
are part of sensory perceptions for human beings.

Thus, this study utilizes Lynott et al. (2020)’s
sensorimotor norms which encompass metrics of
sensorimotor strengths (ranging from 0 to 5) of
39,707 concepts spanning six perceptual domains:
touch, hearing, smell, taste, vision, and interocep-
tion, as well as five action effectors: mouth/throat,
hand/arm, foot/leg, head (barring mouth/throat),
and torso. To exploit this wealth of data, Senso-
ryT5 is proposed to construct the sensorimotor vec-
tors from these norms and to seamlessly embed
them into the T5’s decoder mechanism via an aux-
iliary attention layer. Positioned after the decoders,
this sensory-centric attention layer is synergized
with the decoder’s output, producing an enriched
representation brimming with sensory knowledge
for words in text. Thus, SensoryT5 is adapted at
simultaneously discerning contextual cues and sen-
sory knowledge, allowing for a potent alignment of
sensory nuances with contextual intelligence. This
integration augments the model’s efficacy in the
fine-grained emotion classification.

3. Our proposed SensoryT5 model

In this section, we elaborate how our SensoryT5
model incorporates the sensory knowledge into the
neural emotion classification framework. Specifi-
cally, sensory knowledge is infused into the T5 us-
ing an adapter approach built upon attention mech-
anisms. Moreover, the contextual and sensory infor-
mation learning branches are amalgamated within
a unified loss function to facilitate joint training. The
overarching structure is depicted in Figure 1.

3.1. Preliminaries
Despite the relatively large size of the Lancaster
Sensorimotor Norms, there are still many out-of-
vocabulary words. Following the method proposed

by Li et al. (2017), we use a word embedding model
to regressively predict the sensory values of un-
known words, aiming to obtain sensory values for
out-of-vocabulary words.
Inputs and outputs The objective of emotion anal-
ysis is to determine and categorize opinions for a
piece of texts following a defined label schema. Let
D denote a collection of documents for emotion
classification. Each document d ∈ D is first tok-
enized into a word sequence with maximum length
n, then the word embeddings wi of these sequence
are jointly employed to represent the document
d = w1, w2, ..., wi, ..., wn(i ∈ 1, 2, ..., n).

3.2. The core attention mechanism in T5
The word embeddings of these sequence d =
w1, w2, ..., wi, ..., wn(i ∈ 1, 2, ..., n) first enters the
T5. Each layer of the encoder and decoder has a
series of multi-head attention units. The multi-head
attention mechanism for the final decoder layer can
be represented using the following equation:

Vd = MultiHead(Q0,K0, V0)

= [head1,head2, ...,headi]WO

(1)

Where each head is computed as:

headi = Attention(Q0W
Q
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i )(K0W
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i )T√
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)
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(2)
WQ

i , WK
i , and WV

i are weight matrices that are
learned during the training process. They are used
to project the input queries (Q), keys (K), and val-
ues (V ) to different sub-spaces. Q0, K0, and V0 are
derived from the output of the penultimate decoder
layer. Additionally, following the common practice
for text classification with T5, we employ a zero-
padding vector as the sole input for the decoder.
The result Vd is the output of the T5 decoder, im-
bued with context-aware attention. Both Vd and
K0 will be utilized in section 3.4 for integration with
sensory knowledge.

3.3. Sensory information transformation
for T5 integration

We project the Lancaster Sensorimotor Norms into
a sensory word vector space. Each word is linked
with a six-dimensional vector representing sensory
scores across six perceptual modalities (auditory,
gustatory, haptic, interoceptive, olfactory and visual
dimensions). For a word w, its sensory vector is
denoted as s(w) = [s1, s2, ..., s6].

To enable effective integration into the T5-large,
we use two linear transformations followed by a
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Figure 1: An overview of SensoryT5. Blue box shows a T5 process of deep learning, while purple box
describing sensory information is quantified and passed into the T5.

ReLU activation function to map the sensory vec-
tors to the same dimension as the T5-large’s word
embeddings. Given a T5-large model with an em-
bedding dimension of 1024 , the transformation pro-
cess can be formally described as:

h1 = ReLU(W1s(w) + b1) (3)

s′(w) = W2h1 + b2 (4)

where W1 : R6 → R128 and W2 : R128 → R1024

are two linear transformation matrices and b1, b2

are the respective bias terms.The shapes of the
two weight matrices W1 and W2 are respectively
(6, 128) and (128, 1024). The output h1 of the first
linear layer is a vector of shape (1, 128), and the
output s′(w) of the second linear layer is a vector
of shape (1, 1024). After the transformation, the
sensory vector s′(w) is projected into the same
semantic space as the features generated by T5-
large. The output vector s′(w), with Vd and Kd from
the T5, will be applied in section 3.4 for infusing
sensory knowledge into T5.

3.4. Sensory attention mechanism in
SensoryT5

The sensory vector s′(w) generated by the sen-
sory vector transformation is used as the queries
in the attention mechanism of the sensory adapter,
substituting the query vector Q in the T5. The sen-
sory adapter performs the attention calculation as
follows:

Ad = MultiHead(s′(w),K0, Vd)

= [a1, a2, ..., ai]Wd

(5)

where each head is computed as:

ai = Attention(s′(w)WQ
i ,K0W

K
i , VdW

V
i )

= Softmax
(
(s′(w)WQ

i )(K0W
K
i )T√

dk

)
VdW

V
i

(6)
Once the outputAd = a1, a2, ..., an of the sensory

adapter is obtained, we apply dropout and pooling
operations to form a final representation Pd, which
is then used as the input to the classification layer.

Pd = Dropout(Pool(Ad)) (7)

The pooled representation Pd is then fed into the
classifier of the T5.

Cd = Softmax(Linear(Dropout(Pd))) (8)

Cd is a probability distribution vector. The class
with the highest probability is selected as the pre-
dicted label, denoted as y.

The first step of the back-propagation process
involves computing the gradient of the loss function
with respect to the parameters of sensory atten-
tion adapter. ΘA represents the parameters of the
sensory attention layer, and Ad represents the out-
put of the sensory T5. The computed gradient is
used to update the parameters of the attention layer,
enhancing its capacity to integrate sensory infor-
mation into the T5 model. This is computed as
follows:

∂L
∂ΘA

=
∂L
∂Ad

· ∂Ad

∂ΘA
(9)

After the gradients for the sensory attention
mechanism have been computed, we then com-
pute the gradients for the parameters of the final
layer of the T5, denoted as ΘE.
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∂L
∂ΘE

=
∂L
∂Vd

· ∂Vd

∂ΘE
(10)

Finally, the gradients for the sensory information
transformation, denoted as ΘS, are computed as
follows:

∂L
∂ΘS

=
∂L

∂s′(w)
· ∂s

′(w)

∂ΘS
(11)

Here, ΘS represents the parameters of the sen-
sory information transformation component, which
includes the weights and biases of the two linear
layers, and s′(w) represents the output of this com-
ponent. The calculated gradient is used to update
the parameters of the sensory information transfor-
mation to improve its ability to capture and model
sensory information. Through these calculations,
we are able to update the parameters of the sen-
sory attention mechanism, the T5, and the sensory
information transformation component.

4. Experimental evaluation

4.1. Datasets
We have selected four benchmark datasets of vary-
ing sizes to encompass a variety of classification
tasks: Empathetic Dialogues (ED) (Rashkin et al.,
2019), GoEmotions (GE) (Demszky et al., 2020a),
ISEAR (Scherer and Wallbott, 1994) and EmoInt
(Mohammad and Bravo-Marquez, 2017). For the
GE dataset, we exclusively utilize samples with
a single label and omit those that are neutral to
maintain an equitable comparison with prior stud-
ies (Suresh and Ong, 2021a; Chen et al., 2023).
Table 1 presents a summary of key statistics for
these datasets. Our evaluation utilizes two widely
recognized performance metrics: accuracy and the
F1 score, in line with state-of-the-art studies.

Dataset Ntrain Ntest L C
ED 19,533 2,547 18 32
GE 23,485 2,984 12 27
ISEAR 4,599 1,534 22 7
EmoInt 3,612 3,141 16 4

Table 1: Statistics of the four benchmark datasets.
In the table, "Ntrain" and "Ntest" respectively repre-
sent the number of instances in the training and
testing sets. "L" stands for the average text length
within the dataset, and "C" indicates the number of
classes/categories.

4.2. Sensory knowledge
Before conducting the emotion analysis experi-
ments, we conducted a preliminary analysis of our
sensory lexicons from the perspective of sensory

perception value distribution. Figure 2 displays his-
tograms of the six sensory measures across all
words within our model. Notably, the distributions
for these measures are quite unbalanced. Gusta-
tory and olfactory measures predominantly demon-
strate a left-skewed distribution, with most values
ranging between 0 and 1. This suggests that these
two sensory perceptions are less frequently rep-
resented in the textual context. Thus, it might be
challenging to represent gustatory and olfactory
perceptions from text.

In contrast, auditory and visual measures show
a relatively uniform distribution. The auditory mea-
sure is evenly distributed between 0 and 2.5, while
the visual measure ranges between 2 and 4.5.
These distributions indicate a higher sensitivity
of auditory and visual knowledge to textual infor-
mation, which suggests that auditory and visual
senses may play a significant role within sensory
models.

Lastly, haptic and interoceptive measures exhibit
similar trends, declining from about 2500 to 0 as
the values increase from 0 to 5. The decline in the
presence of haptic and interoceptive knowledge
across the general textual context might suggest
that they are less informative sensory dimensions
in the majority of cases.

As discussed in section 3.1, the Lancaster Senso-
rimotor Norms dataset is subject to size limitations,
resulting in a significant number of unknown words
for which corresponding sensory values are unavail-
able. To address this challenge, we adopted the
method proposed by Li et al. (2017) for predicting
sensory values of unknown words through embed-
ding techniques. In our experiments, we utilized
both the T5 embedding and the GloVe embedding
(Pennington et al., 2014b) for this prediction task.

To assess the accuracy of our predictions, we
randomly selected 10% of the Lancaster Sensori-
motor Norms dataset as a validation set and applied
the Root Mean Square Error (RMSE) as the evalua-
tion metric. The experimental results are presented
in Table 2. The results demonstrate that GloVe out-
performs T5 Embedding in predicting each sensory
dimension. To preserve the original features of the
Lancaster dataset to a minimal extent, we opted for
a smaller version of GloVe with 400,000 data points
and 200 dimensions. Following augmentation, our
sensory vocabulary size reached 407,5721

For validating our augmentation, we evaluated
the coverage rates of sensory word vectors be-
fore and after augmentation across all datasets
we employed, as detailed in Table 3. As evident
from the augmentation results, the coverage range
significantly expands in comparison to the original

1The whole dataset of the sensory vocabulary can
be accessed at: https://osf.io/w8yez/?view_
only=0e807dfaa5e6433184e452bfebabd01b.

https://osf.io/w8yez/?view_only=0e807dfaa5e6433184e452bfebabd01b
https://osf.io/w8yez/?view_only=0e807dfaa5e6433184e452bfebabd01b
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Figure 2: Histograms showing the distribution six sensory values over words. X-axis shows the value in
an sensory dimension, while y-axis displays the word density.

Sensory Name T5 Embedding GloVe
Auditory 0.949 0.803

Gustatory 0.632 0.534
Haptic 0.893 0.698

Interoceptive 0.831 0.662
Olfactory 0.572 0.501

Visual 0.842 0.743
Total 0.798 0.665

Table 2: Comparison of prediction accuracy be-
tween T5 Embedding and GloVe techniques on dif-
ferent sensory dimensions, as measured by RMSE
values. Lower scores indicate higher accuracy in
the prediction of sensory values.

data across all datasets. This underscores the en-
hanced impact of integrating sensory information
into the model on the results.

Datasets Lancaster % Exten-Lancaster %
ED 58.23 91.78
GE 46.85 83.91

ISEAR 54.62 78.97
EmoInt 29.65 46.21

Table 3: Word coverage of Lancaster Sensorimotor
Norms before and after expansion using regression
prediction.

4.3. Experiment settings and Baselines
We compare the proposed SensoryT5 primarily
with two group of strong baselines:

PLMs. We compared against BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019) and T5 (Raffel et al., 2020). The ad-
vent of PLMs has marked a significant improvement
across a multitude of tasks in the realm of natural
language processing, including text classification.
This leap in performance is largely due to the deep
and nuanced semantic representations these mod-
els extract from the text, facilitating a more profound

understanding and interpretation of linguistic con-
tent.

Label Embedding-aware models. Suresh
and Ong (2021a) introduced a concept called
label-aware contrastive loss (LCL). This technique
uniquely assigns varying weights to each negative
sample. Importantly, pairs that are more easily
confounded have a higher impact on the objec-
tive function, enhancing outcomes in fine-grained
text classification scenarios. Chen et al. (2023)
proposed HypEmo, a framework enhancing fine-
grained emotion classification by utilizing hyper-
bolic space for label embedding. This model in-
tegrates hyperbolic and Euclidean geometries to
discern subtle nuances among labels effectively.

These two models, LCL and HypEmo, stand as
the most potent in the realm of fine-grained emo-
tion classification, delivering unparalleled results
due to their innovative handling of nuanced label
distinctions and hierarchical intricacies.

Implementation Details. During training, we ap-
plied the Adam optimizer in Euclidean space. We
set the learning rate at a consistent 10−4, main-
taining a balance between rapid adaptation and
the stability of learning, reducing the likelihood of
oscillation or divergence.

4.4. Baseline comparison
To demonstrate the effectiveness of SensoryT5,
we embarked on a comprehensive set of compar-
ative experiments, analyzing its performance in
emotion classification tasks. The comparison is
shown in Table 4. Firstly, we compare SensoryT5
with PLMs. SensoryT5 registers an impressive en-
hancement over T5’s performance, the best of the
PLM contenders. For instance, SensoryT5 exhibits
an increase in accuracy by 0.9% for Empathetic Dia-
logues and 1.3% for GoEmotions, showcasing its fi-
nesse in handling diverse emotional contexts. This
upward trend continues with ISEAR and EmoInt
datasets, where SensoryT5 improves by 0.9% and
1.2%, respectively, over T5.

Secondly, we compare with label-aware system.
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Empathetic Dialogue GoEmotions ISEAR EmoInt
ACC F1 ACC F1 ACC F1 ACC F1

∗BERTlarge 0.557 0.551 0.642 0.637 0.677 0.679 0.848 0.848
∗RoBERTalarge 0.596 0.590 0.652 0.644 0.723 0.720 0.865 0.865
∗XLNetlarge 0.599 0.592 0.641 0.568 0.711 0.711 0.845 0.845
∗T5large 0.609 0.604 0.661 0.657 0.717 0.717 0.863 0.863
†LCL 0.601 0.591 0.655 0.648 0.724 0.724 0.866 0.866
§HypEmo 0.596 0.610 0.654 0.663 0.707 0.712 0.846 0.846
∗SensoryT5 0.618 0.615 0.674 0.670 0.726 0.724 0.875 0.875

Table 4: Evaluation on fine-grained emotion classification, the result with the best performance are
highlighted in bold. Data marked with †are from (Suresh and Ong, 2021b), §from (Chen et al., 2023),
and ∗represents our own results. Note: In §, results from missing datasets (ISEAR and EmoInt) were
supplemented by our experiments.

These two models, LCL and HypEmo, stand as the
most potent in the realm of fine-grained emotion
classification. LCL outperforms T5 in the ISEAR
and EmoInt datasets, while the other datasets un-
der the label-aware system category do not com-
pete favorably with T5. This comparative analy-
sis is critical, considering that LCL utilizes a syn-
onym substitution technique to effectively double
its dataset size. Such an expansion contributes sig-
nificantly to its enhanced performance metrics. In
our experiments, we strictly adhered to using origi-
nal samples without resorting to any form of data
augmentation techniques. Despite this, SensoryT5
surpasses LCL by 0.2% and 0.9% in accuracy on
the ISEAR and EmoInt datasets, respectively. This
margin of improvement, although seemingly nomi-
nal, is quite significant in the context of these tasks.
It underscores the efficacy of our proposed method
of infusing sensory perceptions into the model.

In summary, compared to previous studies, we
have achieved superior results without the neces-
sity for additional data, marking the current pinnacle
in this field. This accomplishment underscores the
effectiveness of SensoryT5.

4.5. Ablation studies

In our efforts to understand the contributions of dif-
ferent components within the SensoryT5 model,
we conducted ablation studies, a critical method-
ological step in assessing the impact of our novel
sensory integration. These studies were also car-
ried out on four datasets. The ablation tests were
structured around three primary configurations:

SensoryT5: Our complete model infusing sen-
sory information.

Random SensoryT5: A variant of our model
where the sensory values were substituted with
random numbers ranging from 0 to 5, maintaining
the same distribution of sensory scores but elimi-
nating their meaningful association with the data.

T5 (None): The baseline model without any
sensory information, representing the standard

PLM approach in fine-grained emotion classifica-
tion tasks.

The result is shown in Figure 3. While the Sen-
soryT5 model exhibited the highest performance
in terms of accuracy across all datasets, the Ran-
dom SensoryT5 configuration yielded lower results
than even the T5. This decrement in performance
was especially pronounced on the more complex
datasets, Empathetic Dialogues and GoEmotions.

The degradation in performance with random
sensory values underscores the importance of
meaningful sensory integration. It is not merely
the presence of additional numerical data that en-
hances the SensoryT5 model’s performance, but
rather the contextually relevant and accurately as-
sociated sensory information that it brings to the
emotion classification task.

Furthermore, the fact that the Random Senso-
ryT5 underperformed compared to the T5 indicates
that arbitrarily added sensory information could in-
troduce noise into the model, disrupting its ability
to correctly interpret and classify emotional con-
tent. This revelation is significant, affirming that the
strategic integration of sensory data is crucial, and
haphazard integration could be counterproductive.

In summary, these ablation studies have con-
firmed the value of our sensory information layer,
as evidenced by the performance drop when this
layer is randomized or removed. This reinforces our
assertion that the SensoryT5’s strength lies in its
ability to simulate a more human-like understand-
ing of textual data, resonating with how humans
perceive emotions through a sensory lens.

4.6. Case study
We conducted a focused case study on the Senso-
ryT5 model using a sentence from the Empathetic
Dialogues dataset: "I get so mad when I see or hear
about kids getting bullied..." In Figure 4, attention
heatmaps display the model’s focus during process-
ing. The SensoryT5 heatmap shows the aggregate
attention for each token in the sensory layer, while
the T5 section compiles attention weights across
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Figure 3: Ablation Study Results. Performance of T5 (None), Random SensoryT5 (with sensory values
randomly assigned), and SensoryT5 across four datasets, evaluated using accuracy as the metric.

Figure 4: The heat values of the final sensory layer in SensoryT5 and the encoder layer in T5 for the
sentence ’I get so mad when I see or hear about kids getting bullied...’ sourced from the Empathetic
Dialogues training dataset.

all encoder layers, subsequently averaging them to
reveal the model’s overall focus. The SensoryT5
model exhibited intensified attention on the emo-
tionally significant phrase "so mad," highlighting
its ability to detect crucial emotional nuances. In
contrast, the standard T5’s attention was more dis-
tributed, less focused on the emotional pivot. This
micro-level analysis reveals SensoryT5’s superior
capability in recognizing emotional cues. Such in-
sights substantiate the efficacy of integrating sen-
sory awareness into language models for improved
emotional discernment.

In summary, our extensive evaluations and com-
parative studies highlight the superior performance
of SensoryT5 over other PLMs based emotion clas-
sification models, including the T5. When bench-
marked against the state-of-the-art methods, Sen-
soryT5 notably surpassed them, establishing a new
standard in the field. Further, our ablation stud-
ies convincingly demonstrate that the effectiveness
of SensoryT5 is attributed more to its integration
of sensory perception than to structural enhance-
ments. This assertion is corroborated by our de-
tailed case studies, which offer a microscopic view
into the instances where SensoryT5’s unique ca-
pabilities are distinctly evident. Collectively, these
findings underscore a breakthrough performance
of SensoryT5 in the realm of fine-grained emotion
classification. Importantly, it signifies a successful
adaptation within the shift towards incorporating

neuro-cognitive data in NLP, validating the premise
that a deeper convergence between sensory data
and language modeling leads to a more profound
understanding of emotional nuances.

5. Conclusion

In this paper, we propose the SensoryT5 model
designed for the fine-grained emotion classifica-
tion. This framework harnesses sensory knowl-
edge, aiming to boost the prowess of transformers
in pinpointing nuanced emotional subtleties. By
integrating sensory knowledge into T5 through at-
tention mechanisms, the model concurrently evalu-
ates sensory cues alongside contextual hallmarks.
Crucially, SensoryT5 exhibits exceptional adapt-
ability and precision, making it a formidable tool
for tasks in Fine-grained Emotion Classification,
including configurations like 32-class, 27-class, 7-
class, and 4-class delineations. Moreover, Sen-
soryT5 serves as a conduit between sensory per-
ception and emotional understanding, embodying
the recent paradigm shift in NLP towards a more
neuro-cognitive approach. It acknowledges and
capitalizes on the intrinsic relationship between our
sensory experiences and our emotional responses,
a connection well-documented in neuro-cognitive
science but often under-explored in computational
fields. By interpreting sensory lexicon through
advanced representation learning, SensoryT5 de-
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codes the implicit emotional undertones conveyed,
mirroring the human ability to associate sensory
experiences with specific emotional states. In rec-
ognizing the entwined nature of cognition, sensa-
tion and emotive expression, SensoryT5 not only
contributes to but also encourages the continuation
of interdisciplinary research efforts. It stands as
testament to the potential of a more nuanced and
integrative approach in NLP, where understanding
language transcends the boundaries of words and
grammar, delving into the very experiences and
perceptions that shape human emotionality.

Limitations

In our work, we utilized GloVe and T5 embeddings
to predict sensory values for unknown words us-
ing a regression method. This approach learns
only from static values. To derive static T5 embed-
dings, we passed all tokens sequentially through
the T5 embedding layer, obtaining a static embed-
ding for each token. This process, however, leads
to a limitation: it compromises the original dynamic
context-embedding capabilities of T5. In T5 embed-
dings, different embeddings are obtained based
on the different contexts. We intended to learn
from these transformer embeddings and then pre-
dict. Additionally, when compared to current state-
of-the-art models in emotion classification, such
as the label embedding-aware HypEmo and LCL,
SensoryT5 exhibits certain inadequacies, partic-
ularly in terms of interpretability. Both HypEmo
and LCL not only surpass SensoryT5 in explain-
ing their decision-making processes but also do
so with fewer parameters. These models, by lever-
aging sophisticated label-aware embedding strate-
gies, provide insights into the nuanced relationships
and hierarchies among labels, something that Sen-
soryT5, with its reliance on static values, strug-
gles to achieve. This gap highlights a significant
area for improvement in SensoryT5, suggesting
the need for an advanced approach that maintains
the richness of context-sensitive embeddings while
enhancing the model’s overall interpretability and
efficiency.
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