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Preface

Welcome to the 5th Workshop on Computational Approaches to Discourse, CODI!

CODI provides a venue to bring together researchers working on all aspects of discourse in Computatio-
nal Linguistics and NLP. Our aim is to provide a venue for the entire discourse processing community
where we can present and exchange our theories, algorithms, software, datasets, and tools.

The workshop consists of invited talks, contributed papers, extended abstracts, and EACL Findings pre-
sentations. We received paper submissions that span a wide range of topics, addressing issues related
to discourse representation and parsing, reference and coreference resolution, summarization, dialogue,
pragmatics, applications, and more. As the workshop is hybrid this year, papers are presented live either
in person or remotely and discussed during live Q&A sessions. We received 28 submissions, including
14 regular long papers, 6 regular short papers and 8 non-archival communications (Findings, extended
abstracts and direct submissions). We accepted 16 articles among the 20 regular submissions and 6 are
presented orally. We also organize two poster sessions this year, in order to encourage discussions.

We thank our invited speakers, Hannah Rohde, Professor in Linguistics & English Language at the Uni-
versity of Edinburgh, who works in experimental pragmatics, focusing on aspects of communication such
as ambiguity, redundancy, deception, and the establishment of discourse coherence. Her presentation is
entitled: Inferences of additional coherence-driven meaning within and across clauses. Our second in-
vited speaker is Manfred Stede, Professor of Applied Computational Linguistics at the University of
Potsdam and head of the Applied CompLing Discourse Research Lab, who works on text structure and
automatic text analysis, currently mainly for social science issues. His presentation is entitled: Connec-
tives and Arguments. They helped us to prepare an excellent and well-rounded workshop program. We
would also like to thank the EACL 2024 workshop chairs Zeerak Talat and Nafise Moosavi who organi-
zed the ACL workshops program.

Finally, we thank our sponsor HITS, Heidelberg Institute for Theoretical Studies https://www.h-its.
org.

The CODI Organizers,

Chloé Braud, Christian Hardmeier, Chuyuan Li, Junyi Jessy Li, Sharid Loáiciga, Michael Strube, and
Amir Zeldes
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Abstract 

Although diagrams are fundamental to 
Rhetorical Structure Theory, their 
interpretation has received little in-depth 
exploration. This paper presents an 
algorithmic approach to accessing the 
meaning of these diagrams. Three 
algorithms are presented. The first of these, 
called Reenactment, recreates the abstract 
process whereby structures are created, 
following the dynamic of coherence 
development, starting from simple 
relational propositions, and combing these 
to form complex expressions which are in 
turn integrated to define the comprehensive 
discourse organization. The second 
algorithm, called Composition, implements 
Marcu’s strong nuclearity assumption. It 
uses a simple inference mechanism to 
demonstrate the reducibility of complex 
structures to simple relational propositions. 
The third algorithm, called Compression, 
picks up where Marcu’s assumption leaves 
off, providing a generalized fully scalable 
procedure for progressive reduction of 
relational propositions to their simplest 
accessible forms. These inferred reductions 
may then be recycled to produce RST 
diagrams of abridged texts. The algorithms 
described here are useful in positioning 
computational descriptions of rhetorical 
structures as discursive processes, allowing 
researchers to go beyond static diagrams 
and look into their formative and 
interpretative significance. 

1 Introduction 

It has been shown that rhetorical structures and 
relational propositions are interchangeable (Potter, 
2023a). The structure of an RST diagram can be 
restated as a relational proposition and relational 
propositions can be returned to RST diagrams. 

Relational propositions, as defined by (Mann & 
Thompson, 1986a, 1986b, 2000),  are implicit 
assertions arising between clauses within a text and 
are essential to the functioning of the text. They can 
be considered as an alter ego of RST relations, with 
each assertion consisting of a predicate (or relation) 
and two variables (representing a satellite and 
nucleus). Because the predicate notation developed 
for relational propositions is Python conformant 
(Potter, 2023a, 2023b), mapping RST diagrams to 
relational propositions opens the possibility of 
exploring rhetorical structures algorithmically, 
presenting a range of analytic possibilities. The 
immediate effect of rendering RST diagrams as 
code is to unlock the picture: If, as the saying goes, 
a picture is worth a thousand words, the diagram 
now becomes a movie. It is a story about what is 
happening in a text. The objective of the research 
described in this paper was to investigate some of 
these possibilities.  

Three algorithms are presented, each addressing 
a distinct aspect of Rhetorical Structure Theory. 
The first of these is called Reenactment. This 
algorithm replays the abstract process of structure 
formation, demonstrating the step-by-step 
construction of discourse formation starting with 
elementary relational propositions, and combining 
these to form complex expressions which are in 
turn integrated to define the comprehensive 
discourse organization. The second algorithm, 
referred to as the Composition algorithm, 
implements Marcu’s strong nuclearity assumption 
and demonstrates the reducibility of complex 
structures to simple relational propositions. The 
third algorithm, called Compression, picks up 
where Marcu leaves off, providing a generalized 
scalable method for progressive reduction of 
relational propositions down to their simplest 
possible forms. 

These algorithms provide the opportunity for a 
direct and deep look into information implicit in 
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RST diagrams. A benefit of this is that it should set 
aside any notion that RST diagrams are incapable 
of articulating in-depth aspects of discursive 
development, or that they are merely static 
specifications (Martin, 1992). On the contrary, 
although RST is only a partial explanation of 
discourse coherence, the part it plays is an 
important one. If we can restate RST diagrams in 
computational terms and allow these terms to 
describe what a diagram is doing, then perhaps we 
can begin to enjoy a deeper appreciation for what 
they are telling us about the text, and that these 
diagrams, far from static depictions of discourse 
structure, are actually renderings of a dynamic 
process, showing how a discourse germinates from 
its elementary units to become a whole that is 
greater than its parts. 

2 Framework 

The interlocking property of rhetorical structures, 
where a satellite’s support for a nucleus creates a 
span which in turn becomes the satellite for yet 
another nucleus, suggests that the typical rhetorical 
relation is rhetorically transitive, with the 
consequence that their intended effects develop 
cumulatively across complex structures, ultimately 
converging on an identifiable locus of effect. This 
abstract process is an assumption of the research 
described here; otherwise, the algorithms would 
fail to achieve produce their expected results. 
Potter’s (2023a) algorithm for transforming RST 
analyses into relational propositions is used to 
provide the input for this framework. Throughout 
this process, these propositions maintain their 
structural isomorphism with RST diagrams.  

Marcu’s strong nuclearity assumption, also 
known as the strong compositionality criterion, 
says that when two complex text spans are 
connected through a rhetorical relation, the same 
rhetorical relation holds between the nuclei of the 
constituent spans (Marcu, 1996, 2000). This means 
that from relations between spans, simple 
structures may be inferred. The algorithmic 
implementation of this supports its application to 
RST analyses of any size. The reenactment 
algorithm implements a bottom-up perspective on 
RST structures by enacting the dynamic process of 
structure development, starting with elementary 
relational propositions, and combining these to 
form a complex expression ultimately of the 
comprehensive discourse organization. The 

Compression algorithm implements a technique 
previously proposed by Potter (2023b). As a 
generalization of strong nuclearity, it progressively 
eliminates the precedent satellite within the RST 
nuclear path to reduce the relational proposition to 
its simplest possible expression. The technique 
specifies delimited transitivity for handling 
multinuclears and unrealized relations. Taken 
together the three algorithms provide a 
foundational set of capabilities for analyzing 
rhetorical structures and exploring various features 
of the theory, such as inference, transitivity, 
reducibility, intentionality, and structural 
dynamics. In short, the algorithms can be used for 
investigating a range of discourse characteristics 
following a well-defined algorithmic approach. 
These algorithms are neither large nor complex. 
They are of interest more  for what they do rather 
than for how they do it. What they do is offer 
insights into the nature of discourse. How they do 
this is largely reliant on the representation of RST 
structures as Pythonic relational propositions. I 
believe their simplicity is a by-product of the 
alignment of the theory with the discursive 
organizations it describes. 

3 Related Work  

While the literature on Rhetorical Structure Theory 
is vast, only a rather narrow strand of that research 
is relevant to this study. This naturally 
encompasses the founding RST documents, 
including but not limited to Mann and Thompson 
(1988) and Mann and Thompson (1987). These 
publications define Rhetorical Structure Theory 
(RST) as a descriptive theory of text organization, 
as a tool for describing and characterizing texts in 
terms of the relations that hold among the clauses 
within a text. A detailed exemplification of the 
theory can be found in Mann, et al.’s (1992) 
analysis of a fund-raising text. Matthiessen and 
Thompson (1987) provide an in-depth discussion 
of the theoretical foundations of RST.  

Of continuing research interest in RST has been 
the possibility that it could be used as a text 
summarization technology. Most prominent in this 
area has been the works of (Marcu, 1997, 1998a, 
1998b, 1998c, 1999, 2000). There has also been 
ongoing work in extending and refining the RST 
relation set. Generally this has been aimed at 
enhancing the ability of parsers to correctly identify 
relations while at the same time increasing the 
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specificity of relations (Carlson & Marcu, 2001; 
Zeldes, 2017).  

Other research has been aimed at enriching the 
theory. In particular, Marcu is known for 
articulating the aforementioned strong nuclearity 
assumption. Stede (2008) explored the problems of 
nuclearity. In his investigation of different types of 
salience phenomena, he found that nuclearity as 
defined in RST tends to conflate information from 
different realms of description within a single 
structure. He proposed a multilevel analysis 
approach that would reconcile these issues. A 
variety of formalisms have been developed that 
would address limitations in RST (e.g., Asher & 
Lascarides, 2003; Webber & Prasad, 2009; Wolf & 
Gibson, 2005). An assumption made for this paper 
is that the theory and practice of RST is sufficiently 
well developed as to produce useful and interesting 
analyses. 

In a parallel but lesser-known universe is the 
theory of relational propositions. This theory is an 
antecedent to the conceptualization of RST. With 
relational propositions, relations between satellites 
and nuclei are treated as implicit coherence-
producing assertions (Mann & Thompson, 1986b). 
A relational proposition consists of a predicate and 
a pair of arguments. The predicate corresponds to 
the RST relation, and the arguments correspond to 
its satellite and nucleus. A shortcoming in the early 
work in relational propositions was its limitation to 
elementary expressions. There were no provisions 
for complex structures. Mann and Thompson 
(2000) attempted to address this but without 
success. That leaves off where this research begins. 

Potter (2019a, 2023b) devised a functional notation 
to support representation of complex relational 
propositions. The original objective was to develop 
a deductive interpretation of RST, one that would 
support investigation of logical operations such as 
transitive implication in discourse. That work 
provided an initial proof of concept for the 
algorithms described in this paper. However, rather 
than rely on propositional logic, the discourse 
features of interest were accessed directly.  

This was expedited by using Potter’s (2023a) 
program for mapping of RST diagrams to relational 
propositions. Automating this step enables 
scalability, reduces the likelihood of error, and 
eliminates a lot of tedium. Because the notation 
used for these relational propositions is conformant 
with the Python programming language, the 
algorithm effectively converts a diagram into 
machine processable code. An RST analysis like 
the Arithmetic analysis shown in Figure 1 can be 
automatically converted to its relational 
proposition: 

 
concession( 
   condition( 
      2,1), 
   evidence( 
      condition( 
         5, 
         concession( 
            7,6)), 
      antithesis( 
         4,3))) 

 
These encoded relational propositions are the 
drivers for the algorithms described here. Each 
relation has a corresponding function within the 

 

Figure 1: Reenacting a Rhetorical Structure (text from Cheng, 
2022) 

condition(2,1)
concession(7,6)
condition(5,concession(7,6))
antithesis(4,3)
evidence(condition(5,concession(7,6)),antithesis(4,3))
concession(condition(2,1),evidence(condition(5,concession(7,6)),antithesis(4,3)))
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code, called a relation handler, so that performance 
of the relational proposition causes execution of the 
defined functions. 

4 Algorithmic Analyses of Rhetorical 
Structures 

As introduced earlier, this paper describes three 
algorithms for analyzing rhetorical structures. 
Reenactment models the bottom-up production of 
discourse organization. Composition implements 
Marcu’s (2000) strong nuclearity. And 
Compression leverages the asymmetry of RST 
relations to implement transitive inference directly 
into relational propositions.  

Each of these algorithms uses Pythonized 
relational propositions as input. For each algorithm 
there is a set of functions called relation handlers, 
one handler per relation. Typically, these functions 
return a tuple-formatted relational proposition, i.e., 
the name of the relation and a nested tuple 
containing satellite and nucleus identifiers, 
including the relation names and tuple information 
for any relational propositions nested within them. 
At runtime the handlers are invoked in order of 
precedence as specified by the relational 
proposition. Each algorithm defines a collector 
function that manages the values returned by the 
relation handlers. The output consists of one or 
more relational propositions, constituting the 
reenactments, inferences, or compressions as 
determined by the algorithm.  

Input to each algorithm starts with RST analyses 
created using RSTTool or RST-Web (O'Donnell, 
1997; Zeldes, 2016). These analyses are 
transformed into relational propositions using 
Potter’s (2023a) conversion tool. The relational 
propositions are then input to the algorithms which 
transform them into reenacted, inferred, or 
compressed relational propositions. These 
relational propositions may be analyzed as is, or 
they may be used to construct new RST analyses. 
The following sections provide detailed 
descriptions of the algorithms and their 
applications.1 

4.1 Reenactment Algorithm 

The hierarchical appearance of RST diagrams 
encourages the impression of top-down tree 
structures. But these trees do not sprout branches as 

 
1 https://github.com/anpotter/aaars 

it were from a root, branch, or stem. On the 
contrary, from a functional perspective, the 
diagrams are upside down: the segment nodes at 
the lower part of the diagram combine to form 
composite structures. These composite structures 
become increasingly complex at higher levels of 
the diagram. Although a completed diagram might 
seem to depict a static situation, what is revealed 
there is the end-state of a dynamic process. By 
modeling the abstract bottom-up process of 
discourse organization, the reenactment algorithm 
provides guidance for reading RST diagrams. The 
replay of a rhetorical structure shows how 
elementary discourse units combine logically to 
form relational propositions and how these 
propositions combine with other relational 
propositions to create increasingly complex 
expressions until a comprehensive analysis 
emerges. It is this comprehensive analysis that is 
modeled in an RST analysis.  

The reenactment algorithm performs a bottom-
up evaluation of a nested relational proposition. 
The design of the algorithm is simple. A relational 
proposition is evaluated as a Python expression. A 
relation handler is invoked whenever the relation 
occurs within an expression. These relation 
handlers convert a relational proposition from code 
to data. The function returns the name of the 
relation and a nested tuple containing identifiers for 
its satellite and nucleus. The contents of the tuple 
reflect the depth of the nesting of the relational 
proposition. The tuple representation of the 
relational proposition is assembled in precedence 
order, working from the inside out. The replay 

 

Figure 2: A Fully Compressible Analysis 

evidence(volitional_cause(circumstance(2,3),4),1)
evidence(volitional_cause(3,4),1)
evidence(4,1)
1

4
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manages the recursion of the expression and 
collects the output. 

As the function makes its way through the 
relational proposition, it constructs the expression 
as it goes. In other words, it performs the relational 
proposition. A completed relational proposition can 
thus be thought of not as a static entity but as the 
result of an abstract process. And because relational 
propositions are isomorphic with their respective 
RST diagrams, the interpretation of the diagram 
can be understood as consistent with the 
performance of the relational proposition. As the 
reenactment in Figure 1 shows, RST structures 
define themselves from elementary relational 
propositions which combine to form complex 
expressions, enacting a logical process through 
which rhetorical intentionality emerges. This 
abstract process follows the precedence of the 
relational proposition.  

4.2 Composition Algorithm 

The composition algorithm is an implementation of 
Marcu’s strong compositionality criterion. The 
criterion states that any relation between two spans 
will also hold between the nuclei of those spans 
(Marcu, 2000). Thus, simplified structures may be 
inferred from complex structures. In discussions of 
the criterion, it seems to be assumed that both the 
satellite and nucleus are themselves complex spans 
(e.g., Das, 2019; Demberg, Asr, & Scholman, 
2019; Egg & Redeker, 2010; Marcu, 1996; Sanders 
et al., 2018; Stede, 2008). However, for the 
criterion to be delimited in this way suggests that 
relations between elementary units and relations 
between complex spans are in some way 
fundamentally different from one another. While 
there would be no difficulty in limiting the 
algorithm to comply with this, I have adopted a 
broader interpretation: nuclearity arises as a result 
of the relation of a unit or span to some other unit 
or span; hence the criterion is more broadly 
applicable. The only constraint is that at least one 
part of the relation be a span. Otherwise, any 
inference would be a simple repetition. Thus, the 
algorithm as written permits inferences in which 
either the satellite or the nucleus is an elementary 
unit, so that, for example, from the relational 
proposition: 

 
volitional_cause( 
   circumstance( 
      2,3),4) 

 
the algorithm makes the inference:  
 

volitional_cause(3,4) 
 

The algorithm evaluates the relation handlers for 
the relational proposition, collects the relational 
tuples, and determines which of those meet the 
compositionality criterion. The set of inferences 
generated from the RST analysis shown in Figure 
1 are listed in Table 1. 

4.3 Compression Algorithm  

The compression algorithm is a procedure for 
progressive reduction of relational propositions to 
their simplest accessible form. By evaluating the 
expression in precedence order, the expression is 
progressively reduced from the innermost 
relational propositions outward. With each iteration 
the relation and satellite of the precedent 
proposition is eliminated. In effect, the relational 
proposition collapses inward. Usually, but not 
always, the ultimate reduction will be the single 
elementary discourse unit identifiable as the locus 
of intended effect. When not, it will be the simplest 
accessible relational proposition containing the 
nucleus that would have been the locus of intended 
effect, were that relation realizable. In other words, 
the algorithm takes the compression as far as it can, 
and yet acknowledges that some relations are by 

 

Table 1:  Inferences Generated by Composition 
Algorithm 

InferenceRelational Proposition
6concession(

7,6)
condition(5,6)condition(

5,
concession(

7,6))
3antithesis(

4,3)
evidence(concession(7,6),3)evidence(

condition(
5,
concession(

7,6)),
antithesis(

4,3))
concession(1,antithesis(4,3))concession(

condition(
2,1),

evidence(
condition(

5,
concession(

7,6)),
antithesis(

4,3)))
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definition or by position resistant to reduction. The 
Tax Program analysis (Figure 2, above) provides a 
simple example of a fully compressible analysis. 
With each step, the innermost relation and its 
satellite are eliminated. The CIRCUMSTANCE and 
its satellite are dropped first. Next VOLITIONAL-
CAUSE and its satellite are dropped, followed by 
elimnating the satellite from the EVIDENCE 
relation, ultimately leaving only segment 1: the 
program as published for calendar year 1980 
really works. Applying this procedure to a variety 
of RST analyses has yielded positive results. 
However, not all RST analyses are as simple as the 
Tax Program.  

Some relations are not compressible and require 
special treatment. These include multinuclears, 
relations with unrealized satellites, and attribution 
relations. While multinuclears may seem 
syntactically and semantically simple, they present 
complications. The nuclei within a multinuclear 
relation may consist solely of elementary discourse 
units, but quite commonly these nuclei are complex 
relational propositions that must themselves be 
reduced. So, on one level multinuclears may be 
treated as unanalyzable virtual units, but on the 
other, it is necessary to analyze the members of the 
relation, subjecting each to the compression 
process.  

Relations with unrealized satellites include 
CONDITION, PURPOSE, UNLESS, and OTHERWISE. 
Unrealized relations do not permit inference or 
realization of the nucleus from the satellite. With 
the CONDITION relation the satellite presents a 
hypothetical, future, or otherwise unrealized 
situation such that realization of the nucleus is 

dependent on it. Hence the nucleus remains 
hypothetical. Similar dependencies hold for 
UNLESS and OTHERWISE. With PURPOSE, the 
nucleus is an activity that must be performed in 
order for the satellite to be realized. The relation 
between the satellite and nucleus holds but has not 
been realized. The compressibility of these 
relations depends on their position within a 
relational proposition. If the relation is positioned 
as the satellite of a relational proposition, it may be 
eliminated, but if it is the nucleus, it may not. This 
is because the process of reduction involves the 
progressive elimination of satellites. This, 
particularly when combined with multinuclear 
relations, can result in structures that are resistant 
to compression. The New Brochure Time analysis 
shown in Figure 3 is an example of this. There the 
OTHERWISE relation cannot be reduced because 
neither the satellite nor the nucleus is realized. 
SAME-UNIT is a pseudo-relation used for linking 
discontinuous text fragments that are really a single 
discourse unit. It is modeled on the multinuclear 
schema. The compression completes after only one 
reduction.  

Alternatively, it can be useful to relax the 
reducibility constraint in order to focus on 
intentional development. For example, this can be 
of interest when the unrealized relations involve 
actions that might be taken by the reader. This is the 
case for the CONDITION and OTHERWISE relations 
for the New Brochure Time analysis shown above 
in Figure 3, presumably the writer of the text 
expected that these conditions would hold for to 

 

 

Figure 3: A Partially Compressible Analysis 

justify(cause(1,2),otherwise(6,same_unit(condition(4,3),5)))
justify(2,otherwise(6,same_unit(condition(4,3),5)))
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some readers. With the constraints removed, the 
analysis reduces to same_unit(3,5), or 
Anyone…should have their copy in by December 1. 

Sometimes, as a compression proceeds, a non-
compressible relation will be shifted from a nuclear 
to a satellite position.  When this occurs, the 
relation can be eliminated. This can be observed in 
the process shown in Figure 4. There are two 
SEQUENCE relations in the analysis, one as satellite 
and the other as nucleus of an ELABORATION 
relation. When the ELABORATION is eliminated, it 
takes with it its satellite, thus eliminating the first 
of the SEQUENCE relations. The remaining 
SEQUENCE is now satellite to the INTERPRETATION 
relation, making it eligible for elimination, which 
occurs when it becomes the precedent relational 
proposition. The status of the ATTRIBUTION 
relation has been debated from time immemorial, 
so perhaps it is fitting that it should require special 
attention here. Mann and Thompson (1987) 
rejected it as a legitimate relation, but it was 
subsequently instated and refined by Carlson and 
Marcu (2001), as well as by Zeldes (2023), and yet 
provisionally rejected by Stede, Taboada, and Das 
(2017) and reduced to alternative relations by 
(Potter, 2019b). For the present research, ours is not 
to reason why, but rather to process any and all 
analyses as they presented. ATTRIBUTION is treated 
(at least optionally) as irreducible in part because 
sourcing of information is often part of the intended 
effect, particularly when the intention of the 
attributed material differs from that of the writer.  

In order to assess the algorithm’s applicability 
over larger texts, the compression algorithm was 
tested on several analyses from the GUM corpus 
(Zeldes, 2017). Because these analyses make 

frequent use of multinuclear relations, this resulted 
in reduced compressibility, so that the results are 
sometimes lengthy in their own right. Code was 
added to the algorithm to enable recovery of 
compressed texts. The results of this suggest 
coherence is preserved, albeit with some 
irregularities in surface cohesion and punctuation. 
For the GUM Academic Thrones analysis, the 
original contains 87 segments, and compression 
reduced this to 17 segments. The compressed text 
was mapped to its relational proposition to create 
an RST analysis relationally consistent with the 
source. The compressed text generated by the 
compression is shown in Figure 5. For readability, 
line breaks were inserted for each of the 
ORGANIZATION-HEADING relations. This text, 
along with the relational proposition, was used to 
create the RST analysis shown in Figure 6. The 
original segment identifiers are preserved for 

 

Figure 4: Reduction of Multinuclear Relations (Adapted from Lu et al., 2019) 

 
Figure 5: Academic Thrones Compressed Text  

 

AComparative Discourse Analysis of Fan Responses to Game of
Thrones

For us , as digital humanists , defining the “ transmedia fan ” is of
particular relevance

Methodology

As a first step the current project undertakes a comparative
discourse analysis of online conversations of Game of Thrones
fans . As a pilot project , the current work takes the content of
both comment threads and analyzes each thread separately
Through this analysis , a categorization of themes emerges A
comparison of categories and sub-categories between both
groups provides preliminary findings to support an emergent
model , or models , of the “ transmedia fan ” .

Conclusion

The present research represents a first step The question is ,
fundamentally , an examination Future research should explore
the negotiation tactics The current study will contribute to the
development of further qualitative and quantitative research This
project is of relevance to researchers in media studies , fan
studies , information studies and digital humanities.
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reference. The rhetorical structure as well as the 
text survived the compression process. For the 
complete original text, see Forcier (2017). 

The compression algorithm supports a 
longstanding view about nuclearity: simple 
summarizations should be possible merely by 
lopping off satellites. Moreover, this is reflected in 
a limitation that surfaced during testing. In analyses 
of longer documents where the JOINT relation and 
its variants are necessary to hold the structure 
together, guideposts such as ORGANIZATIONAL-
HEADING become helpful for assuring readability. 
This is as true for the compressions as it is for the 
original texts.  

 In compressions of longer texts, such as the 
GUM analysis of Nancy Pelosi’s speech on George 
Floyd, where such guideposts are lacking, minor 
digressions which work well in the original spoken 
medium become difficult in the transcript, and 
these difficulties are apparent in the compressions. 
That these reflect the features of the original should 
be understood as an affirmation of RST as an 
explanation of discourse coherence. The features of 
the document are carried forward through multiple 
layers of analysis.  

As to whether the compression algorithm’s 
contribution provides anything new or unique, I 
would argue that it affirms claims often left to 
intuition, and that it does so in a systematic and 
repeatable manner. The code is freely available to 
anyone who cares to take it for a test drive. 
Moreover, the approach is generalizable to other 
RST problems – once their solutions can be stated 
algorithmically, they can be readily evaluated and 
applied to a wide range of cases.  

5 How it Works 

The algorithms described here all share a common 
design. Each consists of two parts: a set of relation 
handlers and a core algorithm. A handler is 
provided for each relation in the RST relation set. 
These handlers are functions evaluated in response 
to each occurrence of their corresponding relation 
in a relational proposition. They are simple one-
liners. Each handler returns a tuple containing the 
function’s name and a nested tuple containing its 
satellite and nuclear identifiers. The functions 
obtain their names at runtime using a system call. 
Thus, in the reenactment and composition 
algorithms, an occurrence of the relational 
proposition concession(1,2) will return the 
tuple: ('concession',(1,2)), and an occurrence 
of the relational proposition evidence(3, 
concession(1,2)) will return the tuple: 
('evidence',(3,('concession',(1,2))) 

When a relational proposition is evaluated, each 
handler is called in precedence order, with each 
function returning its name and arguments to the 
calling function. In this way, the program 
essentially performs the relational proposition, 
starting with the innermost (hence higher 
precedence) functions, working outward to the 
edges of the expression. The reenactment 
algorithm exploits that process. 

The compress algorithm is only slightly more 
complicated. Each of its relation handlers makes a 
call to the core compression algorithm, passing it 
its relation name and arguments. Special handling 
for nonreducible relations is specified syntactically 
in the handler functions. The evaluation of the 

 

Figure 6: Compressed GUM Academic Thrones RST Analysis 
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relational proposition shown at the top of Figure 7 
invokes each of the cited relation handlers and each 
of these call the compress function, first 
circumstance, followed by volitional_result, 
antithesis, concession, evidence, and finally 
the outermost relation, background. This leaves 
little for the core algorithm to do. Since 
multinuclears are non-compressible, the algorithm 
simply formats them and returns the formatted 
expression. For compressible relations, the 
algorithm simply replaces the current relational 
proposition with its nucleus, thus for each step 
eliminating the relation and satellite. Functionally, 
it infers the nucleus from the relational proposition. 
This is consistent with Marcu’s strong nuclearity 
assumption. Because this process is implicit within 
the relational proposition, we can say it is also 
implicit within the RST diagram from which the 
proposition is derived, and therefore inferable from 
within the text itself. Figure 7 shows the complete 
code for the compress algorithm. For space 
reasons, the list of relation handlers has been 
limited to what is required for the example.  

6 Conclusion 

An RST analysis can be understood as an 
explanation of the organizational composition of a 

text. By identifying the text structure, by showing 
how its elements come together, an RST analysis 
explains how the text accomplishes what it is 
intended to do. The algorithms described in this 
paper contribute to that explanation. Reenactment 
is a step-by-step articulation of coherence 
development. The composition algorithm identifies 
relational propositions implicit within the text. The 
compress algorithm performs a deconstruction of 
the structure from its totality down to its intentional 
essence. These algorithms show that rhetorical 
structures can be studied in terms of their relational 
propositions. The relational propositions generated 
by the algorithms are inferences which follow 
directly from the source rhetorical structure. For 
each inference there is an isomorphic RST analysis 
and a corresponding text, that is, a structure within 
the structure and a text within the text.  Thus, these 
simple algorithms provide interpretations of 
rhetorical structures as discursive processes, 
enabling the analyst to move beyond static 
diagrams and study formative and interpretative 
features of rhetorical structure. By positioning the 
algorithms within the framework of relational 
propositions, considerable simplicity is achieved. 
The algorithms extend the scope of RST as a tool 
for explaining discourse organization. 

 
Figure 7: How it Works 

Input relational 
proposition

Relation handlers

Core algorithm

Compression 
output
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Abstract

Good scientific writing makes use of specific
sentence and paragraph structures, providing a
rich platform for discourse analysis and devel-
oping tools to enhance text readability. In this
vein, we introduce SciPara1, a novel dataset
consisting of 981 scientific paragraphs anno-
tated by experts in terms of sentence discourse
types and topic information. On this dataset,
we explored two tasks: 1) discourse category
classification, which is to predict the discourse
category of a sentence by using its paragraph
and surrounding paragraphs as context, and 2)
discourse sentence generation, which is to gen-
erate a sentence of a certain discourse category
by using various contexts as input. We found
that Pre-trained Language Models (PLMs) can
accurately identify Topic Sentences in SciPara,
but have difficulty distinguishing Concluding,
Transition, and Supporting Sentences. The
quality of the sentences generated by all investi-
gated PLMs improved with amount of context,
regardless of discourse category. However, not
all contexts were equally influential. Contrary
to common assumptions about well-crafted sci-
entific paragraphs, our analysis revealed that
paradoxically, paragraphs with complete dis-
course structures are less readable.

1 Introduction

Writing a scientific paper that is understandable to
readers is a challenging task. Well-written scien-
tific papers not only facilitate the comprehension
of scientific discoveries but also reduce the risk of
disseminating inaccuracies and misconceptions in
research (Freeling et al., 2021).

As a rhetorical unit of writing, paragraphs con-
tain valuable information regarding the logical and
narrative connections among sentences (Nunan,
2015). Scientific papers with many well-written

1Code and data are available at https://github.
com/annamkiepura/SciPara.

[A typical COVID-19 policy in China provides coverage ranging

from RMB100K to 200K (about USD15,384 to 30768, using the

exchange rate as of December 31, 2020) with a duration of 1

year.]topic [The policy can cover related hospitalization expenses

and include a lump-sum benefit when the insured is diagnosed

as being in a serious condition or in the event of death or

disability.]supporting [The insurance policy takes effect the day

after sign-up, but is subject to a 1-week waiting period to

mitigate adverse selection.]transition

para. topic attr. 1

attr. 2

attr. 3

attr. 4

attr. 5

para. topic

para. topic

Figure 1: An example (taken from Feng et al. (2023))
annotated paragraph with one Topic Sentence (green),
one Supporting Sentence (grey), and one Transition
Sentence (blue). The paragraph topic is indicated in red
and the topic attributes are indicated in orange.

paragraphs are easier to understand. In those para-
graphs, related sentences are grouped and infor-
mation is stitched in a thematically progressing
manner (Weissberg, 1984).

In recent years, significant efforts have been di-
rected at utilizing NLP technologies to process and
comprehend scientific texts. For instance, research
has focused on automatic summarization (Gu et al.,
2022), text generation (Hu and Wan, 2014; Wang
et al., 2019; Chen et al., 2021), as well as argu-
ment mining and discourse analysis (Fergadis et al.,
2021; Gao et al., 2022; Achakulvisut et al., 2019),
all in the context of scientific papers. However,
few efforts have been devoted to identifying well-
written scientific paragraphs from the perspective
of discourse structure.

In this work, we propose Scientific Paragraphs
(SciPara), a novel dataset specifically curated for
studying the structure of scientific paragraphs. Sci-
Para is a collection of scientific paragraphs that
have been manually annotated by professional ed-
itors with strong biomedical backgrounds. The
annotations include paragraph-level discourse com-
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pleteness, sentence-level discourse categories, and
word-level occurrences of the paragraph topic. By
training various language models on SciPara, we
address the following research questions (RQs):

RQ1 Can language models distinguish sentences
of different discourse categories?

RQ2 Can Topic, Concluding, and Transition Sen-
tences be generated from the rest of the correspond-
ing paragraphs?

RQ3 Are paragraphs with complete discourse
structure more readable?

Our main contributions are as follows: 1) We
propose a manually annotated dataset of scientific
paragraphs, which is, to the best of our knowledge,
the first dataset specifically designed for the study
of the discourse structure of scientific paragraphs;
2) We fine-tune language models to perform sen-
tence classification and generation tasks on our
dataset; 3) We perform an in-depth analysis of the
paragraph discourse structure with respect to our
experimental results.

2 SciPara: A New Dataset for Discourse
Structure of Scientific Paragraphs

Our goal is to facilitate the analysis of scientific
paragraph discourse structure on two levels:

Sentence level How do individual sentences re-
late to the paragraph’s discourse structure?

Subsentence level What are the paragraph’s
topic and its corresponding attributes?

In this section, we outline the protocol given to
the annotators for creating SciPara (see Figure 2a).

2.1 Initial paragraph filtering

To preserve the coherence of the paper’s narrative,
annotators processed paragraphs in their order of
occurrence. We instructed annotators to skip para-
graphs that had parsing errors, such as incorrect
sentence splits, or that contained less than three
sentences. The annotators were required to label
such paragraphs as “Bad Parse” and “Too Short”
respectively.

2.2 Sentence-level annotation

We tasked annotators with categorizing each sen-
tence of a paragraph into one of the following six
discourse categories:

Topic Sentence A sentence that encapsulates the
central theme of the paragraph. The information
presented in a Topic Sentence is typically expanded
upon in the other sentences of the paragraph (Mc-
Carthy et al., 2008).

Supporting Sentence A sentence that bolsters
the Topic Sentence(s) with relevant information
such as explanations, elaborations, and examples.

Concluding Sentence A sentence that summa-
rizes and closes the narrative of the paragraph.

Transition Sentence A sentence that connects
the current paragraph to the next paragraph, thereby
maintaining the coherence of the paper.

Off-Topic Sentence A sentence that lacks infor-
mation pertinent to the topic of the paragraph.

Redundant Sentence A sentence whose content
has already been stated in an earlier sentence of the
paragraph.

We refer to paragraphs with at least one Topic
Sentence and at least one Concluding or Transition
Sentence as paragraphs with complete discourse
structure. All other paragraphs are considered to
have an incomplete discourse structure (see Table
2).

During the annotation, a few paragraphs turned
out to have no Topic Sentences. We instructed
annotators to halt the annotation of such paragraphs
and to proceed to the next.

2.3 Subsentence-level annotation
The annotators then moved on to the subsentence-
level task, see Figure 2b. The first step was to
identify noun phrases in the Topic Sentence(s) that
pertained to the topic of the paragraph. Inspired by
Ajjour et al. (2023), we defined the paragraph topic
hierarchically:

Topic Ontology A noun phrase that best encap-
sulates the topic of the paragraph.

Topic Attribute A noun phrase that describes an
aspect of the Topic Ontology.

We allowed for exactly one Topic Ontology and
up to seven unique Topic Attributes per paragraph.
A handful of paragraphs had multiple Topic Sen-
tences; however, in all cases, the multiple Topic
Sentences had the same Topic Ontology and Topic
Attributes.

Next, the annotators identified all re-occurrences
of the paragraph topic (both Topic Ontology and
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Topic Attributes) in the other sentences of the
paragraph. Re-occurrences could be either exact
matches or semantically similar noun phrases.

When a sentence s did not contain the paragraph
topic, we asked annotators to identify links between
s and the other sentences of the paragraph. Links
are noun phrases that can be found in both s and
at least one other sentence of the paragraph that
contains the paragraph topic annotations. Finally,
we asked annotators to label sentences that contain
neither the paragraph topic nor links as “Off-Topic
Sentences”.

2.4 Data sources
We obtained 62 scientific papers from two datasets:
Semantic Scholar Open Research Corpus (S2ORC)
(Lo et al., 2020) and Europe PMC2. S2ORC is a
comprehensive repository consisting of 81 million
scientific papers in English. Europe PMC is an
open-access repository containing 43 million pub-
lications and preprints enriched with links to sup-
porting data, reviews, and other relevant sources.

We investigated paragraphs from INTRODUC-
TION and DISCUSSION sections only. This is be-
cause these sections aim to deliver narratives, as
compared to, say, RESULTS sections, which typ-
ically aim to list but not necessarily analyse the
papers’ findings (Nair et al., 2014).

Due to the need for clear sectioning, we only
used papers from the fields of medicine and
biomedicine. Papers from such fields often follow
the IMRaD format and contain INTRODUCTION,
METHODS, RESULTS, and DISCUSSION sections
(Nair et al., 2014).

For the annotation tasks, we enlisted the exper-
tise of four proficient biomedical editors who are
members of the European Medical Writers Asso-
ciation (EMWA)3. Annotation was performed on
the interactive data annotation platform Doccano
(Nakayama et al., 2018).

2.5 SciPara statistics
The SciPara dataset consists of 981 paragraphs and
4071 sentences, see Table 1. Across these para-
graphs, the annotators identified more than 700
instances of Topic Ontologies and over 2800 in-
stances of Topic Attributes. In total, 432 para-
graphs have complete discourse structure and 309
paragraphs have incomplete discourse structure,
see Table 2. We kept the 240 paragraphs that were

2https://europepmc.org/
3https://www.emwa.org

not annotated for discourse completeness so that
we could study the influence of context information
in the discourse sentence generation task.

Statistic Count Statistic Count

# Papers 62 # Topic Sentences 724
# Paragraphs 981 # Supporting Sentences 2,869
# Sentences 4,071 # Concluding Sentences 273
# Topic Attribute 2,821 # Transition Sentences 188
# Topic Ontology 724 # Off-topic Sentences 3
- - # Redundant Sentences 14

Table 1: Overall statistics of our SciPara dataset.

Topic
Sentence

Concluding
Sentence

Transition
Sentence

Discourse
Structure

Count

✓ ✓ ✗ Complete 250
✓ ✗ ✓ Complete 177
✓ ✓ ✓ Complete 5
✓ ✗ ✗ Incomplete 284
✗ ✓ ✗ Incomplete 7
✗ ✗ ✓ Incomplete 4
✗ ✗ ✗ Incomplete 14

Table 2: Structure assessment for sentence-level anno-
tation. We exclude paragraphs with both Concluding
and Transition Sentences but no Topic Sentences on pur-
pose, since subsentence-level annotation for this type of
paragraphs was not possible (Topic Ontology must be
labeled from the Topic Sentence).

Due to the unexpected absence of annotator 3,
we present the inter-annotator agreement (IAA) re-
sults for annotators 1, 2, and 4 only, see Table 3.
For sentence-level annotation, we calculated Co-
hen’s Kappa coefficients (Cohen, 1960) for each
pair of annotators. As for subsentence-level anno-
tation, where Topic Ontology and Topic Attributes
do not have fixed discourse categories and can vary
in length, we evaluated the IAA based on lexical
overlap of annotations measured by ROUGE scores
(Lin, 2004). High ROUGE-1 and ROUGE-2 scores
therefore indicate better agreement between pairs
of annotators.

Sentence-level annotations of Topic, Support-
ing, and Concluding discourse categories showed a
high agreement among annotators when compared
against a reference rubric for Cohen’s Kappa scores
interpretation (McHugh, 2012), which we summa-
rize in the legend of Table 3. For example, for
Topic Sentence identification, all of the analyzed
data subsets fall into the “strong agreement” cat-
egory. This indicates that the task of identifying
these discourse types was clearly defined and the
annotators understood the instructions well. The
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(a) Sentence-level annotation process for a paragraph p. The process starts with an initial filtering to determine whether p is
well-parsed and has at least three sentences. Next, the annotators identify the discourse category of each sentence in p. If p has at
least one Topic Sentence, then annotators perform subsentence-level annotation to locate all occurrences of the paragraph topic.

Start No

Yes

Does s have
the Topic Attribute and/or

Ontology?

Annotate all mentions of
the Topic Attribute and/or

Ontology in s

Yes

No

Does s have
Links to other sentences

of p?

Annotate all Links
from s to the other

sentences of p

Label s as "Off-Topic"

End

(b) Subsentence-level annotation process for a paragraph p. Starting with labeling the Topic Ontology in the Topic Sentence s,
the subsentence-level annotation identifies Topic Attributes throughout the paragraph.

Figure 2: Overview of the SciPara data annotation process for a given paragraph p.

Subset A B C

Annotator Group 1&2 2&4 1&4 1&4 1&4

κ - Topic Sent. 0.79 0.72 0.92 0.97 0.96
κ - Supp. Sent. 0.75 0.68 0.78 0.68 0.78
κ - Concl. Sent. 0.69 0.78 0.60 0.64 0.53
κ - Trans. Sent. 0.69 0.40 0.22 0.08 0.26

(a) IAA results for sentence-level annotation.

Subset A B C

Annotator Group 1&2 2&4 1&4 1&4 1&4

R-1 (f-measure) 0.59 0.61 0.67 0.63 0.61
R-2 (f-measure) 0.43 0.48 0.50 0.45 0.41

(b) IAA results for subsentence-level annotation (stopwords
are removed for all measures).

Table 3: Inter-annotator agreement (IAA) results for
sentence-level and subsentence-level (κ ≤ 0.4 = poor
agreement; 0.4 < κ ≤ 0.6 = fair agreement; κ > 0.6 =
strong agreement). Subsets A, B, and C contain 36, 36,
and 50 paragraphs, respectively.

agreement was considerably lower for Transition
Sentences, which we discuss in more detail in Lim-
itations.

For subsentence-level annotations, given that the
average length of Topic Ontology and Topic At-
tributes was around 3 to 4 words, a lexical overlap
score above 0.4 is considered as high. Thus, it sug-
gests that the subsentence-level task was also well
understood by the annotators, suggesting that the
curated dataset has good quality.

3 Methods

In the following section, we detail the experimental
methods applied to the SciPara dataset to address
our research questions. Notably, our experiments
primarily utilized the annotations corresponding
to the sentence-level task, and the Topic Ontology
annotations from the subsentence-level task. We
plan to incorporate other annotation types, such as
Topic Attributes and links, in future studies.

3.1 Discourse category classification

Underlying RQ1 is the following sequential sen-
tence classification task (Cohan et al., 2019): Identi-
fying the discourse category of a sentence Y based
on the context of Y . By context, we refer to the
paragraph P containing Y and the subsequent para-
graph P ′. We ignored Off-Topic and Redundant
Sentences because of their rarity and considered
only Topic, Concluding, Transition, and Support-
ing Sentences.

For each sample, we concatenated the paragraph
P and the subsequent paragraph P ′, then we in-
dicated Y by wrapping it with the special token
[SENT]. We also inserted a [PARASEP] token
between P and P ′ to indicate the paragraph bound-
aries. The sample was then presented as input to
two language models we explored: BioBERT (Lee
et al., 2020) and SciBERT (Beltagy et al., 2019).
To compute the probability of each discourse cat-
egory in either model, we presented the [CLS]
embedding as input to a Softmax classifier.
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Model
Topic Sent. Concluding Sent. Transition Sent. Supporting Sent.

P R F1 P R F1 P R F1 P R F1

BioBERT 98.85 97.73 98.29 11.69 33.33 17.31 7.52 50.00 13.07 93.91 55.10 69.45
SciBERT 98.85 97.73 98.29 7.41 74.07 13.47 4.76 5.00 4.88 94.63 35.97 52.13

Table 4: Results on discourse category classification in terms of Precision (P), Recall (R), and F1 score.

The training objective was to minimize the fol-
lowing log cross-entropy loss:

L = − log

(
exp(sp)∑|C|
j=1 exp(sj)

)
,

where C represents the discourse categories of
Topic, Concluding, Supporting, and Transition Sen-
tences, sj is the logit for the j-th discourse category
label (j = 1, . . . , 4), and sp is the logit for the pos-
itive label (p is the index of the correct label).

To avoid over-representing Supporting Sen-
tences in the Discourse Category Classification
task, we balanced the label distribution in the Train
and Dev sets. However, we did not perform this bal-
ancing for the Test set to determine the real-world
performance of the classifiers. Note that we also
tried other balancing methods, such as weighting
the loss per category based on their frequency, but
none worked as well.

3.2 Discourse sentence generation
To address RQ2, we investigated the influence of
context on the generation of Topic (resp. Conclud-
ing, Transition) Sentences. As context we used ei-
ther the remainder of the corresponding paragraph
P , or we additionally included other information
X , such as the Topic Ontology, or out-of-paragraph
information, such as the paper’s abstract and the
subsequent or previous paragraph.

We describe the generation task formally here.
Let P be a paragraph and let Y be a Topic (resp.
Concluding, Transition) Sentence in P . The train-
ing objective is to minimize the following negative
log-likelihood:

L = − log p (Y |P \ Y,X)

= −
|Y |∑

i=1

log p (yi|y1:i−1, P \ Y,X) ,

where yi is the i-th token of Y , P \ Y represents
the paragraph P without Y , and X represents addi-
tional information.

We explored two classes of Pre-trained Lan-
guage Models (PLMs): 1) causal language models

(CLMs) that generate text in an auto-regressive
manner, such as OPT (Zhang et al., 2022) and
GPT-Neo (Black et al., 2022), and 2) sequence-
to-sequence models (Seq2Seq) that learn mappings
between the input and output sequences, such as
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020). To ensure a fair comparison, we chose mod-
els with a similar number of parameters (OPT-base
and GPT-Neo both have 125M parameters, BART-
base has 140M, and T5 has 220M). The inputs to all
models were formed as P \Y concatenated with X .
For CLMs, we additionally appended a separation
token <|endoftext|>. For Topic Sentence genera-
tion with BART and T5, we prepended the input
with “Truncated Paragraph:” and also appended
“Topic Sentence:”. The inputs for BART and T5 for
generating Concluding and Transition Sentences
were formed analogously.

For the discourse sentence generation task and
each discourse category, we used only paragraphs
that had at least one sentence of the corresponding
discourse category, see Table 5.

Discourse category classification Train Dev Test

# Topic Sentences 124 44 88
# Supporting Sentences 141 27 392
# Concluding Sentences 136 32 27
# Transition Sentences 137 31 20

Discourse sentence generation Train Dev Test

# Topic Sentences 579 85 60
# Concluding Sentences 216 25 32
# Transition Sentences 129 34 25

Table 5: Statistics of datasets created for discourse cate-
gory classification and discourse sentence generation.

3.3 Evaluation
For the discourse category classification task, we
report the precision, recall, and F1 score for each
discourse category. Higher scores indicate better
performance. For the discourse sentence genera-
tion task, we compared the generated discourse
sentences against the ground-truth sentences us-
ing summarization metrics such as ROUGE scores
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(Lin, 2004) and BERTScore (Zhang et al., 2019),
as well as the translation metric METEOR (Baner-
jee and Lavie, 2005). Higher scores indicate that
the generated discourse sentences more closely re-
semble the ground-truths.

To quantify the readability of paragraphs, we
used three automatic readability metrics, namely,
Flesch-Kincaid Grade Level (FKG, Kincaid et al.
(1975)), the New Dale-Chall Readability Formula
(NDC, Chall and Dale (1995)), and the Automated
Readability Index (ARI, Senter and Smith (1967))4.
For these metrics, higher scores indicate higher
reading difficulty and thus lower readability.

3.4 Implementation details
For the classification task, the BioBERT and SciB-
ERT models were trained for 3 epochs with a learn-
ing rate of 2e-5, a dropout rate p = 0.1, and a batch
size of 1.

For the generation task, all PLMs were trained
for 2 epochs using the Trainer and TrainingArgu-
ments classes from the Transformers library5. We
used the AdamW optimizer (Loshchilov and Hutter,
2017) with a learning rate of 2e-5 and early stop-
ping. The batch size was set to 2. For the inference
step, we used beam search with num_beams = 3,
top_k = 10, and temperature = 0.95.

All models were fine-tuned using a single A100
GPU provided by Google Colab. We kept batch
sizes low to allow for experimenting with various
context sizes.

4 Results and Discussion

4.1 PLMs accurately identify Topic Sentences
As shown in Table 4, on the discourse category
classification task, both BioBERT and SciBERT
achieved the highest scores of 98.29 F1 on Topic
Sentences, indicating that this discourse category
is the easiest to identify. Because 98.86% of Topic
Sentences in our Test set were the first sentence of
their respective paragraphs, a possible explanation
of this finding is that the positional information of
Topic Sentences can be easily captured and learned
by the models.

The second-highest scores were recorded for
Supporting Sentences, and the lowest scores for
Transition and Concluding Sentences. We hypothe-
sise that the poor performance on Concluding and

4All metrics were computed with the Python package py-
readability-metrics.

5https://github.com/huggingface/
transformers

Model R-1 R-2 R-L FBERT MTR

Topic Sentence Generation

OPT-base 21.64 4.44 17.40 18.62 15.20
GPT-Neo 22.26 4.77 17.52 18.25 15.60
BART-base 24.33 4.72 18.49 24.67 15.39
+ PP 25.82 5.83 19.54 25.75 17.32
+ PP + A 24.90 6.15 18.98 24.78 16.88
+ PP + A + TO 33.50 16.72 28.12 30.67 25.05
T5-base 23.23 5.12 17.61 18.19 15.74
+ TO 30.92 15.20 26.55 24.89 23.57

Concluding Sentence Generation

OPT-base 22.06 4.55 18.90 21.17 14.96
GPT-Neo 19.84 3.98 15.36 23.75 13.13
BART-base 24.11 2.84 15.55 24.52 15.39
+ PP 22.50 3.91 16.87 26.11 15.42
+ PP + A 24.52 5.23 18.84 29.89 16.07
T5-base 17.35 3.34 13.26 6.25 11.64

Transition Sentence Generation

OPT-base 15.50 2.21 12.31 6.42 9.50
GPT-Neo 15.38 2.18 11.77 3.40 7.88
BART-base 17.00 3.27 11.35 13.99 16.33
+ NP 23.85 4.51 15.94 17.80 19.86
+ NP + A 21.43 3.21 14.54 13.72 15.92
T5-base 12.22 2.70 8.71 2.59 8.86

Table 6: Results on discourse sentence generation. For
ROUGE scores, we report the f-measures for ROUGE-
1, ROUGE-2, and ROUGE-L. For BERTScore, we
report the F1 score (FBERT). MTR denotes the ME-
TEOR score. PP indicates the addition of the Previous
Paragraph to the input, whereas NP, A and TO indicates
the addition of the Next Paragraph, the Abstract, and
the Topic Ontology, respectively.

Transition Sentences may be because both types of
sentences tend to appear at the end of paragraphs,
which means the model cannot rely on learning
positional information alone in distinguishing the
two classes. In the Appendix A, when considering
Concluding and Transition Sentences as a single
class, performance across all metrics improved.

Based on the confusion matrices in Figure 3,
BioBERT and SciBERT respectively tended to mis-
classify Supporting Sentences as Transition and
Concluding Sentences. A possible explanation is
that Supporting Sentences may be very diverse, and
because we heavily downsampled Supporting Sen-
tences to balance the four discourse categories for
this task, our models were not able to learn this
diversity.

4.2 Influence of context

On the discourse sentence generation task, both
CLM and Seq2Seq models achieved the highest
ROUGE F1 scores on Topic Sentences and the low-
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Figure 3: Confusion matrices for discourse category classification with BioBERT and SciBERT.

est scores on Transition Sentences, see Table 6.
This finding was true regardless of whether context
contained additional information or not, although
the best generation scores across all discourse cate-
gories were achieved when additional information
was included.

To delve deeper into whether sentences of a
given discourse category carry information beyond
the current paragraph, we conducted training of sep-
arate Seq2Seq models on text beyond the current
paragraph (namely, using previous/next paragraphs
and the abstract) as part of the input).

The BART model generated the best Concluding
Sentences when the input contained the previous
paragraph and the abstract in addition to the current
paragraph. BART also generated the best Topic
Sentences when the context included the Topic On-
tology, abstract, and the previous paragraph.

As for Transition Sentences, incorporating the
next paragraph resulted in the greatest improve-
ment, but including the abstract deteriorated the
performance. These findings suggest that pertinent
information related to Topic, Concluding, and Tran-
sition Sentences can be found at diverse positions
in a discourse category-dependent manner.

4.3 Trade-off between discourse structure and
text readability

Text readability refers to the ease with which a
reader can understand a written text (Zamanian and
Heydari, 2012). The relationship between the com-
pleteness of discourse structure and text readability
offers valuable insights. It sheds light on how the
organization of a paragraph influences a reader’s
comprehension, engagement, and retention of in-
formation from a written piece.

To understand how discourse structure complete-

ness relates to readability, we compared the read-
ability across two groups of paragraphs: paragraphs
with complete discourse structure and paragraphs
with incomplete discourse structure. We filtered
out paragraphs containing less than 100 words6.
Then, we computed the readability of remaining
paragraphs using the three previously mentioned
metrics (FKG, NDC, and ARI).

Structure FKG NDC ARI

Complete 16.75 12.68 17.98
Incomplete *15.82 12.60 *16.75

Table 7: Readability measures for paragraphs with com-
plete and incomplete discourse structures. Higher scores
indicate that the paragraph is more challenging to read.
* indicates statistical significance at p < 0.05.

We found that the paragraphs in SciPara are gen-
erally difficult texts to read, regardless of discourse
structure completeness. This is evident by the aver-
age FKG scores of around 16 (see Table 7), which
means that a university-level education would be
required to comprehend these SciPara paragraphs.
This result is not surprising, given that SciPara was
constructed from scholarly works that are written
for the scientific community.

Additionally, our results revealed that para-
graphs with complete discourse structure are as-
sociated with greater reading difficulty than incom-
pletely structured paragraphs. This is consistent
with the work of Plavén-Sigray et al. (2017), who
found that abstracts, which typically have complete
discourse structures, are more challenging to read
than the full text. As a complete discourse structure
indicates a tightly connected reasoning chain, our

6As required by py-readability-metrics.
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results imply a paradoxical trade-off between text
readability and discourse structure: well-crafted
scientific texts with complete discourse structures
are inherently more difficult to comprehend.

5 Related Work

Previous works on automatic classification of dis-
course category of sentences from scientific pa-
pers are Dernoncourt and Lee (2017), Cohan et al.
(2019), Gonçalves et al. (2020), Dayrell et al.
(2012), Fisas et al. (2015), and Li et al. (2022).
The discourse categories used reflected various
roles within the scientific paper. For example,
Dayrell et al. (2012) used BACKGROUND, GAP,
PURPOSE, METHOD, RESULT, and CONCLUSION

as discourse categories, and Fisas et al. (2015)
used BACKGROUND, CHALLENGE, APPROACH,
OUTCOME, and FUTURE WORK. Li et al. (2022)
analyzed sentence roles specifically in RELATED

WORK sections, introducing categories like “multi-
document summarization” and “transition” for sen-
tences bridging various topics. Our work distin-
guishes itself by examining discourse sentences in
relation to their function in paragraph development,
with annotations for “Transition Sentences” allow-
ing us to comprehend how discourse expands over
consecutive paragraphs, which is fundamental to
our proposed research questions.

Moreover, there is a scarcity of research on gen-
erating sentences across these discourse categories.
Shieh et al. (2019) and Song et al. (2022) conducted
related studies, with the former generating abstract
“conclusions” and the latter generating topic-word-
constrained sentences. Our approach, however, ex-
plores generating “Topic Sentences” and other cat-
egories from the remainder of the corresponding
paragraph and varying additional contexts, such as
preceding paragraphs, thus addressing a research
gap.

6 Conclusion

We introduced the SciPara dataset which comprises
scientific paragraphs with expert annotations of sen-
tence discourse category and of topic information.
Leveraging pre-trained language models, we ex-
plored two tasks: discourse category classification
and discourse sentence generation. While the mod-
els demonstrated high accuracy in identifying Topic
Sentences, they encountered challenges in distin-
guishing Concluding, Transition, and Supporting
Sentences, underscoring the inherent complexities

in automating discourse category classification.
We also examined the influence of contextual in-

put on generating discourse sentences. Our findings
indicate that language models perform better with
increased context, but that the context most useful
depends on the sentence discourse category. For in-
stance, Topic Ontology plays the most crucial role
for Topic Sentence generation, whereas the next
paragraph has the largest influence on Transition
Sentence generation.

We also assessed the readability of SciPara para-
graphs. Surprisingly, our analysis reveals an in-
triguing paradox on the relationship between dis-
course structure and readability. Scientific para-
graphs containing at least one Topic Sentence and
at least one Concluding or Transition sentence are
commonly perceived as well-written. However,
such paragraphs are more challenging to read.

7 Limitations

The limitations of our work include:

• SciPara is a high quality dataset. However,
the acquisition of expert-annotated data is a
resource-intensive process, which made ex-
panding SciPara to a larger size difficult. This
has resulted in a limited number of samples for
certain discourse categories, notably Conclud-
ing Sentences (273) and Transition Sentences
(188).

• Our annotation protocol exclusively targets
scientific paragraphs within the INTRODUC-
TION and DISCUSSION sections because these
sections are likely to have narrative structures.
However, we refrained from including other
sections due to the associated complexity.

• The readability metrics FKG, NDC, and ARI
were developed to assess general domain text,
not academic texts. Even so, we used them
in this work because we were unable to find
more fitting readability metrics.

Our future work will delve into a more com-
prehensive examination of the discourse structure
across various sections of scientific papers. We
are committed to finding innovative approaches to
mitigate the cost and effort associated with human
annotation, enabling the collection of a more exten-
sive and diverse set of samples.
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Figure 4: Confusion matrix after merging the categories of Concluding and Transition Sentences.

B Dataset Example

Discourse category Sentence

Topic Sentence
(#1) This study was the first in Japan to perform a cluster analysis of
COVID-19 patients.

Supporting Sentence

(#2) We identified four clinical sub-phenotypes, namely the “young
healthy cluster" (Cluster 1), “middle-aged cluster" (Cluster
2), “middle-aged obese cluster" (Cluster 3), and “elderly clus-
ter" (Cluster 4), which were associated with different outcomes in
Japanese patients with COVID-19.

Supporting Sentence
(#3) Previous reports, including ours, have shown that comorbidities
and mortality rates in Japan differed from inpatient studies in other
countries.

Supporting Sentence
(#4) Thus, the identification of the meaningful sub-phenotypes of
Japanese COVID-19 patients is important.

Supporting Sentence
(#5) Notably, our study used simple baseline characteristics as vari-
ables for cluster analysis.

Supporting Sentence
(#6) Several previous studies have shown that cluster analysis is
useful for phenotyping and predicting COVID-19 outcomes.

Supporting Sentence
(#7) However, most of these studies used complicated variables, com-
bining a wide range of blood test results for clustering.

Supporting Sentence
(#8) Promptly indefinable is an important feature of defining COVID-
19 sub-phenotypes.

Concluding Sentence
(#9) We believe that the present simple clustering may be of great help
to clinicians in predicting prognosis and performing individualized
therapy.

Table 8: An example paragraph with one Topic Sentence, seven Supporting Sentences, and one Concluding Sentence.
Paragraph topic is marked with bold font, while topic attributes are marked with italics. Source: Otake et al. (2021)

.
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Discourse category Sentence

Topic Sentence
(#1) Among other factors, the SNARC effect is considered to be
linked to the finger counting direction.

Supporting Sentence
(#2) Fischer (2008) has shown that the SNARC effect was not sig-
nificant (associated p-value of .061) in participants starting finger
counting with their right hand (right-starters).

Supporting Sentence
(#3) It differed significantly from the SNARC effect observed in
left-starters.

Supporting Sentence (#4) The latter group also revealed a significant SNARC effect.

Supporting Sentence
(#5) Moreover, the variance in the SNARC effect was greater among
right-starters.

Supporting Sentence
(#6) This observation was only partly replicated in a large-scale on-
line study (Cipora, Soltanlou, et al., 2019), which showed a difference
between left- and right-starters in the same direction.

Supporting Sentence
(#7) Still, it was associated with a negligibly small effect size (Cohen’s
d = 0.12).

Supporting Sentence
(#8) However, Bayesian analysis has shown that the result was incon-
clusive and was leaning towards supporting the null hypothesis.

Supporting Sentence
(#9) At the same time, unlike in Fischer (2008), a robust SNARC
effect was found in right-starters, and there was no significant differ-
ence in variance between left- and right-starters.

Supporting Sentence
(#10) Further studies have also demonstrated a robust SNARC in
right-starters (Fabbri, 2013; Prete & Tommasi, 2020).

Supporting Sentence

(#11) Additionally , in several countries where the majority of people
start finger counting with their right hand (e.g., Belgium and Italy),
the SNARC effect has been observed in multiple studies (e.g., Cutini,
Scarpa, Scatturin, Dell’Acqua, & Zorzi, 2014; Gevers, Ratinckx, de
Baene, & Fias, 2006; Mapelli, Rusconi, & Umilta, 2003).

Concluding Sentence
(#12) To sum up, there seems to be some evidence, however mixed,
that finger counting is associated with the SNARC effect (see also
Riello & Rusconi, 2011).

Supporting Sentence
(#13) Having seen these results, one might ask why the SNARC
effect should be related to the finger counting direction.

Transition Sentence
(#14) The research on the embodiment of numerical cognition can
illuminate this issue.

Table 9: An example paragraph with one Topic, Transition, Concluding, and Transition Sentence each. Paragraph
topic is marked with bold font, while topic attributes are marked with italics. Links are marked with underline.
Source: Hohol et al. (2022).
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Discourse category Sentence

Topic Sentence
(#1) In December 2019, a disease outbreak was noticed after a
massive admission of patients with common clinical symptoms of
pneumonia in the local hospitals of Wuhan City, China.

Supporting Sentence

(#2) Upon further investigations, the World Health Organization con-
firmed that the novel coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was responsible for these clinical symp-
toms and further denominated this disease as coronavirus disease
(COVID-19).

Supporting Sentence
(#3) Its clinical course is diverse, ranging from mild self-limited
illness to life-threatening organ dysfunctions.

Table 10: Example badly-structured paragraph with only one Topic Sentence and two Supporting Sentences.
Paragraph is marked with bold font, while topic attributes are marked with italics. Source: Otake et al. (2021).

Discourse category Sentence

Supporting Sentence (#1) Most published data on MDS is from Western countries.

Supporting Sentence (#2) Published local data are scarce.

Supporting Sentence
(#3) There are few studies available from Pakistan (Irfan et al., 1998;
Ehsan et al., 2010; Rashid et al., 2014).

Transition Sentence
(#4) The purpose of this study is to demonstrate demographical, clini-
cal and the hematological features of adults primary MDS patients
who visited our tertiary care center from 2010 till the end of 2014.

Table 11: An example paragraph with only one Transition Sentence and four Supporting Sentences. As this
paragraph does not contain a Topic Sentence, the subsentence level part of the annotation task was not completed.
Source: Sultan and Irfan (2016).
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Discourse category Sentence

Supporting Sentence
(#1) It was determined that CRAMP expression in BALB/c-derived
mast cells was inducible by LPS, which also induces production of
certain cytokines, including IL-13.

Supporting Sentence
(#2) This is of interest since IL-13 (and IL-14) can reportedly suppress
induction of cathelicidin production by some cell types, such as
antigen-exposed keratinocytes.

Supporting Sentence
(#3) In contrast, activation of mast cells with IL-4 appears to increase
accumulation of cathelicidin protein.

Supporting Sentence

(#4) It was also reported that skin obtained from patients with atopic
dermatitis have decreased cathelicidin LL-37 levels compared to
normal skin and thus supports high levels of vaccinia virus replication,
as is characteristic of eczema vaccinatum.

Supporting Sentence
(#5) Atopic dermatitis skin is characterized by overexpression of IL-4
and IL-13.

Concluding Sentence

(#6) Thus, although mast cells may be a source of cathelicidins, as
described above, their presence and activation in skin could in fact,
through production of certain cytokines, result in suppression of
production of the antimicrobial peptides by other cell types.

Table 12: An example paragraph with only one Concluding Sentence and five Supporting Sentences. As this
paragraph does not contain a Topic Sentence, the subsentence level part of the annotation task was not completed.
Source: Li et al. (2009).
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Abstract

This paper presents evidence for an effect
of genre on the use of discourse connec-
tives in argumentation. Drawing from dis-
course processing research on reasoning-
based structures, we use fill-mask computa-
tion to measure genre-induced expectations
of argument realisation, and beta regression
to model the probabilities of these realisa-
tions against a set of predictors. Contrasting
fill-mask probabilities for the presence or
absence of a discourse connective in base-
line and finetuned language models reveals
that genre introduces biases for the realisa-
tion of argument structure. These outcomes
suggest that cross-domain discourse pro-
cessing, but also argument mining, should
take into account generalisations about spe-
cific features, such as connectives, and their
probability related to the genre context.1

1 Introduction

Argumentative structures in discourse, which
comprise a claim and a supporting or attacking
premise, exhibit significant variation in their re-
alisation. Notably, as argumentative coherence
can be achieved by alternative signals (Cabrio
et al., 2013; Das and Taboada, 2018), arguments
vary in whether the claim and premise are linked
by a discourse connective or not. For example,
because in item 1a explicitly conveys a causal
relation. In contrast, item 1b, where two sen-
tences are separated by punctuation, leaves the
relation implicit, with the claim indicated only
by the deontic modal should.2

*Contributions: Linguistic background, conception of
work and discussion: Heidrun Dorgeloh; conception of
work, design and preparation of study: Lea Kawaletz;
computational modelling: Regina Stodden; statistical mod-
elling and statistical analysis: Simon David Stein; compu-
tational background and discussion: Stefan Conrad. All
authors contributed to manuscript revision, read and ap-
proved the submitted version.

1The data and code for the present study can be found
at https://osf.io/n6hq5/.

2These are constructed examples based on item 2.

(1) a. Masking should be mandated be-
cause it keeps everyone safe.

b. Masking should be mandated. It
keeps everyone safe.

The explicit or more implicit realisation of argu-
mentation is a challenge for an understanding
of argumentative discourse. However, the pro-
cessing of arguments is likely not random and
should conform with general discourse process-
ing principles. In particular, it can be assumed
that, following the Uniform Information Den-
sity (UID) hypothesis (Frank and Jaeger, 2008),
relations within discourse, such as the one be-
tween a claim and a premise, are more likely
to be expressed explicitly when they are un-
expected, and more likely to be implicit when
a relation can be anticipated (Torabi Asr and
Demberg, 2012).

The factors that shape expectations in dis-
course are diverse. Local cues within a phrase
or sentence, such as the use of the connective
because in item 1a, play a role. However, more
global forces, such as the overall nature of the
document, also drive expectations and, with
that, information density (Meister et al., 2021).
Knowing that genres guide expectations and
influence human discourse understanding on
many levels of a text (Giltrow, 2010), we ex-
plore in this paper how genre creates a bias
for the ways argument structures are realised.
These structures are based on relations of sub-
jective causality, a coherence relation that is
particularly likely to be driven by contextual sig-
nals, including the genre (e.g. Canestrelli et al.,
2016; Scholman et al., 2020). For example, for
a reader of a newspaper editorial these argumen-
tative structures will be much more expected
than for one of a novel or monograph.

Our study compares the predicted presence or
absence of discourse connectives in arguments
taken from New York Times (NYT) editorials.
Due to the UID principle we hypothesise that,27



in genres with predictable argumentative struc-
tures, such as editorials, there is a lower likeli-
hood of making a relation explicit with a con-
nective. We also assume that an LM finetuned
with data from such genres is likely to show a
stronger effect of this tendency. To test our hy-
pothesis, we compare baseline (non-finetuned)
masked language models (MLMs) with the cor-
responding finetuned models genre-adapted to
editorials. The comparison of models enables us
to disregard frequency effects. In this way, the
approach allows to verify genre-induced expec-
tations for argument realisation and produces
insights which could in the future improve cross-
domain discourse processing.

2 Background

2.1 Defining arguments

Our understanding of what constitutes argumen-
tative discourse follows established terminol-
ogy, especially from the field of argument min-
ing (e.g. Stab and Gurevych, 2017; Stede and
Schneider, 2018), where an argument, such as
exemplified in item 2, consists of two kinds of
argumentative discourse units (ADUs): a con-
troversial statement, the claim (marked in bold),
and another statement which supports or attacks
the claim, the premise (underlined).

(2) [M]asking should be mandated and
enforced. It’s not just about your indi-
vidual risk tolerance, but about keeping
everyone safe.

ADUs can occur in a single sentence or span
multiple sentences, as in item 2. Also, multiple
premises may refer to the same claim, forming
a single argument. For simplicity, the data anal-
ysed for this project only included arguments
consisting of one claim and one premise.

2.2 Connectives and discourse relations

Discourse connectives cover the syntactic
classes of coordinators (e.g., and, but), sub-
ordinators (e.g., because, while), as well as
connective adjuncts (e.g., therefore, however)
(Dorgeloh and Wanner, 2022). They make
the coherence relation between two (or more)
ADUs explicit, which is why they are a promi-
nent feature both for studies of discourse coher-
ence and of argumentation structure (Marcu and
Echihabi, 2002; Xu et al., 2012; Goudas et al.,
2014; Shi and Demberg, 2019; Crible and Dem-
berg, 2020; Kurfalı and Östling, 2021). How-

ever, the extent of the actual presence of con-
nectives is often surprisingly low. For example,
in the RST Signalling Corpus (Carlson et al.,
2002; Das et al., 2015) or the Penn Discourse
Treebank (Prasad et al., 2008) – both based on
Wall Street Journal texts that in all likelihood
contain argumentative texts – more than half of
the discourse relations are not marked by a dis-
course connective. One possible reason for their
absence is that there are numerous other options
of signalling a coherence relation (Cabrio et al.,
2013; Das and Taboada, 2018).

Another reason is that the support or attack re-
lation within arguments has a subjective “source
of coherence”, that is, the relation does not ex-
ist at the propositional content level but at the
level of reasoning (Sanders et al., 2021), as in
item 2. For these relations, connectives serve
as processing instructions, enabling a reader or
listener to evaluate how a premise supports or
attacks a given claim (Wei et al., 2021a). Psy-
cholinguistic evidence has shown that overly
explicit marking of subjective coherence rela-
tions triggers a “forewarning effect”, alerting
the reader to a persuasion attempt (Kamalski
et al., 2008). In that sense, connectives can po-
tentially induce resistance against argumenta-
tion. Given this effect, it is plausible to assume
that argumentative structures are not made more
explicit than necessary.

How the needs for explicitness are balanced
likely aligns with the UID hypothesis (Frank
and Jaeger, 2008). It suggests that discourse
relations, including support or attack within ar-
guments, “should be expressed explicitly with a
discourse connector when they are unexpected,
but may be implicit when the discourse rela-
tion can be anticipated” (Torabi Asr and Dem-
berg, 2012, 2669). If expectations are crucial
in that sense, a major factor driving explicit-
ness must be the genre, as genres can be seen as
schemata “referring to a set of expectations” (Pi-
ata, 2016, 255). It follows that, in argumentative
texts, such as editorials, the relation between
two ADUs is less likely to be expressed with a
connective, since the presence of argumentation
in this genre can be expected. For illustration,
consider item 2 again, where the ADUs are not
linked by means of a connective. By contrast, in
the adapted variant in item 2′, the argument re-
lation is made explicit by adding the connective
because.28



(2′) [M]asking should be mandated and
enforced [because] [i]t’s not just about
your individual risk tolerance, but about
keeping everyone safe.

Following the UID hypothesis, item 2′ is the
less likely argument pattern in argumentative
texts compared to item 2.

2.3 Connectives and language modeling

Argument realisation is a classic issue for the au-
tomatic retrieval of arguments, i.e., in argument
mining. Connectives, in this context also com-
monly referred to as discourse markers, are seen
as indicators of argumentative structure (e.g.,
Eckle-Kohler et al., 2015; Stab and Gurevych,
2017; Sileo et al., 2019), but “missing” dis-
course markers are also known to be the rule
rather than the exception (Moens, 2018). One
reason is that explicitness in argumentation goes
beyond using connectives; it also involves other
stance markers, as every argument expresses a
stance toward its topic (Stein and Wachsmuth,
2019). Connectives and other markers thus to-
gether play a role in facilitating the processing
of subjective coherence relations (Wei et al.,
2021b), but how they interact is still not fully
explored. Stodden et al. (2023) also argue that
connectives can play a prominent role in stance
detection. They extract the probabilities of con-
nectives for a claim-premise relation from a
MLM and show that training a simple classi-
fier using these values as features is capable of
optimising stance detection. Our approach here
uses a similar line of research.

Another reason why the presence or absence
of discourse connectives as indicators of argu-
ments is not fully understood is the lack of
cross-genre generalisations. In a recent paper,
Rocha et al. (2023) report that introducing con-
nectives as signals of the relation between a
claim and a premise has the potential to im-
prove argument mining. They employ finetuned
LMs trained on both real and constructed argu-
ments to introduce connectives between ADUs,
which improves cross-genre transfer. However,
their approach does not consider genre-specific
associations of explicit indicators like connec-
tives and the context. To address this, we aim to
incorporate genre generalisations through genre-
induced fine-tuning.

Our approach is to explore the presence or
absence of a discourse connective for the claim-
premise relation in arguments using BERT (De-

vlin et al., 2019) and RoBERTa (Liu et al.,
2019). In the task of these MLMs, the objec-
tive is akin to a cloze test; the model learns to
predict words for randomly masked tokens in
the original input texts (Devlin et al., 2019). Un-
like a causal LM, which predicts the next word
solely based on the previous context, an MLM
can predict a word in the middle of a sequence
based on both left and right context. We use the
cloze position between the claim and premise
by extracting probabilities for connectives and,
as a proxy for their absence, punctuation marks.
In doing so, we refrain from using causal LM
prompting methods and instead compare the
probabilities of different types of marking in
a statistical analysis, which necessitates more
than just listing the top n markers.

2.4 Hypotheses

We compare the predictions made by different
models, first for the difference between explicit
connective and no marking and, then, for the
comparison between baseline models and mod-
els finetuned for editorials. In this context, we
make three predictions. First, given that news-
paper editorials are a genre whose primary goal
it is to persuade and which are therefore “one
of the purest forms of argumentative text” (Al-
Khatib et al., 2016, 3440), the discourse re-
lations that are characteristic of this type of
discourse are subjective causal relations, i.e.,
discourse relations that do not refer to propo-
sitional content, but to reasoning (see subsec-
tion 2.2). Due to the forewarning effect, we as-
sume that these relations are not marked more
explicitly than necessary (→ H1 below). Sec-
ond, if a genre as a whole involves argumenta-
tion, the UID hypothesis suggests that argument
relations are expressed more implicitly in this
genre than in other, less persuasive genres. It
follows that, in LMs finetuned on strongly per-
suasive discourse, argumentation is even more
likely to occur without a connective (→ H2).
Third, regarding the magnitude of this effect, we
predict that it depends on the models’ baselines,
given their varied training data. LMs trained
on comparatively non-argumentative texts (e.g.,
books and Wikipedia, for BERT) should show a
more pronounced difference between finetuned
and baseline versions than those whose training
already included a certain proportion of texts
from more argumentative genres (e.g., news and
web-based texts, for RoBERTa;→ H3).29



H1 The absence of a connective (here: indi-
cated by a punctuation marker) is more
likely than the presence of an explicit dis-
course connective.

H2 LMs that have been finetuned on argumen-
tative genres (here: editorials) predict a
lower probability for a discourse connec-
tive than the baseline ones.

H3 This effect is more pronounced in LMs
trained on non-argumentative texts (here:
BERT) than in those trained on a larger
portion of argumentative texts (here:
RoBERTa).

3 Methodology

Our method involves comparing explicit to non-
explicit realisations of the claim-premise rela-
tion in a set of arguments. We use different LMs
to quantify the acceptability of the presence of
a discourse connective as probabilities of the
masked-tokens. These can be seen as a place-
holder for the realisations in MLMs.

The bidirectional architecture of these mod-
els enables the prediction of token probabilities
based on both ADUs (claim and premise). This
prediction is dependent on the training data of
an LM. To adapt the model to a genre of argu-
mentative texts, we finetuned the LM on addi-
tional NYT editorials which are not part of our
annotated data, which enables us to compare
finetuned with non-finetuned models.

3.1 Data
The data set was manually selected with the aim
to test this new approach for exploring genre
generalisations. The data set consists of 81 ar-
guments from a corpus of 2,508 NYT editorials
(3,227,122 tokens). These were published be-
tween January 2020 and June 2021 with at least
one of the NYT tags ‘coronavirus (2019-ncov),’
‘vaccination and immunization,’ or ‘epidemics.’
The selection followed a “purposeful sampling”
approach (Patton, 2015), which means we did
not aim for a representative sample of all ar-
guments attested in the corpus. Instead, we
identified arguments in a subset of 50 edito-
rials (55,603 tokens) and chose 81 arguments
in an elaborate and resource-intensive process
tailored towards the proof-of-concept nature of
our analysis. The process took place in several
steps that we describe in detail in our guide-
lines for annotation (Kawaletz et al., 2023). The

selection of arguments was based on the fol-
lowing principles: Not only did all arguments
have to adhere to the semantic classification of
arguments we have developed (Kawaletz et al.,
2022), but they were, at a minimum, identified
by two out of three annotators, and subsequently
confirmed by two curators, all possessing lin-
guistic training.

Table 1 provides a summary of the data set
properties, outlining the features that were in-
tegrated into our statistical analysis (Kawaletz
et al., 2022): connective (are claim and premise
connected by a connective?), relation (does the
premise support or attack the claim?), and cat-
egory (does the claim state that something is
or is not the case, or does it mandate an action
or prohibition, or does it evaluate something
positively or negatively?). As expected, most
claim-premise pairs lack a connective (74.07%),
reflecting the tendency of argumentative dis-
course to favour implicit relations (see subsec-
tion 2.2). It also becomes obvious that support
relations dominate (86.42%), and that most ar-
guments in the data set are epistemic in nature
(71.60%).

Property Option Count Per cent

Connective
Present 60 74.07%
Absent 21 25.93%

Relation
Support 70 86.42%
Attack 11 13.58%

Category
Epistemic 58 71.60%
Deontic 19 23.46%
Ethical 4 4.94%

Table 1: Properties of the data set

Finally, the arguments span a broad range of
lengths, from the shortest at 11 words to the
longest at 90 words, with an average of approx-
imately 44.05 words and a median of 42 words.

3.2 Extraction of probabilities

In order to calculate the probability for the pres-
ence or the absence of a connective, we con-
ducted the following preprocessing steps: i) The
last character from ADU1 is truncated to pre-
vent the punctuation character from affecting
the predictions. ii) If ADU2 starts with a con-
nective , the connective of ADU2 is truncated to
prevent the concatenation of two connectives in
a row or of a connective and punctuation mark.30



Connectives Punctuation markers
although unless . -
because while ; –
but yet , −
since anywayB : ...
so consequentlyB ? . . .
still henceB — !
and howeverB –B

as neverthelessB ..R

for thereforeB

thus whereasB

Table 2: Presence or absence of explicit marker
queried in the LMs’ output. Bold face markers also
occur in the NYT data set. Markers with B are used
only for BERT, while those with R are exclusive to
RoBERTa.

Next, both ADUs were concatenated with
model-specific masked tokens: [MASK] for
BERT and <mask> for RoBERTa. For instance,
item 2 was input to BERT as in item 3.

(3) Masking should be mandated and en-
forced [MASK] it’s not just about your
individual risk tolerance, but about
keeping everyone safe.

We calculated the probabilities of the masked-
token for each possible token (or subword) with
a Python pipeline for “fill-mask” included in the
Huggingface transformers package (Wolf
et al., 2020).3 As opposed to the approach of
Rocha et al. (2023), the method does not in-
volve filling the gap between claim and premise
with an explicit marker, but at extracting the
probabilities of a list of tokens.

From the resulting probabilities list, we ex-
tracted the probabilities of 34 tokens of interest
(see Table 2)—20 discourse markers (for ex-
plicit realisations) and 14 punctuation marks
(indicating the absence of a connective). A con-
nective was added to the list of explicit markers
if it is a single-word connective, and i) a coordi-
nating or subordinating conjunction expressing
a support or attack relation, or ii) a “linking ad-
verbial“ (Biber et al., 2021, 755) expressing a
support or attack relation. A punctuation mark
was added to the list if it occurs in our masked
data, and/or if it was in the list of the top 10
predicted tokens of the LM using our data.

We did not include multi-token connectives
(e.g., for this reason or on the other hand) as

3The determination of the probabilities is limited to the
top_k, where k is the length of the vocabulary. Following
this, some probabilities are close to 0 (very unlikely).

the fill-mask approach is only available for one-
(sub)token prediction. Compound connectives
had to be excluded because most LMs are using
subword tokenizers, hence, they would be split
into several subtokens (e.g., anyway would be
tokenized as any and way) and cannot be pre-
dicted as a whole token in the fill-mask task.4

3.3 Language models and finetuning

For our experiments, we chose BERT-large-
uncased (Devlin et al., 2019) and a deriva-
tive model, RoBERTa-large (Liu et al., 2019).5

While sharing the same architecture they are pre-
trained on different genres: BERT is pre-trained
on 16 GB of data from English books and
Wikipedia, whereas RoBERTa is pre-trained ad-
ditionally on 144 GB of news and web texts.
Our selection of these specific LMs was driven
by a focus on the impact of genre. However, the
differences between BERT and RoBERTa ex-
tend beyond their training data. For instance,
a) RoBERTa is solely trained for language
modelling, unlike BERT, which also includes
next sentence prediction; b) they employ differ-
ent tokenisation methods: RoBERTa uses Byte-
Pair Encoding, while BERT uses WordPiece;
c) RoBERTa is case-sensitive, whereas the ver-
sion of BERT we chose is not. Despite these
variations, BERT and RoBERTa were the most
suitable models for our research objectives. For
example, XLM-RoBERTa-base (Conneau et al.,
2020) shares the same architecture as BERT
and RoBERTa, but includes multilingual train-
ing, and DistilBERT-base-uncased (Sanh et al.,
2019) is trained on the same data as BERT, but
has fewer tunable parameters.

We then applied domain-adaptive finetuning
(Han and Eisenstein, 2019), an unsupervised
method that adapts the LM to a new or under-
represented genre. We chose this approach to
adapt the LMs for argumentative texts because
they are primarily trained on non-argumentative
data while also incorporating argumentative
data to varying extents. Specifically, we fine-

4We are comparing models with the same tokenizer,
i.e., the baseline model and the finetuned model. Hence,
for a different set of connectives, we would not expect a
strong effect on our results.

5As previously mentioned, we are not using autore-
gressive LMs (e.g., ChatGPT or Llama) and prompting
methods as we are interested in the probabilites of differ-
ent types of marking for further statistical analysis. MLMs
have the advantage over autoregressive LMs to provide the
probabilities of a word at any position within a sequence
by considering both the left and right context, rather than
solely predicting next words at the end of a sequence.31



tuned on the 2,458 NYT editorials from our
corpus (but excluding those 50 from which we
selected the arguments for our data set). This
way, the finetuned LMs are more likely to mirror
the lower likelihood of a connective for editori-
als and, in that, for an argumentative genre.6

3.4 Statistical analysis

We fitted generalised additive models of the
beta regression family to the data, using the
mcgv package (Wood, 2017) in R (R Core
Team, 2023). Beta regression is uniquely suited
to model proportional values (see, e.g., Ferrari
and Cribari-Neto, 2004). These models also al-
low us to include a number of important control
variables.

Response variable We name our response
variable PROBABILITY, referring to the proba-
bility of masked tokens estimated by the LMs.
For each argument in our data set we calcu-
lated two probability measurements, one for the
presence of an explicit discourse marker and
one for its absence. The probability of an ex-
plicit discourse marker was calculated by tak-
ing the sum of the estimated probabilities of all
connectives. The probability of the absence of
marking was the sum of the estimated proba-
bilities of all punctuation marks. Each of these
two measurements was paired with the value
present or absent in an additional variable
CONNECTIVE. This coding enables us to inves-
tigate both types of probabilities in a single sta-
tistical model.

Predictor variables Our two predictor vari-
ables of interest are CONNECTIVE and MODEL.
CONNECTIVE specifies whether we look at the
probability for the presence or absence of ex-
plicit marking. MODEL specifies which LM esti-
mated these probabilities: baseline BERT,
finetuned BERT, baseline RoBERTa,
or finetuned RoBERTa.

We use the control variable N_TOKENS, the
number of word tokens in the sentence, to gauge
sentence length and complexity. It may be ex-
pected that longer and more complex sentences
will exert greater pressure to use punctuation
marks, thereby disfavouring marking.

Additionally, we control for RELATION

and CATEGORY. RELATION specifies the re-
lation between premise and claim (attack

6You can find the hyperparameters in Appendix A and
the code with more details in the osf repository.

or support). We expect that, compared to
support relations, attack relations favour ex-
plicit marking, since contrasting relations are
cognitively more complex, requiring more
cues (Crible and Demberg, 2020). CATE-
GORY specifies the semantic argument cate-
gory (epistemic, ethical, or deontic).
We expect deontic arguments to exhibit the
strongest dispreference for explicit marking be-
cause claims demanding an action often con-
tain a deontic modal, expressing necessity (e.g.,
should), which already implies the presence of
a premise (Kawaletz et al., 2023).

Furthermore, we specify with HASNECES-
SITYMODAL and HASDEMDET whether the
sentence contains at least one necessity modal
(must, should, or ought) or at least one demon-
strative determiner (e.g., this, these), respec-
tively. Both are features that could reduce the
likelihood of explicitness by way of a connec-
tive, as they are also known to be linguistic fea-
tures of persuasion and argumentation (Biber,
1989; Petch-Tyson, 2000).

Finally, we include SOURCEID, the identifier
of the source document of the target sentence,
to control for potential variation in probabilities
introduced by different authors or texts.

Modelling We fitted six types of beta regres-
sion model: i) one for baseline BERT, ii) one for
finetuned BERT, iii) one for baseline RoBERTa,
iv) one for finetuned RoBERTa, v) one that
compares baseline BERT and finetuned BERT,
and vi) one that compares baseline RoBERTa
and finetuned RoBERTa. The first four types
of model investigate the difference in probabil-
ity between the presence or absence of explicit
marking for each LM individually. They do not
include MODEL as a predictor. Models v and
vi investigate the difference between finetuned
and baseline models. They include MODEL as a
predictor of interest.

We fitted each type of model as a simple ver-
sion and a complex version. The simple ver-
sions include only the predictors of interest
(CONNECTIVE for the four individual models
and an interaction of CONNECTIVE and MODEL

for the two comparisons). The complex versions
include interactions of CONNECTIVE with each
of the covariates described above (SOURCEID
was not included in an interaction).

Following standard procedure, we reduced
the models by removing non-significant terms
(at the .05 alpha level) in a stepwise fashion32
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Figure 1: Probability of the presence and absence of
explicit argument marking for the four LMs.

(highest p-value first) until only predictors re-
mained of which at least one level reached sig-
nificance.

4 Results

Figure 1 plots the results of the simple versions
of the four models, which predict the probabili-
ties of explicit marking being present or absent
for each LM individually.7 This reality check
confirms our expectation that explicit marking is
disfavoured across models. In all four cases, we
find very highly significant effects (at p < .001)
of CONNECTIVE on PROBABILITY in the ex-
pected direction. Note that this effect is likely
in part a frequency artefact. The proxy measure
by which we gauge the absence of marking, i.e.,
punctuation, will naturally yield higher prob-
abilities than the proxy by which we measure
explicit marking , i.e., connectives.

In the complex versions of these four individ-
ual models, which include interactions of the
predictors with CONNECTIVE, the interactions
and main effects of the covariates mostly do not
reach significance. One exception is N_TOKENS.
Figure 2 shows that in three out of four complex
models our expectations are confirmed: With
increasing ADU length, the absence of mark-
ing becomes even more probable, while explicit
marking becomes even less probable. In some
models we also find the occasional expected
interaction with other covariates, such as RE-
LATION: Support relations feature even higher
probabilities for absent or even lower proba-
bilities for present compared to attack rela-
tions. Details can be found in the supplementary
materials.

7The interested reader can view all full models in the
supplementary materials at the osf repository.
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Figure 2: Interaction of CONNECTIVE with sentence
length for the four LMs. Greyed out effects did not
reach significance and were eliminated in the statis-
tical model.

Let us now turn to the question of genre, i.e.,
the comparison of baseline LMs with finetuned
LMs. Figure 3 plots the main result from each of
the two complex beta regression models, the top
panel showing the interaction of CONNECTIVE

with the BERT LMs, the bottom panel showing
its interaction with the RoBERTa LMs (the re-
sults are the same in the two simple versions of
each regression model).

Both BERT LMs disfavour explicit marking,
but the finetuned version prefers such marking
to be absent significantly more than does the
baseline version of BERT. Again, frequency ef-
fects likely amplify the strong dispreference
for connectives. However, a general bias for
punctuation exists for both baseline and fine-
tuned LMs, enabling us to compare them di-
rectly. Moving down to the bottom panel, we
can observe that RoBERTa, too, prefers the ab-
sence of explicit marking even more when fine-
tuned, but here, the effect fails to reach signifi-
cance. As it is difficult to interpret the absence
of an effect in the frequentist framework, we
used the BIC approximation to the Bayes Fac-
tor (Wagenmakers, 2007) to compare the model
for RoBERTa against a null hypothesis model
without MODEL and its interaction with CON-
NECTIVE. This analysis indicates that the data
are more likely under the null hypothesis (fine-
tuning RoBERTa does not affect the presence of
a connective) than under the hypothesis (finetun-
ing RoBERTa does affect the presence of a con-
nective) (BF01 = 32.79). If we assume that it is33
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Figure 3: Interactions of CONNECTIVE with MODEL,
each comparing the baseline version of the model
with the finetuned version. Greyed out effects did
not reach significance and were eliminated in the
statistical model.

a priori equally likely that finetuning RoBERTa
does and does not have an effect, the posterior
probability we find (PrH0 |D = .97) constitutes
“strong” evidence for the null, according to the
Raftery (1995) classification scheme. We can
thus be confident that while we find a finetuning
effect for BERT, we are dealing with a true null
result for RoBERTa.

5 Discussion

The LMs have shown a clear preference for
the absence of a discourse connective, which
overall confirms a characteristic of argument
structures, i.e. their subjective causal relations,
in line with the psycholinguistic background to
our approach (H1). Also, in line with our expec-
tations, after finetuning, the LMs both showed a
decreased probability for an explicit connective
compared to the baseline ones (H2).

However, only BERT, but not RoBERTa,
shows a clear, i.e., statistically significant, in-
crease. We believe the fact that we find a sig-
nificant finetuning effect for BERT but not for
RoBERTa is a true effect of genre (H3): The
baseline version of BERT was trained on less
argumentative texts (specifically, books and
Wikipedia only) compared to RoBERTa, which
also includes news and websites in its training
data. The increase in the “argumentativeness” of

genres from baseline to finetuned is thus higher
for BERT than for RoBERTa, which has already
seen many argumentative texts before having
been finetuned. For RoBERTa, then, the finetun-
ing effect is less pronounced. This difference
that we observed is in line with the assumption
that genre does create a bias for the realisation
of argument structure in discourse.

Several effects we have presented suggest
that the approach covers the use of connectives
and genre conditions, as far as they are iden-
tifiable for an LM, reasonably well. The fact
that the absence of a connective is highly likely
across all models (H1) is likely a frequency ef-
fect. However, we were able to disregard this
effect by focusing on the comparison of base-
line and finetuned versions (H3), since it applies
to both equally. Our modelling also showed that,
in line with expectations, absence of a connec-
tive becomes overall more likely with increased
sentence length (number of tokens) – a find-
ing which suggests that length is not only a
control variable, in the sense of reflecting the
complexity of the pairing of claim and premise.
The effect of length also suggests that there are
other features relevant for the explicitness of an
argument, and their presence will become more
likely the longer an argument gets. For example,
other markers known to typically connect an ar-
gument’s second constituent are features at the
sentence beginning, the so-called “theme zone”,
such as adjuncts or demonstrative expressions
(Fetzer, 2018; Petch-Tyson, 2000). In general,
a clear effect of overall length of the discourse
units confirms the relevance of information den-
sity for the use of connectives.

Our results also indicate that argument min-
ing could profit from genre generalisations. So
far, approaches are typically developed and
trained using data either from one genre (e.g.,
persuasive essays in Stab and Gurevych, 2017)
or mixed-genre corpora with no systematic
cross-genre transfer (e.g., Morio et al., 2022).
In the former case, while high accuracy is of-
ten achieved within the same genre, the transfer
to another genre usually weakens the results.
In the latter case, the approach often achieves
moderate accuracy across genres without ex-
celling in any specific genre. This indicates a
general oversight of genre as a systematic fac-
tor in current methodologies. However, genre
generalisations are crucial for dealing with a
potential problem of LMs when dealing with ar-34



gumentative discourse: the genre-specific use of
explicit marking may lead LMs to learn only the
markings used within the genre(s) available in
the training data, thereby possibly overlooking
or neglecting other patterns.

6 Conclusion and outlook

In this study, we have presented a method for
testing genre bias in LMs, and we have shown
that discourse expectations as driven by the
genre have an impact on the explicit linking
of ADUs by way of discourse connectives. We
used two discourse processing principles – fore-
warning and UID – to account for a general pref-
erence for the absence of a connective. Testing
this preference in the form of fill-mask prob-
abilities of our LMs enabled us to identify an
expected genre bias after finetuning.

Even if the computational approach piloted
with this work is not without its limitations – be-
ing based on a very small data set and focusing
solely on single-word connectives while exclud-
ing other discourse markers – it successfully
quantifies the influence of genre on discourse-
structure realisation. In that sense, the method
can serve as a role model for investigating genre
effects. However, most argumentative discourse
will contain many other cues for realising argu-
mentation, which aligns with the identified ef-
fect of argument length. Extending the approach
to multi-word connectives, to combinations of
connectives and punctuation, or to more com-
plex “alternative lexicalizations” that equally
express coherence relations (Knaebel and Stede,
2022) would therefore be a promising endeav-
our. In addition, from a computational stand-
point, it would be beneficial to apply our ap-
proach to other LMs, particularly considering
that only BERT, not RoBERTa, incorporates
next-sentence prediction.

Overall, this work shows that both cross-
domain discourse processing and argument
mining can benefit from genre generalisations.
While recent work in argument mining has
aimed at making LMs less genre-dependent by
way of using connectives (Rocha et al., 2023),
our approach highlights a method of reveal-
ing genre bias in the use of connectives and
could thus be a template for future, more genre-
dependent work.
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A More details on finetuning

hyperparameter value
mlm probability 0.15
batch size 32
learning rate 0.00002
weight decay 0.01

Table 3: Hyperparameters for finetuning
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Abstract

We present a pipeline for multi-lingual Shal-
low Discourse Parsing. The pipeline exploits
machine translation and word alignment, by
translating any incoming non-English input text
into English, applying an English discourse
parser, and projecting the found relations onto
the original input text through word alignments.
While the purpose of the pipeline is to provide
rudimentary discourse relation annotations for
low-resource languages (for which no annota-
tions exist at all), in order to get an idea of
performance, we evaluate it on the sub-task of
discourse connective identification for several
languages for which gold data are available. We
experiment with different setups of our modular
pipeline architecture and analyze intermediate
results. Our code is made available on GitHub.

1 Introduction

Uncovering coherence relations in texts, also re-
ferred to as discourse parsing, is a complex task.
It is comparably difficult and time-consuming for
humans to annotate such relations, and as a result,
relatively little training data is available for ma-
chines to train a system on. Most of this data is
in English. Although recent shared tasks (Zeldes
et al., 2019, 2021; Braud et al., 2023) have had a
strong multilingual focus and included up to 13
different languages, there is still a large variety of
languages that are seriously under-resourced when
it comes to research on discourse and coherence.

In this paper, we attempt to address this issue by
presenting an end-to-end, multi-lingual discourse
parser. Our parser essentially consists of a pro-
cessing pipeline that exploits machine translation,
an English discourse parser, and a word aligner, to
project discourse relation annotations onto any non-
English input text, without a need for any language-
specific training data. The goal of our pipeline is to
kick-start the annotation of discourse relations in
languages for which little to no resources are avail-

able, or to provide rudimentary discourse relation
annotations for downstream applications where ac-
curacy is not the main concern.

To get an idea of performance, we experiment
with various different configurations of our mod-
ular architecture and evaluate on the sub-task of
connective identification. We compare our results
against a lexicon-based baseline that needs no train-
ing data either, and a state-of-the-art connective
identification system trained specifically on the lan-
guage and domain. Our pipeline mostly outper-
forms the lexicon-based baseline, by a factor of up
to 2.7, and while a system specifically trained on
the task outperforms our pipeline for all languages
and corpora for which training data is available,
we retain up to 81% of performance for some of
those corpora. We analyze the (intermediate) re-
sults from different system configurations, in order
to investigate which components of our processing
pipeline are the most error-prone. We hope that our
system proves to be a useful tool for researchers
working on automated approaches to Shallow Dis-
course Parsing for languages for which little to no
gold data is available.

The rest of this paper is organized as follows:
Section 2 discusses related work, focusing mainly
on discourse parsing. Section 3 explains our system
architecture. Section 4 presents the results, which
are discussed in Section 5. Finally, Section 6 sums
up our main contributions and discusses directions
for future work.

2 Related Work

In 2015 and 2016, two consecutive CoNLL shared
tasks (Xue et al., 2015, 2016) caused a spark in
interest in the discourse parsing task. The 2015
iteration worked with English only, the 2016 iter-
ation was multi-lingual by adding Chinese. Both
followed the Shallow Discourse Parsing paradigm
proposed by the Penn Discourse TreeBank (PDTB,
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Prasad et al. (2008, 2019)). This approach is often
referred to as Shallow Discourse Parsing since con-
trary to other discourse parsing frameworks such
as Rhetorical Structure Theory (RST, Mann and
Thompson (1988)) or Segmented Discourse Rep-
resentation Theory (SDRT, Asher and Lascarides
(2003)), it makes no commitment to overall text
structure, and deals with coherence relations on a
local level.

PDTB parsing is often done in end-to-end fash-
ion, with plain text as input and a list of discourse
relations as output, where each relation consists of
a relation type (explicit, implicit, alternative lexi-
calization or other), arguments and relation sense.
Since the introduction of a pipeline architecture
by Lin et al. (2014), many systems adopted this
setup (Wang and Lan, 2015; Oepen et al., 2016;
Knaebel, 2021). The majority of systems work on
English, with some systems focusing on Chinese
(Kang et al., 2016; Kong and Zhou, 2017; Chuan-
An et al., 2018). Beyond that, to the best of our
knowledge, the only other supported language for
end-to-end parsing is German (Bourgonje, 2021).

With a series of shared tasks, the Discourse Rela-
tion Parsing and Treebanking workshops (DISRPT,
Zeldes et al. (2019, 2021); Braud et al. (2023))
strongly encouraged a multi-lingual approach and
moreover, attempted to converge work on different
parsing paradigms, by including corpora follow-
ing the annotation guidelines from both the PDTB,
RST and SDRT. The shared task setup moved away
from an end-to-end approach, and system submis-
sions (Liu et al., 2023; Metheniti et al., 2023; Anu-
ranjana, 2023) focused on particular sub-tasks.

Our contribution aims to enable discourse pars-
ing for an even larger variety of languages, without
the need for any language-specific discourse anno-
tations. We hope that this opens up research into
discourse parsing for seriously under-resourced
languages. We integrate the end-to-end PDTB
parser from Knaebel (2021), but in principle, an
end-to-end RST parser (Joty et al., 2015; Heilman
and Sagae, 2015; Ji and Eisenstein, 2014) could
be plugged in as well. The components we im-
plemented for both machine translation and word
alignment were mostly selected because of their
user-friendly APIs. However, our system architec-
ture is modular by design, and systems focusing
on particular, low-resource languages can easily
be plugged in. A good example for machine trans-
lation is presented by Lin et al. (2023), whereas
good examples for word alignment are provided by

Procopio et al. (2021); Chen et al. (2021).
Using annotation projection for (sub-tasks of)

discourse parsing is not novel. Laali and Kosseim
(2017) use annotation projection from English to
French on a parallel corpus (Europarl) and improve
f1 score for discourse connective identification in
French by 15 points. Sluyter-Gäthje et al. (2020)
employ machine translation in combination with
word alignment, in order to create a German cor-
pus automatically annotated for discourse relations.
However, in contrast to Laali and Kosseim (2017),
we include machine translation and thereby dynam-
ically enable discourse parsing for any language.
In contrast to Sluyter-Gäthje et al. (2020), we fo-
cus on the pipeline itself and make that available,
instead of focusing on curating and publishing the
output of the process (e.g., a corpus annotated for
discourse relations in a particular language).

3 Pipeline Architecture

The following subsections explain the three dif-
ferent components of our pipeline to annotate any
non-English text with discourse relations, follow-
ing the PDTB framework. We use a modular setup,
such that individual components can be swapped
out for alternatives that perform better for particu-
lar languages or domains. The system architecture
is illustrated in Figure 1. The rounded boxes on
the right depict the individual modules. The listed
components are the ones we implemented, but for
every module, additional components can easily be
integrated. For machine translation, using a cus-
tom model, trained specifically for a low-resource
language (pair) can improve performance. For the
discourse parsing module, relevant alternatives that
work end-to-end can be integrated. For word align-
ment, tools that can be trained on or tuned for spe-
cific language pairs might return better results. See
Section 2 for some suggestions. As long as these
components accept and return input/output in the
same format, they can easily be interchanged. A
detailed description of the modules and the com-
ponents that we integrated into our pipeline is pro-
vided in the following subsections.

3.1 Machine Translation

The first step is translating any non-English input
text into English. We integrated both the DeepL1

and Google Tranlate2 APIs. At time of writing

1https://github.com/DeepLcom/deepl-python
2https://pypi.org/project/googletrans/
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Figure 1: System architecture.

this, DeepL and Google Translate offer translations
from/to 30 and 133 languages, respectively. For
languages not included in either of those, or for
domains where a specialized machine translation
engine performs better, this module can easily be
replaced by a custom machine translation engine.

Both the input and output format of this first
module are a list of sentences; the original input
text must be split into sentences, translation is then
done sentence-by-sentence, and the output is a list
of English sentences. The length of both input and
output lists has to be identical.

The reason for translating sentence-by-sentence
is that 1) the performance of word alignment is
expected to be better when done sentence-based
as opposed to text-based, and that 2) doing word
alignment on longer texts rapidly leads to memory
issues or long execution times. The drawback is

that the English translation might be less fluent
in cases where it might come more naturally to
either merge or split up multiple sentences during
translation.

3.2 Discourse Parsing
The second step in our pipeline is applying an end-
to-end discourse parser on the English equivalent
of the original input. We opted for English as an
intermediate language because most training data
annotated with PDTB-style discourse relations
is available in English. For particular language
pairs, if an end-to-end discourse parser is available
in a language that is syntactically closer, using
that might make sense, as word alignment can
be expected to perform better in such a scenario.
In our pipeline, we integrated discopy (Knaebel,
2021), because of its state-of-the-art performance
and ease of use, accepting pre-tokenized input and
running as a Docker container.

[
[ ’ There ’ , " ’ s " , ’ smoke ’ , ’ in ’ , ’my’ , ’ i r i s ’ , ’ . ’ ] ,
[ ’ But ’ , ’ I ’ , ’ p a i n t e d ’ , ’ a ’ , ’ sunny ’ , ’ day ’ , ’ on ’ ,

’ the ’ , ’ i n s i d e ’ , ’ of ’ , ’my’ , ’ e y e l i d s ’ , ’ . ’ ]
]

Listing 1: Example of discopy input format.

{" r e l a t i o n s " : [
{

" Arg1 " : {
" C h a r a c t e r S p a n L i s t " : [

[ 0 , 25]
] ,

" RawText " : " There ’ s smoke i n my i r i s , " ,
" T o k e n L i s t " : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ]

} ,
" Arg2 " : {

" C h a r a c t e r S p a n L i s t " : [
[ 3 0 , 80]

] ,
" RawText " : " I p a i n t e d a sunny day on t h e

i n s i d e o f my e y e l i d s . " ,
" T o k e n L i s t " : [ 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ,

16 , 17 , 18 , 19]
} ,
" C o n n e c t i v e " : {

" C h a r a c t e r S p a n L i s t " : [
[ 2 6 , 29]

] ,
" RawText " : " b u t " ,
" T o k e n L i s t " : [ 7 ]

} ,
" DocID " : −2650724294676803157 ,
" ID " : 0 ,
" Sense " : [

" Comparison . C o n t r a s t "
] ,
" Type " : " E x p l i c i t "

}
]

}

Listing 2: Example of discopy output format.

This module takes the translated and tokenized
text as input. The input must be a list of sentences,
which in turn consist of lists of tokens. Sentences
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are already segmented in the previous step. To-
kenization can be done with whatever method is
most convenient to the user (e.g., spaCy, Stanza,
UDPipe). An example of the required input format
is included in Listing 1.

The output of this module is a JSON object, indi-
cating where in the (English) input text, discourse
relations have been found, indicated through both
character offsets and token indices (based on the
pre-tokenized input). An example is included in
Listing 2.

3.3 Annotation Projection

The third and final step is that of projecting
discourse relation annotations back onto the
original input text. We integrated SimAlign
(Jalili Sabet et al., 2020) and AWESoME (Dou and
Neubig, 2021), but any word aligner that accepts
sentence-segmented input and returns output in
“Pharaoh format” can be used here. The Pharaoh
format indicates which token in the source text
corresponds to which token in the target text,
and the example displayed in Figure 2 would be
represented as follows:
[(0, 0), (1, 1), (2, 6), (3, 3), (4, 4), (5, 5)]

Figure 2: Word alignment example.

In this third and final step, we combine the re-
sults of the previous steps, with annotations all
based on token indices and character offsets, to
project the discourse relation annotations for the
English translation back onto the original input text.
For this, we use the same JSON format that discopy
uses (see Listing 2), but now the annotations are on
the original, non-English input text.

4 Results

Our pipeline is specifically targeted at low-resource
languages for which no discourse relation annota-
tions exist at all. However, without any gold data,
we cannot get any idea of performance of our setup.
So, in order to assess this across various languages
and domains, we use the PDTB-style corpora fea-
tured in the 2023 DISRPT shared task (Braud et al.,
2023) as gold data to evaluate our pipeline.

The shared task includes two sub-tasks, one fo-
cusing on segmentation and another focusing on
relation sense classification. For PDTB-style cor-
pora, the segmentation task is essentially about
identifying connectives. The sense classification
task assumes gold annotations for connective and
relation arguments. While our pipeline returns dis-
course relations, fully specified with a connective,
arguments and a relation sense, we decided to eval-
uate only on the segmentation task, i.e., connective
identification, for now, as there is significant room
for error propagation in our pipeline and we first
want to get an idea of performance on the most
upstream and comparably simpler task.

The segmentation sub-task for PDTB-style cor-
pora includes five (non-English) languages (Italian,
Portuguese, Turkish, Thai and Chinese), distributed
over seven different corpora. An overview is in-
cluded in Table 1.

Corpus Domain
ita.pdtb.luna IT helpdesk dialogs
por.pdtb.crpc news, fiction
por.pdtb.tedm TED talks
tha.pdtb.tdtb news
tur.pdtb.tdb news, fiction
tur.pdtb.tedm TED talks
zho.pdtb.cdtb news

Table 1: Overview of evaluation corpora.

In the task setup, the participants were provided
with a train, dev and test set. Systems could there-
fore be trained and tuned for the relevant language
using the train and dev sets. Since we do not train
our system in any way for a particular language or
domain, we do not expect to match performance
of the trained systems that participated in the task,
but for comparison, we do include results for Dis-
Cut (Kamaladdini Ezzabady et al., 2021; Metheniti
et al., 2023), as this is the only system that sub-
mitted results for connective identification in the
plain track, a setup that most resembles ours. We
consider this the upper-bound of expected perfor-
mance. To compare against a reasonable baseline
that also does not require any pre-training and
is aimed at low-resource/no-resource languages,
we use a lexicon-based approach. This comprises
simple pattern-matching using connective lexicons
bundled on a dedicated platform3. Lexicons for
all evaluation languages except Thai are available

3http://connective-lex.info/
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on this platform. Similarly, because DeepL does
not support Thai, the corresponding results are not
included either. For all (other) corpora, we ex-
periment with different configurations for the in-
dividual modules and their integrated components.
We calculate precision, recall and f1 scores for all
corpora, based on the *.test.conllu files from the
shared task4. Since our system needs no training
data, we could in principle evaluate against all avail-
able data (including train and dev sets), but to make
a direct comparison to DisCut’s performance possi-
ble, we evaluate on the test sets only. The results
are included in Table 2.

5 Discussion

As illustrated by the performance of DisCut, with
f1 scores generally in the 80s to 90s, given the avail-
ability of training data, identifying connectives is
relatively easy, at least when compared to other sub-
tasks in discourse parsing. We included the lexicon-
and pattern-matching-based baseline, performing
considerably worse, to indicate performance when
no training data is used at all, since this much more
resembles the targeted application scenario of our
pipeline.

The mid section of Table 2 represents the results
of experimenting with different system configu-
rations. Overall, we can see that our annotation
projection approach performs considerably better
than the baseline, except for on zho.pdtb.cdtb and
ita.pdtb.luna. However, a trained classifier per-
forms significantly better still. Based on this rel-
atively small set of languages and corpora, there
does not seem to be a trend with regard to indi-
vidual languages performing better or worse, as
the difference within languages (46 and 64 for the
two Portuguese corpora, and 42 and 48 for the two
Turkish corpora, both for deepl-discopy-awesome)
does not seem to be significantly smaller than the
difference between languages.

The following sections discuss the influence of
different system configurations with regard to ma-
chine translation and word alignment.

5.1 Machine Translation

By looking at the pairs for deepl-discopy-
simalign and googletrans-discopy-simalign first,
and deepl-discopy-awesome and googletrans-
discopy-awesome second, we can see the influ-
ence of a difference in machine translation alone.

4https://github.com/disrpt/sharedtask2023data

For all languages except Chinese, the setup us-
ing DeepL performs better than the setup us-
ing Google Translate, with the difference in fi-
nal f1 score ranging from 1 point (42 for deepl-
discopy-awesome vs. 41 for googletrans-discopy-
awesome on tur.pdtb.tdb), to 6 points (64 for
deepl-discopy-awesome vs. 58 for googletrans-
discopy-awesome on por.pdtb.tedm). For Chi-
nese, the setup using Google Translate outperforms
the setup using DeepL by up to 4 points. Recall
that DeepL does not support Thai, hence no re-
sults using this in the setup can be provided for
tha.pdtb.tdtb.

As noted in Section 3.1, the machine translation
module only accepts input that is already split into
sentences, and translation proceeds on a sentence-
by-sentence basis. Translating sentences in isola-
tion is likely to have a negative impact on trans-
lation output quality, since it will be less context-
aware. This is particularly unfortunate as we are
dealing with coherence relations, which are often
realized beyond sentence boundaries. We consider
it an important next step in the development of our
system to feed the sentence-segmented input into
the machine translation engine in batch-wise fash-
ion. In this way, we can take context into account,
but still force it to return the same number of output
sentences as are present in the input, to allow for
sentence-based word alignment.

5.1.1 Implicitation and Explicitation
Since we are translating discourse relations and are
evaluating on the sub-task of connective identifi-
cation, an issue known from the literature (Meyer
and Webber, 2013; Lapshinova-Koltunski and Carl,
2022; Lapshinova-Koltunski et al., 2022; Yung
et al., 2023) to take into account is implicitation
and explicitation, where discourse connectives are
either removed (explicit relations in the source
text become implicit relations in the target text)
or added (vice-versa) during translation. Especially
implicitation has a negative effect on performance,
as discourse connectives just disappear. Explicita-
tion presumably does not affect performance that
much in our evaluation setup, as in most cases,
word alignment will not find any tokens in the
source text that align to the newly added connec-
tives in the target text. Both implicitation and ex-
plicitation are known to play out differently, de-
pending on whether text is translated by machines
or by humans, i.e., Meyer and Webber (2013) find
an implicitation rate of up to 18% in human trans-
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ita.pdtb.luna por.pdtb.crpc por.pdtb.tedm tha.pdtb.tdtb
p r f1 p r f1 p r f1 p r f1

baseline 28 58 38 58 13 22 48 15 23 - - -
deepl-discopy-simalign 50 30 38 68 33 44 85 52 64 - - -
deepl-discopy-awesome 51 30 38 73 34 46 85 52 64 - - -
googletrans-discopy-simalign 48 29 36 72 28 41 81 46 58 52 20 29
googletrans-discopy-awesome 48 29 36 75 28 41 81 46 58 61 21 32
DisCut 66 78 72 78 81 79 75 85 79 85 59 70

tur.pdtb.tdb tur.pdtb.tedm zho.pdtb.cdtb
p r f1 p r f1 p r f1

baseline 27 18 22 49 13 21 51 30 38
deepl-discopy-simalign 37 35 36 69 33 45 46 26 33
deepl-discopy-awesome 42 42 42 79 34 48 50 24 33
googletrans-discopy-simalign 36 34 35 64 21 42 57 28 37
googletrans-discopy-awesome 45 38 41 71 31 43 58 27 36
DisCut 90 92 91 51 89 65 92 89 90

Table 2: Results of four system configurations on seven non-English corpora. We compare our parser with a
lexicon-based baseline and language-specific, trained system (DisCut). The reported scores are in percentages (%).

lations, and up to 8% in machine translations.

To investigate to what extent this effect may have
negatively impacted performance of our system,
we select one corpus where our pipeline did not
outperform the baseline (ita.pdtb.luna) and one
where it outperformed the baseline by quite some
margin (por.pdtb.tedm). We look at implicitation,
by selecting sentences that contain one or more
connectives, and then checking if their English
translation contains a potential connective, using
Eng-DiMLex, an inventory of English discourse
connectives (Das et al., 2018). If there is no match,
we consider this a case of potential implicitation,
and manually investigate further.

In ita.pdtb.luna, there are 202 sentences contain-
ing one or more connectives (of 1.304 sentences
in total). Using the procedure described above, we
find 23 instances of possible implicitation. Out of
these 23 instances, 8 are cases where the input is
too short to return a reasonable translation. Be-
cause the corpus consists of IT helpdesk dialogs,
these include (possibly interrupted) turns in a di-
alog, such as ma tanto noi (“but we”) and perchè
(“why”). 4 instances contain cioè, which is con-
sistently translated to “i.e.” in English, which is
not in Eng-DiMLex. This is basically a design
decision (to not include abbreviations), since the
semantically identical for example is included in
Eng-DiMLex and would be annotated according
to PDTB guidelines. Of the remaining 12 cases,
7 are cases of actual implicitation, and the other

5 are originating from the fact that the connective
in Italian is one word, and corresponding candi-
dates in English are phrasal. A frequent example is
che, where the English equivalent that is present in
the translation. But although Eng-DiMlex includes
given that, so that and after that, for example, it
does not include that in isolation.

In por.pdtb.tedm, there are 122 sentences con-
taining one or more connectives (of 246 sentences
in total), and 7 instances of possible implicitation.
Upon manual investigation, we found that this in-
cludes 4 cases of actual implicitation, with the re-
maining 3 being border line cases, which according
to the English, PDTB annotation guidelines (Eng-
DiMLex is largely extracted from the PDTB) are
not considered connectives. An example is Agora
podem vê# -la a desenrolar. (“Now you can watch
it unfold.”), where Agora is annotated as a con-
nective, whereas “Now” would probably not be
annotated according to PDTB guidelines.

In all corpora except for tur.pdtb.tdb, recall is
considerably lower than precision. We suspect that
the reason for this is that we can “lose” connec-
tives in our processing pipeline (which negatively
impacts recall), but we can never “gain” new con-
nectives to compensate for this. If discopy finds
new connectives in the English translations (i.e., ex-
plicitation), they will not be projected back onto the
original text, because they are implicit there. Upon
investigation, we found that for tur.pdtb.tedm,
with 247 connective tokens, only 119 were found
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in the English translations, resulting in an upper-
bound (if all instances found are correct) of 48% for
recall. The subsequent annotation projection step
actually retained all 119 instances. This suggests
that the largest source of error is running discopy
on the English translations.

Ultimately, it might be more relevant to con-
sider a more holistic evaluation, focusing on which
relations (including arguments and senses) have
been found, instead of which connectives have been
found. As explained earlier though, we first want
to get an idea of performance of comparably sim-
pler tasks, before we move to such a more abstract
evaluation.

5.2 Discourse Parsing & Word Alignment
In our current setup, we only include one dis-
course parser, hence cannot experiment with dif-
ferent setups for this module. By investigating the
rows deepl-discopy-simalign and deepl-discopy-
awesome first, and googletrans-discopy-simalign
and googletrans-discopy-awesome second, we
can see the influence of a difference in word align-
ment alone. The setup using AWESoME outper-
forms the setup using SimAlign on all data sets ex-
cept zho.pdtb.cdtb, where only in the setup using
Google Translate, SimAlign returns better results.
AWESoME outperforming SimAlign overall is in
line with the findings of Dou and Neubig (2021),
who compare their results to SimAlign as well.

In an attempt to isolate the effect of discourse
parsing and word alignment quality on our fi-
nal f1 score, we zoom in on one document from
one particular corpus. We select talk_1976 from
por.pdtb.tedm and investigate the best-performing
setup for this corpus (deepl-discopy-awesome).
Talk_1976 contains 59 connectives in its gold anno-
tation. In the English translation of this document,
discopy finds 38 relations, 34 of which are explicit
(i.e., contain a connective). We found that all 34
connectives were true positives, and they were cor-
rectly aligned to the source connective. This is in
line with the relatively high precision (85) for this
corpus. During manual analysis, we noticed that
most instances of explicit relations that were found,
featured fairly frequent connectives like e (“and”),
mas (“but”), se (“if”) and porque (“because”), but
less frequent connectives were missed by the parser.
A case in point is Agora (“now”) in Agora podem
vê# -la a desenrolar. (“Now you can watch it un-
fold.”), which was missed by discopy, although as
mentioned in the previous section, this might ac-

tually not be considered a connective, according
to the PDTB guidelines, and recall that discopy is
trained on the PDTB.

Another example of this kind, resulting from the
fact that the corpus discopy is trained on, might use
a different definition than the corpus it is applied
on, is Bem, imaginemos que pegamos no Telescópio
Espacial Hubble e o rodamos e o deslocamos para
a órbita de Marte. (“Well, let’s imagine we take
the Hubble Space Telescope and rotate it and move
it into orbit around Mars.”), where imaginemos
(“let’s imagine”) is annotated as a connective. Sim-
ilarly, in Seria o mesmo se erguesse o meu pole-
gar e bloqueasse o ponto luminoso à frente de_ os
meus olhos (“It would be the same if I raised my
thumb and blocked the light spot in front of my
eyes”), Seria o mesmo (“It would be the same”) is
annotated as a connective. Such examples would
most likely be annotated as alternative lexicaliza-
tions in the English PDTB, but other corpora might
have different definitions. We refer to Danlos et al.
(2018) for a detailed discussion, and furthermore
note that because in this paper, we are evaluating
on connectives specifically, this issue is particu-
larly challenging. For users interested in discourse
parsing in general (without specifically looking at
connectives), it might be less important whether
some relation is found as an Explicit or as an Alt-
Lex type relation, as long as it is found.

5.3 Domain Transfer
Based on the 7 corpora, distributed over 5 different
languages, we do not observe a significantly larger
variance in f1 score across languages, compared to
within languages. The two best-scoring corpora are
both from the TED Multilingual Discourse Bank
(Zeyrek et al., 2018). This raises the question as
to whether expected performance is determined by
original language or, rather, by original domain.
Discopy has been trained on the original, English
PDTB corpus, which represents the financial news
domain (Wall Street Journal articles). The two TED
corpora por.pdtb.tedm and tur.pdtb.tedm contain

“prepared, formal monologues (...) delivered to a
live audience” (Zeyrek et al., 2018, pp.1915), on
a variety of topics. At first glance, this does not
necessarily resemble WSJ articles. While one of
the corpora for which our pipeline does not out-
perform the baseline, ita.pdtb.luna, is from an
even less similar genre (spoken dialogs from the IT
helpdesk domain (Tonelli et al., 2010)), the other
corpus, zho.pdtb.ctdb consists of newswire text
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(Zhou et al., 2014), which at first glance seems
very similar to the domain discopy was trained
on. In the 2023 shared task, por.pdtb.tedm and
tur.pdtb.tedm corresponded to the “Out of Do-
main” setting. For Turkish, this seems to have had
a major impact on a system trained on a different
domain, as demonstrated by the performance drop
from 91 (tur.pdtb.tdb) to 65 (tur.pdtb.tedm) for
DisCut. However, such a drop is not observed for
DisCut’s performance on Portuguese, with both
corpora having the same f1 score.

6 Conclusion & Future Work

We present a multi-lingual Shallow Discourse Pars-
ing pipeline that makes use of machine translation,
an English discourse parser and word alignment to
project annotations onto the original, non-English
input text. We specifically aim to support low-
resource scenarios and make rudimentary discourse
parsing possible for languages without any avail-
able training data, since our pipeline needs no train-
ing data at all. Our code is made available online.5

We evaluate our approach on the sub-task of con-
nective identification and compare different config-
urations of our pipeline to a lexicon-based baseline,
and to a system specifically designed for the task
and trained on in-language, in-domain data. Our
system outperforms the baseline in most cases, and
for individual corpora improves f1 score by a factor
of 2.7. We find that a trained system still performs
considerably better, but for the best-scoring corpus,
we retain 81% of the upper-bound f1 score.

In our current architecture, translation is done
sentence-by-sentence, so as to keep sentences
aligned for better word alignment performance. We
consider more context-aware translation (Herold
and Ney, 2023) the most important piece of future
work. In addition, further investigation of error
propagation, as well as the effect of domain trans-
fer, are promising venues for future work. In this
paper, we evaluate our approach on the sub-task of
connective identification only. Our pipeline returns
fully specified relations (with a type, arguments
and relation sense), and we leave it to future work
to evaluate on more than just connective identi-
fication. Relevant related work in this respect is
represented by Kurfalı and Östling (2019), who
work on implicit relation classification without ex-
ploiting any (language-specific) training data, and

5https://github.com/PeterBourgonje/
projan-disco/

we consider it an important next step to experiment
with zero-shot transfer (Kurfalı and Östling, 2019,
2021) for other sub-tasks of discourse parsing.

Our system architecture is modular by design,
with relatively common exchange formats (Pharaoh
for word alignments, PDTB-style JSON for dis-
course relations) across modules, and where indi-
vidual components fine-tuned to a particular lan-
guage are available, these can easily plugged in.
Furthermore, our current architecture includes only
a PDTB parser and another possible extension is
the integration of RST parsers.

7 Limitations

In our pipeline, we integrated two alternatives for
machine translation, and two alternatives for word
alignment. Due to the limited availability of end-
to-end Shallow discourse parsers, we only include
one such parser in our setup and evaluation. Since
we see systematic differences in performance for
both machine translation and word alignment, de-
pending on which module is used, integrating more
components would provide a broader perspective.
Especially since both alignment components are
designed to work out-of-the-box, without any fine-
tuning, which most likely means that they will work
best on languages not too dissimilar to English.

Since we use a discourse parser trained on one
specific English corpus, from one domain (finan-
cial news), we consider this the most prominent
limitation of our system. While through this very
work, we attempt to open up discourse research
to under-resourced languages, we recognize that
we may actually end up enforcing principles and
paradigms that happen to work well for English
onto languages where discourse relations may be
realized in different ways. We already observe and
discuss examples of this kind in Section 5.2. While
we believe that our work may support the creation
of corpora in other languages, it is important to
keep this in mind and attempt to minimize bias
when using the output of our system in annotation
campaigns.
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Abstract

In recent years, discourse segmentation has re-
ceived increased attention; however the ma-
jority of studies have focused on written gen-
res and languages with abundant linguistic
resources. This paper investigates discourse
segmentation of a spontaneous speech corpus
in Taiwan Southern Min. We compare fine-
tuning a Language Model (LLM) using two
approaches: supervised, taking advantage of
a high-quality annotated dataset, and weakly-
supervised, which requires only a small amount
of manual labeling. The corpus used here is
transcribed in both Chinese characters and ro-
manized script. This allows us to assess the
impact of the written form on the discourse seg-
mentation task. Moreover, the dataset includes
manual prosodic break labeling, allowing an
exploration of the role prosody can play in
contemporary discourse segmentation systems
grounded in LLMs. In our study, the super-
vised approach outperforms weak-supervision;
the character-based version demonstrates better
scores compared to the romanized version; and
prosodic information proves to be an interest-
ing source to increase discourse segmentation
performance.

1 Introduction

Discourse segmentation consists in breaking down
texts or conversations into functional units that bet-
ter corresponds to participants’ intentions than sen-
tences or simple speech activity chunks. We will
use the term discourse unit (DU) (Asher and Las-
carides, 2003) to designate a minimal speech act or
communicative unit. Each DU corresponds roughly
to a clause-level content that denotes a single fact
or event.

While the segmentation of discourse units (DUs)
in written documents has received a lot of attention
from the discourse and NLP community, the same
cannot be said for the segmentation of spontaneous
speech. In this study, we approach the segmenta-

tion of discourse units in a corpus of spontaneous
speech in Taiwan Southern Min.

Southern Min is a sino-tibetan language spoken
by over 50 million people, and includes Taiwan
Southern Min, which is one of the official language
of Taiwan. We take advantage here of an existing
discourse segmented corpus of spoken interviews
for running discourse segmentation experiments.

We develop DU segmenters based on different
principles and evaluate their performance. More
precisely, we compare fine-tuning an LLM with
hand labeled data vs. employing a data program-
ming approach (Ratner et al., 2017) that requires
only a fraction of annotated data. While fine-tuning
LLMs for language well represented in the LLM
training data proved to be a very efficient solu-
tion (Gravellier et al., 2021; Prevot et al., 2023), it
remains to be seen whether this approach is rele-
vant for languages, particularly their spontaneous
speech variants, less represented in the training
data. Finally, we investigate the impact of using
either romanization or Chinese characters in our
dataset, as well as the potential contribution of
prosody.

2 Related Work

In recent years, there has been a renewed interest in
discourse parsing and discourse unit segmentation
within the NLP community. As in other subdo-
mains, Large Language Models have proven highly
beneficial and allowed to reach unprecedented
scores for these tasks. However, discourse segmen-
tation within these deep learning approaches has
been applied to only a few langauges, until the re-
cent initiative of DISRPT campaigns started (Zeldes
et al., 2019, 2021; Braud et al., 2023). The work
conduced within the framework of these campaigns
has equipped the community with a set of powerful
tools and frameworks to perform DU segmentation
using these contemporary approaches.
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As discussed in Braud et al. (2023), even for
written genres, discourse segmentation perfor-
mance drops in languages other than English and
when gold sentences are not given, due to sentence
segmenters being far from perfect (Braud et al.,
2017). Considering spontaneous conversational
speech, the related tasks of dialogue-act segmen-
tation and tagging yiels various interpretation
regarding the definition of base units. For instance,
some models explain that dialogue acts being
multi-functional, several segmentations can be
considered depending on the aspects of dialogue
being considered at the time of segmentation
(Petukhova et al., 2011).

A recent trend involves approaching discourse
segmentation with sequential models over contex-
tual embeddings (Wang et al., 2018; Muller et al.,
2019). Turning specifically to spontaneous speech
discourse segmentation, (Gravellier et al., 2021)
applied a weak-supervision approach (Ratner
et al., 2017) and reached an f-score of 73.7 while
having access to gold turn segmentation. More
specifically, manual heuristic rules, including some
rules exploiting the discourse segmentation model
trained on a written dataset (Muller et al., 2019),
were created to annotate noisily the entire dataset.
This noisy data was then used to fine-tune an LLM,
BERT (Devlin et al., 2018) in that case. In Prevot
et al. (2023), a larger amount of manual annotation
allowed to compare fine-tuning with larger amount
of training data and a weakly-supervised approach.
For this French dataset, it was concluded that
more than 7000 annotated DUs were required
in the supervised training approach to beat the
weakly-supervised approach (f-score: 70.6).
When more data was used, supervised fine-tuning
reached slightly higher scores (f-score: 73.9).
These f-score results are 10− 15% than the scores
obtained on written genress, which is expected
as sentence splitters leveraging punctuation
provide substantial assistance for discourse unit
segmentation. In speech, particularly spontaneous
interactional speech, pauses are useful but are by
far less reliable in predicting discourse units since
they are involved in many other dimensions and
are subject to significant inter-individual variability.
Recently Metheniti et al. (2023)1, an improvement
over Muller et al. (2019) has been developed,
allowing to reach new state-of-the-art results for

1Code at https://github.com/phimit/jiant/

discourse segmentation in various languages. Our
paper reuses the technical framework of this paper.

Segmenting speech into Discourse and Prosodic
units has been the focus of numerous studies
across various languages, including high-resource
languages like English (Hirschberg and Grosz,
1992; Hirschberg and Nakatani, 1996), Dutch
(Swerts, 1997), French or Mandarin (Degand
and Simon, 2009; Prévot et al., 2015) as well as
low-resource languages (Mettouchi and Vanhove,
2021). Discourse-prosodic interface research
has also been developed for better understanding
turn-taking mechanisms (Hu and Degand, 2023;
Botinis et al., 2007). The deep connection between
discourse and prosody has led researchers to ex-
plore prosodic cues for discourse tasks with some
success (Pierrehumbert and Hirschberg, 1990;
Shriberg et al., 2000). However, to our knowledge,
there are no studies in which modern LLM-based
systems described above, which achieve high
scores based solely on transcripts, have benefited
from incorporating acoustic-prosodic cues. An
interesting attempt was made in (Gravellier et al.,
2021), which validated the weak-supervision
approach exploiting silent pauses among other
elements, but the results did not improve with the
inclusion of other acoustic-prosodic features. This
is likely due to (i) the already high scores obtained
from text alone, which would require cues coming
from other sources to yield very high precision;
and (ii) to the challgenge of automatic extracting
reliable prosodic cues, such as speech rate, pitch or
even intensity, from conversational speech.

Discourse Studies on Southern Min (and related
language like Hakka or Cantonese) have focused on
final particles (Lien, 1988; Li, 1999; Fung, 2000;
Chappell, 2019), which can carry an interesting
range or semantic and pragmatic functions. More-
over, there have been specific corpus studies ex-
amining discourse markers in Taiwan Southern
Min (Chang, 2002, 2008; Chang and Hsieh, 2017).
However, to the best of our knowledge, there has
been no attempt to automatically segment discourse
units in this language.

Additionally, there have been specific corpus
studies examining (Chang, 2002, 2008; Chang and
Hsieh, 2017). However, to the best of our knowl-
edge, there has been no attempt to automatically
segment discourse units in this language.
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3 Dataset

3.1 Base data

The discourse segmentation data used in this paper
comes from an 8-hour corpus of monologue-like
spontaneous speech elicited in sociolinguistic
interviews as part of a larger project that collected
Min-Mandarin bilingual speech recordings all
over Taiwan between 2004 and 2010 (Wang and
Fon, 2013; Fon, 2004). This subset of the corpus,
also used in phonetic studies on phenomena
including pre-boundary lengthening (Wang, 2023,
2022; Wang and Fon, 2012) and tone sandhi
(Chen, 2018), contained speech materials from
16 speakers, who each contributed around 30
minutes of recording. The speakers were evenly
split in gender and two age groups (old and
young). At the time of recording, the old speakers
were between 50-65 years old, and the young
speakers were between 20-35 years old. Due to
the original recording setup, the transcripts only
focused on speech from the interviewee, with the
interviewer’s turns being labeled with a ‘turn’
token. The transcripts follow the convention used
in a dictionary 2 administered by the Ministry
of Education in Taiwan, along with a romanized
version. The transcripts were aligned with the
recordings at the syllable level using EasyAlign
(Goldman, 2011) with manual corrections from a
trained phonetician. During the manual correction
process, pauses annotation was incorporated in
the transcripts that are used in this study. In
addition to pauses, the corpus also contains
annotations on prosodic breaks, with a main goal
of identifying the presence of two levels of breaks
(intonational phrases and intermediate phrases),
as well as breaks resulted in from hesitations and
disfluencies. Data from two of the speakers were
used to calculated cross-labeller agreement (kappa:
0.86). We observe that although done completely
independently discourse and prosodic units exhibit
a relationship : 45% of the prosodic breaks are
also discourse breaks while 82% of the discourse
breaks also correspond to a prosodic break.

Due to the lack of widely available text-
processing tools in this language, dictionary-based
method was used to perform word segmentation
(maximal length matching) and POS tagging, the
latter of which follows a multihot format, i.e., a

2https://sutian.moe.edu.tw/zh-hant/

Figure 1: DU lengths in tokens.

word that is ambiguous between multiple POS tags
according to the dictionary is annotated as ‘1’ for
all those tags.

The corpus contains 88.5K words at the word
level with pause (#) and specific interviewer turn
symbols included.

3.2 Discourse Segmentation Annotation

The corpus contains annotation of discourse units,
which are defined as units that contain a verb and its
core arguments, a criterion that is also used in other
studies on the interaction between discourse and
prosody (e.g., (Chen and Tseng, 2019; Prévot et al.,
2015)). Crucially, discourse annotation in this cor-
pus was performed independently from the record-
ings, i.e., the annotators only saw the transcripts,
with turn information but no precise timing infor-
mation, when they performed the task. Similarly to
the prosodic labeling, two annotators labeled tran-
scripts from two of the speakers for examination
of interlabeller agreement (kappa: 0.96), and one
annotator labeled the remaining transcripts. See
Table 1 for examples of discourse units.

Disfluencies were not segmented apart and were
instead included within discourse units. Discourse
labellers had access to gold turn segmentation but
were not told to use them systematically. As a
result a few discourse units manually labeled span
over more than one turn.

Taking a more quantitative perspective, the dis-
tribution of the annotated discourse units lengths
in terms of tokens is provided in 1. We can see
a fairly balanced distribution of lengths that are
shorter than 10 tokens with a mean of 7.5 tokens
per discourse unit. Truly conversational corpora
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char: [其實 # 我 相信] [別人 會使] # [咱 就 一定 會使]
roman: [ki5-sit8 # goa2 siong-sin3] [pat-lang5 e7-sai2] [lan2 to it-teng7 e7-sai2]
gloss: [actually (pause) I believe] [others can] [we PART must can]
trans: [‘actually I believe’] [‘(if) others can (do it)’] [‘we must be able to (do it as well)’]

Table 1: Examples of three discourse units. Note how the pause (#) may occur within a discourse unit

tend to present a different bimodal distribution with
a mode of very short units (made of 1 token) cor-
responding to feedback and back-channels and a
second mode of units made of 4-6 tokens. The
dataset here is a corpus of interviews for which
only the interviewee is transcribed. While being
truly spontaneous, this explains why there are less
extremely short interactional units as well why the
mode of the distribution includes longer lengths
than purely dialogic genres.

4 Methodology / Experiments

The corpus includes interviews of 16 speakers.
We made 8 folds composed of two speakers each
and ran a cross-validation over the 8 folds with
different test / dev / train splits. Given our corpus,
this is a method that maximizes the distance
between training and testing data.

Two main approaches are evaluated for seg-
menting automatically our dataset : (i) directly
fine-tuning a LLMs with all the data at our disposal
(in a supervised way) (Supervised setting), (ii)
create a noisily annotated datasets thanks to
manual heuristic rules (See Figure 2) and a model
to combine them.

More specifically, we used ROBERTA (Liu
et al., 2019) and the framework fine-tuning it was
DISCUT (Metheniti et al., 2023), grounded in
JIANT environment (Pruksachatkun et al., 2020).

The weak-supervision framework uses SKWEAK

(Lison et al., 2021) rather than SNORKEL (Ratner
et al., 2017). SKWEAK natively allows the model
to exploit the sequential nature of our task. On the
technical side, SKWEAK relies on SPACY (Honni-
bal and Montani, 2017) documents. In order to
keep all the relevant information (timing, pos-tags,
prosody labels) linked to the tokens and to use
them in the labeling rules, we made use of SPACY

extensions attributes.
In the weak supervised approach, we use

SKWEAK’s ability to build a generative model

name label conflict precision recall
#_begpos BDU 0.14 0.86 0.19

turn BDU 0.16 0.84 0.11
beg_char BDU 0.25 0.75 0.21

conj BDU 0.36 0.64 0.24

Table 2: Profiles for a few labeling rules

from noisy labels provided by the labeling rules.
SKWEAK allows to choose an HMM to perform
this sequence labeling task. While this approach
can be adopted without annotated data, a small
development set is useful for testing and crafting
the heuristic labeling rules. We can decide more
efficiently which manual rules should be retained,
dropped or improved thanks to the metrics that
are computed on the development set. Besides
precision, recall and f-score, overlaps and conflicts
(with other rules) metrics are also useful to take
decisions over the usage of these rules (See table 2).

To summarize, the weakly supervised approach
is performed as follows:

1. write the labeling rules (See Figure 2) ;

2. apply and evaluate them on the dev set (iter-
ate with the previous step until satisfied with
labeling rules profiles on dev set) (See pro-
files in Table 2);

3. apply the labeling rules to the train set;

4. fit the HMM SKWEAK (rules aggregation)
model;

5. apply the resulting model to the test set.

For the time being, the labeling rules crafted
are extremely simple. They are using (i) pause
duration and turn information; (ii) frequent tokens
present at discourse boundaries; (iii) POS-tags over-
represented at discourse boundaries. Moreover,
manually annotated prosodic units boundaries are
included in the dataset and we use them for some
experiments. As mentioned above, POS-tags are
encoded in a multihot format. The labeling rules
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def pause_and_begin_char(doc):
for idx, token in enumerate(doc):

if idx > 0:
if (doc[idx-1].text == '#') and (doc[idx-1]._.dur > PAUSE)

and (doc[idx].text in BEGIN_CHAR):
yield idx,idx+1,'BDU'

else:
yield idx,idx+1,'ABS'

else:
yield idx,idx+1,'BDU'

Figure 2: Labelling Function example (pause combined with a DU-initiating character)

exploiting POS are formulated accordingly to this
ambiguous situation.

Characters vs. letters The corpus we are work-
ing with includes two versions of the transcription:
characters and romanization (as seen in example 1).
All our experiments were realized in both written
forms.

Prosodic boundaries This corpus comes with
prosodic break expert manual annotations. For the
gold dataset, we created two versions of the dataset
: one without any kind of prosodic information;
and one with a special token corresponding to
the presence / absence of a prosodic break. This
special token was added to the transcript in all
datasets (train / test / dev).

5 Results

The results comparing the general approach are pre-
sented in figure 3; the one related to the impact of
the written form used are in figures 4 and 5 and the
results of the prosody experiments are visualized
in 6. All the numbers can be checked in Annex 3.

Supervision or weak-supervision Our results3

(presented in Figure 3) shows that our weak-
supervision approach remains behind from the su-
pervised approach. This is true with large amount
of manually annotated training data (∼70K to-
kens)4 but the difference is already significant with

3In all the paper, the significance labels included in the
figures are corresponding to p-values of a t-test done on the
folds of the experiment. A difference between two conditions
is said to be significant (*/**/***) if t-testing the two series of
values coming from the folds for both conditions, yielded the
corresponding threshold p-values (0.05 / 0.01 / 0.001).

4For characters, supervised approach gives an f-score of
78.7 (p:77.0/r:80.5) while weak supervision only reaches a
52.0 f-score (p:55.7/r:50.4).

smaller amounts of training data (∼7K tokens)
for precision, recall and f-score (P:70.8/R:63.0/
F:66.7). Weak supervision does better only if ex-
tremely limited amount of training data is available
(∼700 tokens).

Which base units? The results of the experi-
ments show that different written forms (characters
vs. romanized) for the corpus yielded signicantly
different results. The difference between the two
versions of the corpus lies in the fact some roman-
ized tokens correspond to several characters (e.g.,
‘ah’ corresponds to ‘啊’, an utterance-initial/final
particle, and ‘矣’, a sentence-final particle and
perfective aspect marker; ‘e5’ corresponds to ‘的’,
a possessive marker and sentence-final particle,
‘个’, a classifier, and ‘鞋’, a noun for ‘shoe’.),
while there are also some, but much less, characters
that correspond to different romanizations (e.g.,
‘嘛’ correspond to ‘ma7’, which means ‘also’, and
‘mah’, a final particle). This situation conduced us
to propose several hypotheses. First of all, when
there is not a lot of fine-tuning data, having less
symbol types can help to get faster a robust model.
When more annotated data is available, having
more specific symbols should bring better results
by revolving some ambiguities. However, a second
fact to consider is that the LLM we are fine-tuning
(ROBERTA) includes Mandarin Chinese but not
Southern Min. We therefore hypothesized that
the character version should have an advantage
when very little amount is provided since the base
symbols are present in the model to fine-tune
while the romanized symbols featuring tone digits
should be something completely new for the model.

The results presented in Figure 4 show an advan-
tage to character based corpus with large amount
of fine-tuning data (Characters: 77.0/80.5/78.7 ;
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(a) Precision

(b) Recall

(c) F-score

Figure 3: Supervised vs. Weakly-supervised. blue :
200ms pause baseline; orange : romanized; green: char-
acters. From left to right _1:1% training data (∼700
toks), _10:∼7K toks), _100:∼70K toks)

(a) Precision

(b) Recall

(c) F-score

Figure 4: Characters vs. Romanized. blue: 200ms
pause baseline; orange: romanized; green: charac-
ters. From left to right _1:1% training data (∼700 toks),
_100:∼70K toks)
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(a) Precision (b) Recall (c) F-score

Figure 5: Amount of training data. orange: romanized corpus ; green: character version. From 1% training data
(∼700 toks) to 100% (∼70K toks). Dotted lines, blue: baseline, green and orange : weak supervision

Figure 6: Adding prosody. F-score

Romanized: 72.5/75.1/73.6). It seems to be also
the case when little amount of data is provided but
this difference did not reach statistical significance.
There also seems to be some complexities where
we could expect to find a sweet spot for the roman-
ized version (a little data for fine-tuning but not a
lot, see the precision and recall with 5% and 10%
of training data on figure 5) but the numbers do not
allow to conclude on this result.

Potential help from prosody Prosody informa-
tion used in this study had been manually added.
As explained above, this prosodic annotation is
however completely independent from the dis-
course segmentation. From a linguistic perspective,
prosody should help in segmenting discourse units
in speech since segmentation is one of the linguistic
function of prosody (Swerts, 1997; Hirschberg and
Grosz, 1992; Degand and Simon, 2009; Di Cristo,
2013). However, the recent work of (Gravellier
et al., 2021), realized in a similar framework as
ours, did not show the benefit of adding prosodic-
acoustic cues for performing discourse segmenta-
tion. This was based however on automatic acous-

tic extraction. Given the data available to us, we de-
cided to test whether "gold" prosodic segmentation
would help on discourse segmentation performance.
More precisely, every token in our dataset carries
the information of whether it is at the beginning of
a prosodic unit or not.

The base model we used did not allow for an
enrichment at the token level. We therefore trans-
lated the prosodic information into a token. More
precisely, for each start of labeled prosodic unit we
inserted a rare character in the transcript. The fig-
ure 6 illustrates the statistically significant benefit
of adding prosodic information for the characters
and romanized versions of the corpus. The increase
for the character version was +4.5,+2.5 and +3.5
for precision, recall and f-score respectively. These
increases might seem modest but one should re-
member that pause duration and turn information
was already taken into account before exploiting
these prosodic labels.

6 Error Analysis

To further understand how our models could be
improved we performed a detailed qualitative error
analysis of the various models output.

(1) is an example where the model trained on
gold and WS show the same segmentation error:
While the gold annotation does not segment this
sequence into two DUs, the models put a boundary
after the sentence-final particle ‘oh’ and a pause.
It is a representative example on the overuse of
pause as a segmentation cue, especially for the
WS-trained model. It also shows that the human
annotator has a stronger tendency to only segment
DUs with a main verb (thus ‘reversely my only
friend oh’ is not a DU) while also neglecting poten-
tial disfluencies and false starts (‘reversely is’). It
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(a) DU/PU-initial ‘ah’

(b) DU/PU-final ‘ah’

Figure 7: Illustration of prosodic help to discourse unit
segmentation: (a) The particle ‘ah’ being used as a DU-
initial marker is coincided with an intermediate phrase
break (BI-3) signaled by pitch reset, i.e., higher f0 at
‘ah’. (b) The particle is DU-final and exhibit lengthening
and continued f0 declination with the preceding sylla-
ble, both of which are characteristics of an intonational
phrase boundary (BI-4).

is worth noting that while the literal word sequence
contains ‘reversely is’, the whole phrase has the
same interpretation as ‘reversely’. The presence of
complex adverbs and/or discourse markers is likely
another reason that this task is challenging for the
models.

(1) ‘On the other hand, my boyfriend oh he would
still gone to see me’ (GEN: genitive marker;
PART: a marker similar to ba5 in Mandarin
ba construction.)

a. Gold annotation: [ah reversely is # re-
versely is I GEN boy friend oh # he still
would go PART me see]

b. Gold & WS-trained: [ah reversely is #
reversely is I GEN boy friend oh #] [he
still would go PART me see]

(2) is another example where the gold-trained
model oversegmented a DU that was viewed by the
human annotator as a noun and a relative clause
(‘The boyfriends that I had’).

(2) ‘The boyfriends that I had I always didn’t
marry them’

a. Gold annotation (and WS-trained): [I self
have GEN boy friend all all marry no
success]

b. Gold trained: [I self have GEN boy
friend] [all all marry no success]

Finally, (3) shows an example of how gold-
trained and WS-trained segmentation may differ
from the gold annotation in distinct ways. The gold
annotation has a DU boundary between the main
clause and the tag question, the former containing
some disfluencies. The model trained on gold an-
notation did not recognize the boundary with the
tag question and instead put a boundary before the
word ‘like this’ (an2-ne), which reflects the fact
that an2-ne is a discourse marker that can occur in
clause-initial and clause-final positions. The model
trained on WS data, on the other hand, did not put a
DU boundary for the entire sequence (thus having
an error of under-segmentation before ‘you know
not’), as there was no pause nor words that have a
strong tendency to start a DU in the corpus.

(3) ‘At that time, walking still didn’t require tip-
toeing, you know?’ (hyphen-connected units
denote a word in TSM).
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a. Gold annotation: [Then walking still
does-not like this does-not require tip-
toeing] [you know not]

b. Gold-trained: [Then walking still does-
not] [like-this does-not require tiptoeing
you know not]

c. WS-trained: [Then walking still does-not
like-this does-not require tiptoeing you
know not]

7 Discussion and Future Work

In this paper, we applied state-of-art techniques
of discourse segmentation to a dataset of Taiwan
Southern Min. We compared supervised and
weakly supervised approaches. Moreover the
linguistic information included in the original
dataset allowed us to test some hypotheses along
the way. We tested whether (i) it was easier to
segment with the character-based or romanized
version of the corpus ; and (ii) prosodic gold
labels could help these new models of discourse
segmentation.

An important overall result is that the approach
employed (fine-tuning a sequence-to-sequence
model) performs extremely well on this Taiwan
Southern Min corpus, a language not included in
the base Language Model (LLM) used. This is an
important result with regard to the applicability of
such approaches to low-resource languages for this
task. The longer term goal of this work is to apply
the best model we can build to a much larger cor-
pus of Taiwanese interviews. The results obtained
enable us to try to replicate existing studies on
discourse-prosody interface in spontaneous speech,
which have relied solely on manually annotated
data.

Getting into the comparison of the two ap-
proaches tested, we should remind here that the
scores obtained with gold annotations should
be taken as a top line for the weak supervision
approach. Indeed, the amount of manual gold
segmentation for this corpus is substantial and
does not aligh with the typical scenario for
adopting a weak-supervision approach. With
this consideration in mind, we observe that the
weakly supervised approach failed to produce
comparable results to the supervised setting. This
can be attributed on the one hand to the supervised
approach yielding highly competitive results

through fine-tuning with only about 10% of our
full amount of annotated data (corresponding
7K tokens, 700 discourse units); and on the
other hand to the relatively low performance of
our weakly supervised model. However, this
does not negate the potential interest of weak
supervision. Our current rules are rudimentary,
primarily using simple pauses, tokens information
and ambiguous POS-tags. We intend to enhance
these labeling rules in several directions: (i) using
a real POS-tagger that would reduce ambiguity ;
(ii) developing more sophisticated labeling rules to
address phenomena specific to spontaneous speech,
such as disfluencies.

Regarding the comparison between the
character-based and romanized versions of the
corpus, the clear conclusion is that the character
version consistently yields better results regardless
of the amount of fine-tuning data provided. This
could be attributed to both the benefit of lower
ambiguities of characters over romanized version
and to the presence of Mandarin data in ROBERTA.

Regarding prosody, this study has shown that, in
line with linguistic predictions and previous com-
putational models, but contrary to recent findings
on this task, prosodic information can indeed help
in discourse unit segmentation. The next obvious
step is to automatize the extraction of relevant
acoustic features that approximate efficiently the
manual annotations we had in this stydy. From the
primary prosodic features identified in (Shriberg
et al., 2000) for English, excluding the ones
already exploited by our pause and turn related
rules, we identify (i) pitch differences across
the discourse unit boundary, and (ii) duration
of phones and rhymes preceding the decision point.
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A Appendix

A.1 Global Results

(a) Precision

(b) Recall (c) F-score

Figure 8: Global Results blue: baseline, orange: romanized corpus ; green: character version
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prec mean prec std rec mean rec std fscore mean fscore std
pause baseline (200ms) 0.486618 0.060169 0.529578 0.068400 0.504385 0.050271
super. rom (700 toks) 0.616545 0.061804 0.344490 0.081643 0.435640 0.067387
super. char (700 toks) 0.652257 0.063328 0.398917 0.065834 0.490842 0.053958
weakly super. rom 0.601497 0.031159 0.524181 0.077477 0.557128 0.047371
weakly super. char 0.556877 0.064321 0.503797 0.098992 0.519769 0.055981
super. rom (7K) 0.654762 0.054972 0.601636 0.058013 0.624031 0.036572
super. char (7K) 0.707989 0.049716 0.629861 0.049157 0.666265 0.046354
super. rom (70K) 0.724710 0.040760 0.750888 0.052945 0.735763 0.028225
super. char (70K) 0.770644 0.020731 0.804883 0.036518 0.787142 0.025453
super. rom (70K) + pros 0.757477 0.027094 0.792695 0.034534 0.774099 0.020699
super. char (70K) + pros 0.814579 0.031807 0.829729 0.029347 0.821556 0.020996

Table 3: Global Results

A.2 Tokens and POS lists used in the labelling rules

A.2.1 POS list
BEGIN_POS = ['interjection']
END_POS = ['interjection', 'onomatopoeia', 'particle']
NON_BEGIN_POS = ['interrogative', 'locative', 'numeral', 'onomatopoeia', 'quantifier']
NON_END_POS = ['adposition', 'conjunction', 'numeral', 'pronoun']

A.2.2 Romanized token lists
BEGIN_UNI_ROM = ['tan7-si7', 'li5-chhiann2', 'sou2-i2', 'henn', 'ran2m-houm']
END_UNI_ROM = ['lah', 'bo', 'mah', 'neh', 'nia5', 'm']
BEGIN_BI_ROM = ['ah chit-ma2', 'ah na7', 'henn ah', 'li2 e7', 'ah i', 'in-ui7 li2',

'sou2-i2 gun2', 'ah ma7', 'sou2-i2 goa2', 'ah cho3', 'tan7-si7 goa2',
'ah si7','ah m7-koh','henn goa2','oh he','ah hit-chun7','ah chiah',
'tioh8 bo']

END_BI_ROM = ['bo5 lah', 'ni5 ah', 'u7 ah', 'e5 lah', 'ho2 chiah8', 'bo5 ah','ah lah',
'tioh8 ah', 'si5-chun7 honn', 'lah honn', 'henn ah', 'an2-ne lah',

'goa2 kam2-kak', 'khi3 ah', 'kam2-kak kong2', 'an2-ne nia5', 'e5 an2-ne',
'koe3 ah', 'tioh8 lah', 'ho2 ah', 'e5 oh', 'chai-iann2 kong2', 'e5 neh',
'kang5-khoan2 ah', 'ho2 lah', 'an2-ne honn', 'tioh8 bo']

B Labelling Rules

B.1 More examples

def very_long_pause(doc):
for idx, token in enumerate(doc):

if idx > 0:
if doc[idx-1].text in PAUSE_TOK and doc[idx-1]._.dur > VERY_LONG_PAUSE:

yield idx,idx+1,'BDU'
else:

yield idx,idx+1,'ABS'
else:

yield idx,idx+1,'BDU' #beginning of doc

def begin_pos(doc):
for idx, token in enumerate(doc):

if idx > 0:
for cat in string_to_list(doc[idx]._.pos_list):
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if cat in BEGIN_POS:
yield idx,idx+1,'BDU'

yield idx,idx+1,'ABS'
else:

yield idx,idx+1,'ABS'

B.2 Labeling Functions profles (Romanized)

annotator label conflict precision recall f1
1 non_end_pos NO 0.028 0.991 0.252 0.401
2 non_begin_pos NO 0.112 0.970 0.070 0.130
3 cluster_rom_neg NO 1.000 0.700 0.001 0.002
5 pause_ending_bi_rom BDU 0.109 0.927 0.048 0.092
6 pause_begin_pos BDU 0.112 0.888 0.082 0.151
7 begin_bi_rom BDU 0.121 0.888 0.090 0.163
8 pause_begin_bi_rom BDU 0.121 0.879 0.048 0.091
9 pause_endrom BDU 0.200 0.875 0.033 0.064
10 turn BDU 0.158 0.842 0.111 0.196
11 beginrom BDU 0.180 0.839 0.172 0.286
12 extreme_pause BDU 0.181 0.826 0.116 0.204
13 pause_beginrom BDU 0.181 0.819 0.064 0.119
14 cluster_rom_pos BDU 0.200 0.800 0.008 0.015
15 endrom BDU 0.318 0.773 0.016 0.032
16 very_long_pause BDU 0.263 0.741 0.144 0.241
17 long_pause BDU 0.417 0.588 0.235 0.335
18 pause_end_pos BDU 0.463 0.551 0.148 0.233
19 ending_bi_rom BDU 0.490 0.530 0.101 0.170
20 conjunction BDU 0.494 0.525 0.128 0.205
21 pause BDU 0.490 0.514 0.336 0.406
22 short_pause BDU 0.583 0.424 0.520 0.467
23 begin_pos BDU 0.597 0.410 0.160 0.230

Table 4: Label Functions profiles for Romanized version
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Abstract

The identification of political actors who put
forward claims in public debate is a crucial
step in the construction of discourse networks,
which are helpful to analyze societal debates.
Actor identification is, however, rather chal-
lenging: Often, the locally mentioned speaker
of a claim is only a pronoun (“He proposed
that [claim]”), so recovering the canonical
actor name requires discourse understanding.
We compare a traditional pipeline of dedicated
NLP components (similar to those applied to
the related task of coreference) with a LLM,
which appears a good match for this generation
task. Evaluating on a corpus of German actors
in newspaper reports, we find surprisingly that
the LLM performs worse. Further analysis re-
veals that the LLM is very good at identifying
the right reference, but struggles to generate the
correct canonical form. This points to an under-
lying issue in LLMs with controlling generated
output. Indeed, a hybrid model combining the
LLM with a classifier to normalize its output
substantially outperforms both initial models.

1 Introduction

Political decision-making in democracies is gen-
erally preceded by political debates taking place
in parliamentary forums (committees, plenary de-
bates) or different public spheres (e.g., newspapers,
television, social media). One way in which po-
litical scientists have analyzed such processes is
to adopt the framework of political claims analy-
sis (Koopmans and Statham, 1999), identifying the
claims (i.e., calls for or against specific courses
of action) and actors involved in a given debate.
Actors, claims, and the relations between them can
then be represented as bipartite discourse networks
(Leifeld and Haunss, 2012; Leifeld, 2016), such
as shown in Figure 1. Such networks permit re-
searchers to investigate debates on a fine-grained
level, identifying, e.g., discourse coalitions, deci-
sion makers, or argumentative clusters.

affiliation networkactors claims

actor network

(discourse coalition)

concept network

(argumentative cluster)

c1

c2

c3

c5

c4

a1

a2

a3

a5

a4

Figure 1: Discourse network with actors as circles and
claims as squares (adapted from Padó et al., 2019)

While early work on discourse networks was
based on manual analysis, widespread use of dis-
course networks requires quick, ideally automatic,
methods to construct them from text. This calls
for NLP methods to (1) detect instances of claims,
assign them to their categories (ci in Figure 1), and
(2) identify actors for these claims in terms of some
canonical representation (ai), cf. Padó et al. (2019).

At least for newswire, there are several NLP
models for claim detection and categorization (Sub-
ramanian et al., 2018; Padó et al., 2019). In con-
trast, there is little work on actor identification.
Arguably, this is because claims are easier to han-
dle: Both detection and categorization are sentence-
level classification tasks which can be modeled
based on predominantly sentence-internal features.
In contrast, actor identification calls for a substan-
tial amount of discourse understanding: models
must locally identify an actor for the claim, but
since these are often just a pronoun or a definite
description (cf. Table 1), they must globally find a
reasonable canonical representation for that actor.

This paper asks whether this situation has im-
proved with the emergence of prompt-based LLMs
(Liu et al., 2023) and their promise for text-to-
text generation, which appears to be a good match
for the actor identification task. We contrast an
LLM-based architecture with a traditionally trained
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Local mention of actor Canonical version

1 President Joe Biden pleaded with Republicans . . . Joe Biden
2 Biden signaled a willingness to make significant changes . . . Joe Biden
3 “We can’t let Putin win”, he said. Joe Biden
4 However, Senate Republicans later on Wednesday blocked . . . Senate Republicans
5 A U.S. official said Washington had less than $1B . . . U.S. official

Table 1: Actor mentions and their canonicalizations in newswire article (https://shorturl.at/WZ159)

pipeline of dedicated NLP components on a Ger-
man dataset with actor-claim annotation (Blokker
et al., 2023). We find that, surprisingly, the tradi-
tional architecture outperforms the LLM. Our error
analysis shows that the LLM often identifies the
correct actor entity, but fails to generate the canoni-
cal actor name. We attribute this to the general dif-
ficulty in controling what exactly LLMs generate, a
problem which has given rise to a substantial body
of work (Zheng et al., 2023). In line with this inter-
pretation, we show that combining the LLM with
the traditional model (for post-processing) achieves
substantially better performance on the actor iden-
tification task than either model alone.

2 Methods

2.1 Actor Identification: Task Definition

Table 1 shows mentions of actors making claims
in a newswire article and the canonical actors they
refer to, i.e., input–output pairs for actor mapping.

One possible approach is to treat this task as
entity linking (Sevgili et al., 2022), typically re-
alized as classification where the classes are the
set of entities from a knowledge base (KB) such
as Wikidata. While frequent actors (cf. lines 1–3)
are mostly represented in such KBs, texts also in-
troduce ad-hoc actors through plurals (line 4) or
unspecific descriptions (line 5) which are generally
not part of KBs. That rules out pure entity linking.

Instead, we formalize actor identification di-
rectly as canonical name string prediction: Models
are presented with a claim, along with its context
within an article, and are tasked with predicting
a string representing that actor. For actors which
commonly recur across claims, this string will be
a canonical form of the actor’s full name, while
for singleton actors, this string will be the verbatim
realization of an actor mention from the article.

While this formalization seems to ignore much
of the structure of the task (after all, actor names
are not fundamentally arbitrary strings), it has the

benefit of allowing fair comparisons between vastly
different model architectures: Text generation mod-
els can produce short strings directly, and other
modeling approaches can take advantage of task
structure internally, while still outputting a string.
For example, we could approach the task with a
coreference model, extended with a component
which chooses the most canonical realization in
each coreference chain from among the mentions.1

2.2 A Traditional Pipeline Architecture

The first method we apply to this task is a pipeline
of two “traditional” NLP approaches: an entity
extractor for actor mentions, and a classifier for
associating mentions with canonical actor names.

Our mention extractor is a CRF-based sequence
labeler. As input, we provide full articles in which
the target claim has been marked and encode the
input with a pretrained XLM-RoBERTa encoder
(Conneau et al., 2020), which we fine-tune during
training. The CRF’s task is to extract mentions of
the actor for the marked claim. As each claim must
have at least one actor mention, we constrain (Pa-
pay et al., 2022) our CRF to always predict at least
one actor mention. In order to map actor mentions
to canonical forms, we employ a simple neural clas-
sifier based on the same XLM-RoBERTa encoder
as above. As classes, we use the set of all canonical
actor names which occur at least twice in the train-
ing partition of our data (see Section 3.1), along
with a special ‘verbatim’ class for the remaining
cases. In these cases, the string output we predict
is the exact text of the actor mention.

2.3 An LLM-Based Architecture

In our LLM-based approach, we treat actor iden-
tification as an end-to-end task by combining the
subtasks of actor detection and mapping within the
prompt to directly predict the canonicalized actor.

1We do not evaluate a coreference model since full coref-
erence is known to be a very hard task (see, e.g., Peng et al.,
2015) and actor identification only requires solving a subpart.
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Due to the limited availability of language-specific
LLMs, we opted to experiment with the Llama 2
language model (Touvron et al., 2023) for both
base- and instruction model options in all available
size variants. This model family could be used
on German, despite being predominantly trained
on English corpora, because of the cross-lingual
transferability that is shown to occur in such multi-
lingual LLMs (Choenni et al., 2023).

We assess this task in zero- and few-shot set-
tings, employing current best practices for robust
prompt construction. These include: (1) using dif-
ferent instruction paraphrases for prompt templates,
given the fact that ’canonical name’ is not a very
established concept (cf. Appendix A); (2) selecting
exemplars semantically similar to the input (Mar-
gatina et al., 2023); and (3) varying exemplar quan-
tity and order within the prompt (Lu et al., 2022).
We construct the prompts by combining the English
task description as prompt instruction with the pre-
processed article in German (again, cf. Appendix
A). Due to the context length limitation, we prepro-
cess articles by extracting the target claim, marked
with special tags, with its surrounding context at
the sentence level. We use greedy decoding.

In these trials, zero-shot Llama-2-70b-chat out-
performs all few-shot settings. We choose this
setting for the rest of the paper.

3 Experimental Setup

3.1 Data

As gold standard for our studies we use DEbateNet
(Blokker et al., 2023), a German large corpus re-
source for the analysis of the domestic debate on
migration in Germany in 2015. After domain ex-
perts from political science developed a codebook
for the policy domain, roughly 700 newspaper arti-
cles from the German left-wing quality newspaper
“taz – die tageszeitung” with a total of over 550,000
tokens were annotated for actors, claims, and their
relations. For each article, all claims are marked
and labeled, and each claim is associated with a
canonical actor (our gold standard), yielding a col-
lection of about 1,800 actor-attributed claims. Most
claims are also associated with a named entity men-
tion from the vicinity of the claim, though this may
not be the nearest mention, cf. Table 1. We use the
established DEbateNet train–dev–test split, with
1383 claims in train, 220 in dev, and 207 in test.

Evaluation Pr Re F1

LLM
exact match 42.66 43.46 43.06
up to formatting 43.56 44.39 43.98
up to canonic. 62.39 63.55 62.96

dedicated
pipeline

exact match 48.66 59.35 53.47
up to formatting 48.66 59.35 53.47
up to canonic. 54.79 66.82 60.21

Table 2: Results for the LLM and traditional pipeline
models in the different evaluation settings

3.2 Evaluation

Both models are evaluated and compared via F1-
score. In order to gain a more detailed understand-
ing, we use three evaluation settings:

In the strictest exact-match setting, predictions
are counted as correct only if they exactly match
the gold-standard actor string. This setting can be
performed automatically.

In our correct-up-to-formatting setting, predic-
tions are counted as correct if they match the gold
standard string modulo text formatting differences
(e.g. whitespace differences, capitalization, punc-
tuation). This setting tells us how often a model
is “almost right” but receives no credit in the strict
setting. We carry out this evaluation manually.

Finally, our correct-up-to-canonicalization set-
ting counts predictions as correct if they predict the
correct entity, even if a different referring expres-
sion is generated. For example, “the chancellor” or
“Merkel” would be considered correct predictions
for the gold-standard actor “Angela Merkel.” As
with before, this evaluation is performed manually.

4 Results and Analysis

Main results. Table 2 summarizes the perfor-
mance of our two models under our three evalua-
tion settings. We first consider our strictest setting,
exact match. We find results in the range of 40–50
points F1 score, in line with the assumption that
actor mapping is a difficult task. Both models have
somewhat higher recall than precision, and the dedi-
cated pipeline outperforms the LLM by 10 point F1

score. This is somewhat surprising, given LLMs’
well-known capabilities in instruction-following
text generation (Brown et al., 2020; Webson and
Pavlick, 2022; Zhou et al., 2023).

We form two non-mutually exclusive hypotheses
for this performance gap: either that the traditional
model, through its supervised training, came to be
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more competent at predicting the correct political
actor, or, through virtue of its inductive biases, it
came to better and predicting the exact canonical
name. We examine these hypotheses by evaluating
the model with the other two settings. We also
carry out a qualitative analysis of errors made by
the LLM-based model (see Table 3).

One simple factor that would lead an essentially
correct LLM to be inexact is formatting errors in its
output – either mismatched spacing, punctuation,
or capitalization, or natural language responses that
could not be correctly post-processed. Such effects
should show up as a difference between the ‘exact
match’ and the ‘up to formatting’ setting. How-
ever, the numbers (43.06 F1 vs. 43.98 F1) show
that these types of error account for less than one
percentage point. Our qualitative error analysis
(Table 3, top part) finds (few) cases of formatting
errors, which often co-occur with other problems
(unexpected LLM responses, gold standard errors).
We conclude that such errors have a relatively mi-
nor effect on performance.

The reliance of our exact evaluation metric on
gold-standard canonical forms provides another
opportunity for a largely correct model to show
low performance due to an inability to pick the
exact canonical form required. This factor should
come to the fore when we compare exact match re-
sults to the ’up-to-canonicalization’ setting. Indeed,
for this setting, both models show a substantial in-
crease in performance – which implies that canon-
icalization represents a large part of the difficulty
for this task. Interestingly, the LLM shows a much
larger improvement, ultimately outperforming the
traditional pipeline by about 2.5 points F1. Our
qualitative error analysis in Table 3 (center part) in-
dicates that our LLM predictions have a hard time
hitting the right level of verbosity: they are either
too verbose, spuriously including government posi-
tions (e.g. [Interior Minister] Thomas de Maizière),
or not verbose enough, omitting first names (e.g.
[Angela] Merkel).

We take this as evidence that our LLM-based
model is adept at selecting the correct actor, but
struggles to select the canonical form. This is some-
what to be expected, as our LLM-based model has
neither a training signal nor a strong inductive bias
to prefer any particular canonical form. However,
as mentioned in Section 2.3, preliminary experi-
ments with a few-shot setting where we included
canonical forms in prompts showed no improve-
ments over our proposed model. We believe that

Error
Type Model output Ground

Truth

Fo
rm

at

Bayern The claim is Bayern
(Bavaria)

EU-Kommission
(EU commission)

EU-
Kommision
[sic]

C
an

on
ic

al
iz

at
io

n

Bundesinnenminister
(federal minister of the
interior) Thomas de
Maizière

Thomas de
Maizière

Kommissions-
präsident (commission
president) Jean-Claude
Juncker

Jean-Claude
Juncker

Zimmermann Klaus F. Zim-
mermann

Merkel Angela
Merkel

W
ro

ng
A

ct
or

EU-Kommission
(EU commission)

Jean-Claude
Juncker

Germany Thomas Bauer

Table 3: Some illustrative examples of the errors ex-
hibited by the LLM-based actor identification model:
German outputs with English translations

this indicates that the task of predicting ’canoni-
cal names’ remains a non-straightforward task for
LLMs even in the presence of training data.

Finally, responses which bungled the refer-
ence completely (Table 3, bottom part) sometimes
tended to be plausible, e.g. metonymyic, mistakes,
such as predicting the EU commission instead of
Jean-Claude Juncker, its president.

Hybrid model. The observations on the errors
motivate a follow-up experiment with a hybrid ap-
proach combining both our traditional and LLM-
based models. This hybrid is structurally similar to
our traditional model, but it is provided the LLM’s
prediction in addition to its other inputs. In this
way, the LLM can decide which actor made the
claim, while the traditional pipeline can be respon-
sible for predicting that actor in a canonical form.
Table 4 shows that this approach has similar prop-
erties to the individual models (no effect of format-
ting, but a large effect of canonicalization) but that
it represents, crucially, a substantial improvement
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Evaluation Pr Re F1

exact match 54.33 64.49 58.97
up to formatting 54.33 64.49 58.97
up to canonic. 64.96 76.39 70.21

Table 4: Results for the hybrid model in the different
evaluation settings

in terms of quality: In the strictest setting (exact
match), it achieves an F1 score of 59 points (previ-
ous best: 53 F1), and in the laxest setting it obtains
70 points F1 (previous best: 63 F1).

5 Conclusion

In this work, we investigate alternative approaches
to tackling the discourse-level actor identification
task, comparing LLM prompting with a conven-
tional NLP pipeline. We find that our LLM better
recognize the appropriate actor entities compared
to the traditional pipeline, but has a harder time con-
trolling the exact output. This problem cannot be
solved easily with tuning, as the failure of our few-
shot setup shows, which is also in line with recent
studies on the controllability of LLM output (Reif
et al., 2022; Sun et al., 2023). Our solution is a
hybrid model which integrates the LLM-generated
output as a cue in the pipeline approach, resulting
in a clear improvement over the individual models.

The current study is limited in several respects:
It only considers one LLM, one corpus, and one
evaluation. In the future, we also plan to carry out
an extrinsic evaluation of our actor identifier on
generating full discourse networks. In terms of fu-
ture directions, we believe that actor identification
is a task which could plausibly profit from retrieval-
augmented generation (RAG) proposed by Lewis
et al. (2020) which would give the LLM access to
information beyond the current discourse.
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A Prompt Templates

# Instruction templates

1 "Extract only the entity that made the claim in the article. The claim is surrounded with
<claim>and <\claim>tags. Output only the entity without any additional explanation.
Article: [ARTICLE]"

2 "Extract and standardize only the entity that made the marked claim in the article. The
claim is surrounded with <claim>and <\claim>tags. Output only the standardized
entity without any additional explanation. Article: [ARTICLE]"

3 "Retrieve the party or parties responsible for the statement in the given article, con-
tained within <claim>and <\claim>tags. Output only the entity without further elabo-
ration. Article:[ARTICLE]"

4 "Identify and output the entity or entities that made the claim within the specified article,
enclosed by <claim>and <\claim>tags. Do not include any supplementary information.
Article: [ARTICLE]"

Table 5: Prompt template instruction paraphrases used for robustness check for zero- and few-shot setting.
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Abstract

Writing research articles is crucial in any aca-
demic’s development and is thus an important
component of the academic discourse. The In-
troduction section is often seen as a difficult
task within the research article genre. This
study presents two metrics of rhetorical moves
in academic writing: step-n-grams and lengths
of steps. While scholars agree that expert writ-
ers follow the general pattern described in the
CARS model (Swales, 1990), this study com-
plements previous studies with empirical quan-
titative data that highlight how writers progress
from one rhetorical function to another in prac-
tice, based on 50 recent papers by expert writ-
ers. The discussion shows the significance of
the results in relation to writing instructors and
data-driven learning.

1 Introduction

The research article is one of the most, if not the sin-
gle most, important genres in academic discourse.
The Introduction section in the research article is
often reported to be difficult to write (Flowerdew,
1999; Hsu and Kuo, 2009).

Scholars have long recognized the central role of
rhetorical moves in academic writing. The widely
known analysis of the structure, the “Create a Re-
search Space” (CARS) model (Swales, 1990, 2004)
is the de facto standard in genre studies in aca-
demic discourse, alongside with the metadiscourse
model by Hyland (2005, 2018). Swales (1990)’s
CARS model observes the common pattern found
in academic research articles, which encompasses
three rhetorical moves (that can be seen as any tex-
tual unit, often one or more sentences, that aims
to fulfill a particular function for a text). Each
move can be decomposed to finer steps, while some
steps are “optional”, and some “obligatory” or ex-
pected. In the teaching setting, these moves and
steps can be used to guide novice authors in pre-
senting the context, purpose, objectives, literature

review, and overall significance of their research
logically and persuasively. The moves and associ-
ated steps (in bracket) are Establishing a Territory
(define the field, provide background information,
set the context), Establishing a Niche (identify a
gap, problem, or unanswered question), Occupy-
ing the Niche (clearly state the purpose, focus, and
objectives), Reviewing Previous Research (summa-
rize relevant literature, critically review existing
research), and Establishing the Significance of the
Research (demonstrate the importance within the
broader context).

A prevalent strand of studies under this tradition
focuses on the correlation between particular rhetor-
ical moves (e.g. Establishing a Niche or Occupying
the Niche) and linguistic forms (e.g. frequent words
or formulaic language, such as the n-gram “the aim
of the study”). Beyond the study of lexical bun-
dles, scholars often investigate the organizational
structure of various parts of research articles from
a qualitative perspective, while using empirical cor-
pus data. Our study focuses on the structure of
the Introduction section from an annotated corpus
of biology research articles written by expert writ-
ers. While previous studies have investigated the
same phenomenon, few works investigate the co-
occurrence or relation between moves and steps at
scale. For example, Samraj (2002, 2005) adopts a
qualitative and manual close reading method with
a few texts) for biology texts. In some cases, the
focus is on the implementation of moves in actual
linguistic forms (Lu et al., 2021, 2020), and the
dataset were not made publicly available to facili-
tate follow-up studies or replication. As such, there
is no existing dataset with clear annotation of the
rhetorical moves.

This study presents our analysis of a small
dataset of 50 texts in biology as a proof-of-concept
and proposes two quantitative metrics to conduct
move-step analysis. The contribution of this paper
is two-fold: First, we discuss quantitative mea-
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sures that allow for genre and rhetorical analysis
without close reading by researchers, which is time-
consuming and requires expert knowledge of genre
analysis. Second, we outline our efforts in mak-
ing the materials useful for writing instructors and
novice learners of academic writing in higher edu-
cation environments.

2 Related Work

Using corpus data to facilitate understanding of
academic discourse is no novel approach. Spe-
cific to the English for Academic Purposes (EAP)
community1, there has been many corpora like the
British Academic Written English (BAWE) corpus
(Nesi and Gardner, 2018), Michigan Corpus of Spo-
ken Academic English (MICASE) (Simpson et al.,
2002), and the Michigan Corpus of Upper-Level
Student Papers (MICUSP) (Römer and Swales,
2010). These resources have been widely used
in the EAP community for analyzing academic
language to facilitate materials development and
instructions. The wider coverage of various disci-
plines means that the data are discipline-agnostic
and capable of showing the overall patterns in the
language of academic discourse.

To better understand rhetorical strategies through
the CARS model, scholars have also employed cor-
pus tools to investigate the use of common phrases
associated with specific rhetorical moves. For ex-
ample, combinations like “in this paper we present”
and “it is well known that” are often found in the In-
troduction (Louvigné et al., 2014). Similarly, Jalali
and Moini (2014) identify 161 common lexical bun-
dles (i.e. frequent combinations of lexical items) in
the Introduction. The most frequent ones in their
study are often related to stating the purpose of the
study, such as “The aim of the”, “The objective
of this”, “study was to evaluate”. Pérez-Llantada
(2014) compares the skills in native and non-native
speakers’ of using formulaic combinations, using
similar methods. While these findings provide solid
evidence from attested examples used by writers,
they are also limited in not addressing the organi-
zation of the Introduction, which is reported to be
a common issue (Flowerdew, 1999).

Focusing on the organization and sequencing
of the steps, scholars have also investigated how
closely writers actually follow the CARS model

1The GENIA corpus (Kim et al., 2003), for example, was
not designed for the purpose academic writing research or
instruction. Rather, it was designed for knowledge mining in
biology.

in their practice. Previous studies have suggested
that expert writers do not follow strictly the CARS
model in their Introductions (Anthony, 1999; Sam-
raj, 2002). Meanwhile, articles from different disci-
plines may display variations, e.g. applied linguis-
tics (Ozturk, 2007), computer science (Orr, 1999;
Maher and Milligan, 2019), engineering (Kanoksi-
lapatham, 2015), and mathematics (McGrath and
Kuteeva, 2012; Kuteeva and McGrath, 2015). Sam-
raj (2005) discusses how introductions and ab-
stracts of Wildlife Behavior and Conservation Biol-
ogy, two closely related branches of biology, also
show deviations from Swales’ CARS model. Sim-
ilarly, Milagros del Saz Rubio (2011) suggests
that there are particular step-combinational patterns
used (i.e. how rhetorical steps are assembled to-
gether) for achieving a variety of communicative
purposes in agriculture.

3 Method

A total of 50 manuscripts from BioRxiv2 were
downloaded. From each of the five categories (An-
imal Behavior & Cognition, Biochemistry, Bio-
physics, Ecology, and Physiology), ten papers were
randomly selected and annotated by the researcher.

The annotation is based on the original model
by Swales (1990)3, which includes three ‘moves’
essential to the introductory text, which can be
further broken down into steps or options. In this
study, each sentence is annotated with step label.
The details are listed in Table 1. For simplicity,
Moves are coded with 1-3, and Steps are coded
with a-d, e.g. “Move 2 Step 3” is coded “2b”.

4 Results

Taken the introductions of all the 50 articles to-
gether, the annotated small corpus contains 43,187
words and 1,297 sentences in total. Each category
is represented by introductions of 10 articles. Table
2 shows the relevant statistics.
Figure 1 shows that Move 1 Step 3 ‘Reviewing
previous research’ is the most common type of

2https://www.biorxiv.org/
3While a revised model is proposed in Swales (2004) with

the aim to better accommodate variations in response to some
critiques (see e.g. Anthony (1999); Samraj (2002); Ozturk
(2007)), the updates (e.g. grouping all steps in Move 1 to
“Topic generalizations of increasing specificity” (Swales, 2004,
230) do not appear to generate concrete steps that can better
account for variations. Rather, the updated description accom-
modates a wider range of variations simply by being more
generic. For the practical purpose of annotation, this study
uses the original scheme with more fine-grained steps.
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Table 1: Steps in the CARS model (Swales, 1990)

Move/Step Description Code
Move 1 Establish Research Terri-

tory
Step 1 Claiming centrality 1a
Step 2 Making topic generaliza-

tions
1b

Step 3 Reviewing previous re-
search

1c

Move 2 Establish a Niche
Option 1 Counter-claiming 2a
Option 2 Indicating a gap 2b
Option 3 Question-raising 2c
Option 4 Continuing a tradition 2d
Move 3 Occupy the Niche
Step 1a Outlining purposes 3a
Step 1b Announcing present re-

search
3b

Step 2 Announcing principal find-
ings

3c

Step 3 Indicating article structure 3d

Table 2: Mean word counts and sentence counts per file

Category Mean
Word
Count

Mean
Sentence
Count

Animal Behv & Cogn 714.8 20.4
Biochemistry 836.8 27.8
Biophysics 883.1 28.4
Ecology 1077.9 26.7
Physiology 806.1 26.4

sentence in the data.

4.1 Step Collocation

To better understand the sequencing of rhetorical
steps, this study proposes a simple measure of step-
n-grams that captures the common sequences of
steps. In the data, the same steps tend to span over
multiple sentences, which likely signals the same
rhetorical function expressed by multiple sentences.
For example, the segment4 in Table 3 was coded as
1b-1c-2b in step-n-gram, where the repetition of 1c
over three sentences is coded as one single step.

Excluding these repetition of the same steps,
there are 169 attested combinations. The most
common step-n-grams are listed in Table 4:

4https://doi.org/10.1101/2023.10.29.564363
The biology texts are not cited in this study as they are used
as textual data, not academic citation.

Figure 1: Frequency of steps (n=1,297)

The results in Table 4 indicate that the rhetorical
progression (i.e. moving from one step to another)
“1a-1b-1c” is common, occurring in 34 out of the
50 texts. For bigrams “1b-1c” (n=62) and “1a-1b”
(n=51), we even observe repetition within the texts,
as their frequencies are higher than the number of
texts (n=50). It is not surprising that the step 1c
occurs in almost all combinations, due to its central
role to review previous studies and thus the high
frequency. The second highest step-3-gram is “1b-
1c-2b” (n=18), which can also be explained by the
high frequency of step 2b “Indicating a gap”, and
how it connects the steps “Making topic general-
izations” and “Indicating a gap”, which is the most
frequent option among the four in Move 2. See
more in section 4.3.

4.2 Lengths of Steps

The length of step measures how many sentences
the same step may span over in a contiguous man-
ner. Table 5 shows the lengths of all the steps.
Values of 0 indicate that the step can be absent in
some texts. Step “1c - Reviewing previous research”
is the only step that is never skipped in the attested
data. The step is also the longest among all steps.
Again, this is not surprising given its central role.

On the other hand, most other steps are much
shorter, as indicated by their maximum lengths and
mean lengths. The discussion will further defend
the use of this seemingly mundane information
from a pedagogical perspective for students or even
novice writers.

4.3 How to “Establish a Niche” (Move 2)

The classic CARS model includes four options or
approaches to implement the rhetorical move of es-
tablishing a niche. That is, scholars decide whether
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Table 3: A multi-sentence step in “1b-1c-2b”

Step & Sentence
[1b]: Cancer cells grow in a microenvironment
wherein they closely interact with the extracellular
matrix (ECM).
[1c]: As a major ECM component, collagen com-
position regulates various steps of cancer progres-
sion including growth, invasion, and metastasis,
partly through activation of its canonical receptor
integrin to regulate cytoskeleton organization and
cell motility [5–7].
[1c]: Recently, discoidin domain receptor tyro-
sine kinase 2 (DDR2), a non-typical collagen re-
ceptor that is dysregulated in various cancer types,
has emerged as a key signaling molecule in car-
cinogenesis [8, 9].
[1c]: Collagen binding to DDR2 activates its tyro-
sine kinase activity to initiate canonical pathways
such as ERK/MAPK and PI3K/AKT signaling
cascades [10–12].
[2b]: Despite these studies, how DDR2 regulates
cancer cell behavior is incompletely understood.

Table 4: Top 5 step-bigrams and step-trigrams

Step-Bigram Freq Step-Trigram Freq
1b-1c 62 1a-1b-1c 34
1a-1b 51 1b-1c-2b 18
1c-2b 38 1b-1c-1b 17
1c-1b 29 1c-1b-1c 17
2b-1c 23 1c-2b-1c 15

they are making a counter-claim (e.g. “However,
this validity may not be related to the neurobiol-
ogy of depression”5) or to indicate a research gap
(e.g. “Despite these studies, how DDR2 regulates
cancer cell behavior is incompletely understood.”6)
in order to show the niche of their own study. It
has been made clear that these options are not mu-
tually exclusive, nor do they follow any particular
hierarchy or ordering. Authors from our data often
adopts the option of “Indicating a gap”. Almost
half of the 139 examples of Move 2 are from option
2 (Option 1 = 20.86%, n=29, Option 2 = 49.64%,
n=69, Option 3 = 20.14%, n=28, Option 4 = 9.35%,
n=13). It is, however, important to note that these
options are not mutually exclusive. The same in-
troduction may contain multiple options by both
indicating a gap (option 2) and raising a question

5https://doi.org/10.1101/2023.11.08.566266
6https://doi.org/10.1101/2023.11.03.565457

Table 5: Lengths of steps

Step Min Max Mean
1a 0 4 1.28
1b 0 10 2.14
1c 1 16 3.97
2a 0 5 1.61
2b 0 6 1.33
2c 0 4 1.27
2d 0 3 1.44
3a 0 6 1.47
3b 0 8 1.98
3c 0 7 2.65
3d 0 1 1

(option 3).

5 Discussion

In the EAP community, studies on rhetorical moves
are abundant, especially with the focus on the corre-
lation between lexical bundles and particular rhetor-
ical moves, i.e. what phrases appear in which
moves/steps (Cortes, 2013; Staples et al., 2013;
Moreno and Swales, 2018; Omidian et al., 2018;
Appel, 2022). To complement this strand of re-
search that focuses on language use, the present
study discusses the progression of the moves and
steps. By introducing quantitative measures, we
have identified the distribution of specific steps,
as well as how different steps may collocate with
each other. Potentially, a scaled up version using
similar methods will be able to identify any micro-
variations across sub-disciplines, as some previous
studies suggest.

Our results also confirms what Samraj (2005) ar-
gues with regard to the deviations from the classic
CARS model. In our sentence-by-sentence anno-
tation, it is often found that Move-1 Step-3 (“Re-
viewing previous research”) is interspersed with
other moves. It can be explained by the need to
provide further support from previous studies, once
the authors have made topic generalizations (see
bigram “1b-1c”: n=62) or indicated a gap (see bi-
gram “2b-1c”: n=23).

While the quantitative results from the step-n-
gram and lengths of steps may seem mundane,
novice scientific writers can use these numerical
results as quick reference. The attested data in the
annotated corpus will also facilitate material de-
velopment. Rather than prescribing to students7

7In the authors’ context, the students are all at the post-
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that the Introduction must follow a certain pattern,
students can see both conformity to and deviation
from the standard CARS model. This allows stu-
dents to gain better understanding of how expert
writers may consciously depart from the CARS
model.

Given the internationalization of many institu-
tions and the increasing needs for support in aca-
demic literacy to both students and early career
researchers, the findings here may also mean that
instructions to discipline-specific writing should be
more fine-grained. For instance, students in bio-
diversity would have different needs and writing
models from students in molecular biology. An-
notated corpus data will allow instructors to easily
find attested data for various needs of students.

6 Conclusion and Future Work

This study has shown results from a small anno-
tated corpus and how they enhance our understand-
ing of academic discourse through the lens of the
CARS model. The study bears implications on our
understanding of progression in rhetorical across
steps (through step collocation) and implementa-
tion of steps (through lengths of steps), which in
turn benefits teaching of academic writing. In fu-
ture research, it may also be interesting to investi-
gate whether there is any significant differences be-
tween preprints (e.g. from BioRxiv as in the present
study) and published research articles. While both
kinds of data are supposed to be written by ad-
vanced or expert writers, there appears to be little
research on the contribution of peer review and edit-
ing specific to the rhetorical quality of the articles.
We acknowledge that the dataset is limited by its
size and the single annotator, and intend to remedy
these limitations in our ongoing work.

In future work, we aim to enhance the efficiency
of the annotation process through the application
of semi-supervised learning techniques. This in-
volves leveraging the manually annotated corpus to
develop an enriched corpus. For example, training
a KNN model will be useful for the multi-class
task that classify the sentences into the various
steps. Additionally, we can also implement few-
shot learning methodologies with the moves and
steps being vectorised with pre-trained LLMs, such
as GPT (Brown et al., 2020), on the modest “la-
belled” dataset to develop machine learning models

graduate level of MSc in biology programs, with a mix of L1
and L2 users of English.

that can generalise and make accurate classifica-
tions on new data samples.
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A Appendix

Figure 2 shows the sequence of the steps in all the 50 annotated texts.

Figure 2: Sequencing of the Steps
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Abstract
With the raise of large language models
(LLMs), different evaluation methods, includ-
ing probing methods, are gaining more atten-
tion. Probing methods are meant to evaluate
LLMs on their linguistic abilities. However,
most of the studies are focused on morphology
and syntax, leaving discourse research out of
the scope. At the same time, understanding
discourse and pragmatics is crucial to building
up the conversational abilities of models.

In this paper, we address the problem of prob-
ing several models of discourse knowledge in
10 languages. We present an algorithm to au-
tomatically adapt existing discourse tasks to
other languages based on the Universal Depen-
dencies (UD) annotation. We find that models
perform similarly on high- and low-resourced
languages. However, the overall low perfor-
mance of the models’ quality shows that they
do not acquire discourse well enough.

1 Introduction
Various methods of evaluating language models, includ-
ing probing methods (Koto et al., 2021), have recently
been popular. The probing methods help to shed light
on the linguistic abilities of Large Language Models
(LLMs), which could be later used to improve models’
qualities (Saphra, 2021). However, probing studies were
mainly conducted at such language levels as morphol-
ogy and syntax (Kassner and Schütze, 2020; Marvin and
Linzen, 2018). While pre-trained language models have
shown remarkable performance on various language
tasks, there is still much to be explored regarding their
ability to capture broader discourse in documents. By
discourse, we understand a language level that operates
linguistic units bigger than sentences.

It involves organizing and connecting ideas to create
coherent and cohesive communication.

In this paper, we are testing models’ ability to capture
different aspects of discourse knowledge. Discourse
probing can involve tasks such as identifying the rela-
tions between sentences within a document or the role
of one sentence in the document structure, investigating
main topics, discovering a suitable ending, and find-
ing out whether one sentence belongs to a particular

paragraph or not (Koto et al., 2021; Chen et al., 2019a).
Such tasks shed light on the strengths and limitations of
pre-trained language models in capturing the nuances
of discourse structure.

Our main contribution is a new suite of probing tasks
on multilingual data from ten languages. Moreover,
our method can be used for other languages with data
available in Universal Dependencies format (De Marn-
effe et al., 2021). Overall, we state our contributions as
follows:

• To bridge the gap in discourse probing research,
the paper introduces a probing task to interpret
the ability of pretrained LMs to capture discourse
relations in 10 linguistically diverse languages;

• We present a tool to generate tasks for probing dis-
course in any language for which there is enough
data in Universal Dependencies (UD) format1;

• The study validates the findings across different
models, languages, and discourse probing tasks,
providing valuable insights into the limitations of
current LMs in capturing discourse knowledge.

2 Related work
Probing tasks were first introduced in Conneau et al.
(2018) and described as simple classification tasks that
would reveal if a model contains any linguistic knowl-
edge. Probing involves different methods, for instance,
probing classifiers (Belinkov, 2022). After training a
model on a specific task, we create representations using
the model and then train a separate classifier to predict
a particular attribute based on these representations. If
the classifier demonstrates strong performance, we con-
clude that the model has acquired relevant information
for the attribute. However, upon further examination, it
becomes clear that additional complexities are at play.
Also, probing methods involve prompting: transforming
a set of probing tasks into question-answer pairs and
directing the model to respond to the questions with a
specific prefix (Li et al., 2021). This approach essen-
tially serves as a probe that is independent of the model.
By using prompting instead of a diagnostic probe, re-
searchers can circumvent the challenge of distinguishing

1Our code is available at https://github.com/
mashagodunova/discource_probing
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between the content of the representations and what the
probe learns. After all, one of the most developing fields
in probing LLMs is task relevance which is aimed at
investigating whether the information encoded in sen-
tence representations, as discovered through a probe, is
used by the model to perform its task. Task relevance
is also our method of research, which will be discussed
later.

Most probing studies focus on evaluating semantic
knowledge, which focuses on the meaning of individual
words and sentences. The probing methodology com-
bining various annotated data is commonly used as the
benchmark for language model comparison and evalu-
ation of their generalizing ability (Conneau and Kiela,
2018). On the other hand, probing of discourse exam-
ines how linguistic units are organized and connected to
form coherent texts, a crucial ability to generate long se-
quences. However, only some works investigate the abil-
ity of LLMs to understand discourse. Ettinger (2020)
shows that BERT produces pragmatically incorrect out-
puts because it does not consider an extended context.
Among other works, Nie et al. (2019a) evaluate mod-
els on discourse relations expressed with conjunctions.
Chen et al. (2019b) propose a benchmark for model
evaluation on different discourse tasks such as predic-
tion of implicit discourse relations based on the Penn
Discourse Treebank annotation (Prasad et al., 2008),
discourse coherence, and others.

3 Tasks
3.1 General Description
All examples of the described tasks are presented in
Appendix 7. We adapt tasks from DiscoEval (Chen
et al., 2019a), a framework for discourse probing of
language models. The main difference between this
research and our work is that we do not concatenate
vectors for separate sentences but use the sequence as
an input for our models. From the described paper, we
borrowed and adapted the following tasks, making them
suitable for multiple languages:

Sentence Position (SP): this task tests the model’s
understanding of linearly-structured discourse. By ran-
domly moving one of the five sentences to the first po-
sition, the model must be able to accurately predict the
correct order within the discourse sequence based on
the content of the sentences.

Binary sentence ordering (BSO): this task is to iden-
tify the correct order between the two contextually code-
pendent sentences. BSO could be useful in testing a
model’s ability to capture local discourse coherence and
understand the relationships between adjacent sentences
in a text.

Discourse coherence (DC): having a sequence of
6 sentences that form a coherent paragraph, we need
to randomly replace one sentence from the coherent se-
quence with a sentence from another discourse. A model
needs to determine whether the resulting sequence of
6 sentences still forms a coherent document. In the

DC task, the models must determine the coherence of a
document in which any of the five sentences could be
replaced except for the first.

Besides that paper, we adapt several tasks from (Koto
et al., 2021):

Next sentence prediction: The preceding context
consists of 2 to 8 sentences, while the candidates (4
sentences) for prediction are always single sentences.
Nevertheless, we adopted it as a binary classification
task by mixing one of the sentences in a way that re-
searchers in (Chen et al., 2019a) did.

Sentence ordering: This task is to determine whether
the order of sentences in the document is correct. Texts
from 3 to 7 sentences mixed within the same sequence
are presented as incorrect options.

Cloze story test: Data for this task consists of se-
quences with four sentences in each. A model needs
to pick the best-ending sentence for all documents. We
adapted the task as binary, so for incorrect pairs ‘key:
value’, we shuffle ending sentences within all docu-
ments.

Although probing studies (Koto et al., 2021; Chen
et al., 2019a; Nie et al., 2019b) in the field of discourse
have already been conducted, they included a small
number of languages (mostly English). They focused
on a limited number of tasks in terms of content: either
predicting a discourse marker, analyzing the model’s
understanding of the coherence of the entire text, or the
connectivity between a certain number of sentences in
a document. Therefore, it seems essential to conduct
a general study, having compiled tasks on various as-
pects of discourse and choosing different languages as
a training sample.

3.2 Tasks’ theoretical background in terms of RST
As it was already mentioned, the main theoretical back-
ground for parsing UD documents was Rhetorical Struc-
ture Theory. We have not tried to consider individual
types of relations, such as opposition or entailment. In-
stead, we focused on general patterns, called schemas in
this theory, and the constraints they impose on the text.

There are 4 types of restrictions that must be observed
in order not to violate the structure of the text:

• Completedness: The set contains one schema ap-
plication that contains a set of text fragments that
make up the entire text

• Connectedness: With the exception of the entire
text in the form of a text fragment, each text frag-
ment in the analysis is either a minimal unit or an
integral part of another application of the analysis
scheme.

• Uniqueness: Each schema application consists of
a different set of area text, and within a multi-link
schema, each link is applied to another a set of text
areas.

• Adjacency: The text intervals of each schema ap-
plication are equal to one text interval.
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According to this classification, we divided all tasks into
three groups. The first group included tasks in which the
rules of coherence and contiguity were not observed at
the same time. Among these tasks are Sentence Position
and Binary sentence ordering. The difference between
the tasks lies in the size of the sentences and the static
part: in the first case, four out of five sentences remain
static, while in the second one element moves relative
to another. The similarity lies in the fact that in both
tasks the order is disrupted by changing the adjacency
relations, that is, the sentence changes its position in the
general structure, but the new sentence, which was not
originally in the discourse, is not involved.

Another group that we deduced was a group of exam-
ples in which the rules of completedness and uniqueness
are violated: Discourse coherence, Next sentence predic-
tion, Cloze story test. In this group, the desired element
is removed from the discourse and replaced with an
element from another discourse. Due to this general
characteristic, tasks from this group can be character-
ized by two properties: loss of text integrity and the
presence of elements that do not fit into the structure of
the text.

The latter group is characterized by the absence of an
important element (sentence or word form) necessary
for the connectivity of the text (at the same time, nuclear
part is not missing, therefore, in this sence the text is
completed), therefore, only the rule of connectivity is
violated in them. Among the tasks included in this
category: Sentence ordering and Discourse connective
prediction.

4 Methods

4.1 Data

All data for our probing tasks was taken from the UD
framework (De Marneffe et al., 2021), which provides
a standardized set of grammatical dependencies and
syntactic relations for annotating treebanks in different
languages (more than a hundred languages). One of the
main tasks of our research was to create a parser that
generates multilingual tasks for discourse on UD data
automatically without the need for manual markup. As
a result, we extracted .csv files as training samples from
the UD data. The general format of such files consists
of:

1. Answer in correctness rating format: 0 or 1. In
this case 1 indicates that presented sentences (and
discourse connective for DCP task) meet the cri-
teria for the correctness of a specific task. For
example, for the Binary sentence ordering task,
two sentences will be presented; if they are in the
correct order, there will be 1, otherwise - 0.

2. Data type marker: training or test

3. Sentences - each sentence is displayed in a separate
column

4. Present only in the Discourse connective prediction
task - discourse connective itself

This parser can be used on treebanks for any language.
We frame almost all presented tasks as binary classifi-
cation problems, and they involve different aspects of
Rhetorical Structure Theory2, models’ understanding of
which is being tested in this study. More information
about the generation of tasks is presented in section A.

4.2 Models
In our study, we probe several multilingual LLMs of
different architectures: mBERT (Devlin et al., 2019),
XLM-XLM-RoBERTa (Yinhan et al., 2019), mGPT,
and mT5. We do not fine-tune models since we aim to
test the basic models in understanding the discourse. In-
stead, we extract [CLS] embeddings and train a Logistic
regression on these representations to assess the quality
of the models’ performance.

4.3 Languages
Most of the languages in the sample belong to the Indo-
European language family (limited to the most common
language groups – Romance, Germanic, and Slavic);
as for our experiments, the dataset size was essential.
We also included Turkish, which treebank is one of
the largest in the Universal Dependencies. In addition,
Turkish is part of one of the largest language families,
Altai. The sample also included the Armenian language
since data for this language was massive enough to
parse it, and it has never been included in any previous
probing studies. The table below shows the number of
examples for each task and language that were extracted
from treebanks:

Most of the languages in our sample were chosen as
they have been mentioned little to no in previous works.
However, we also include languages often appearing in
Natural Language Processing works, such as English,
French, and Russian, to make our results comparable to
other works.

Moreover, the difference in corpora sizes shows how
models perform in best (high-resourced languages) and
worst cases (low-resourced languages). It allows us to
investigate further how the number of examples in a par-
ticular language determines a multilingual transformer’s
understanding of several idioms at once.

5 Results
5.1 Results by languages
Overall, models show some understanding of discourse
structures, especially in high-resourced languages.

As for the differences in performance on different lan-
guages, as Figure 1 shows, models show better quality

2Rhetorical Structure Theory (Forsbom, 2005) is a frame-
work for analyzing and understanding how texts are organized
and constructed rhetorically. It focuses on the patterns and
relationships between different text elements, such as the pri-
mary point or argument, supporting evidence, and rhetorical
devices used
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Language BSO CST DC NSP SO SP DCP

Russian 15632 9385 3450 12949 5302 2790 14036
Bulgarian 17354 67142 33567 42781 18579 22152 37620
Czech 1230 18437 2143 13561 9450 7664 2089
Serbian 1389 6780 2013 4998 4356 1732 1503
Catalan 1476 47852 34701 21952 1938 9909 7605
French 1468 1201 1750 7620 2395 1042 1201
Latin 1474 51867 21602 13764 1027 1395 3047
English 1823 21770 3502 16067 3750 7438 8993
Armenian 2094 46209 29436 49673 19820 10347 28049
Turkish 15203 12064 3972 30166 1960 1704 6775

Table 1: Number of examples in each treebank. BSO: Binary Sentence Ordering, CST: Cloze Story Test, DC:
Discource Coherence, NSP: Next Sentence Prediction, SO: Sentence Ordering, SP: Sentence Position, DCP:
Discourse Connective Prediction

in the languages better presented in the training set. As
can be seen, a writing system does not appear to be an
essential factor, as models show better performance in
Armenian than in Turkish or even French in some cases.

Armenian XLM-RoBERTa performs best in this lan-
guage, although mBERT and mT5 demonstrate almost
identical results. Although there are practically no stud-
ies devoted to the structure of discourse in the Arme-
nian language, and this language is considered under-
resourced, it is surprising that models show results simi-
lar to results in English.

Bulgarian In this case, there is a distribution common
to most tasks (and obtained by averaging the results for
both tasks and languages), in which XLM-RoBERTa
demonstrates the highest accuracy, mBERT performs
slightly worse, followed by mT5, and the worst results
are observed for mGPT.

English Results demonstrated by models for English
may show the actual distribution of ratings because this
language always has the largest number of examples
in the training sample. We can assume that mBERT
potentially has more knowledge about discourse, but it
is more difficult to cope with longer sequences, or it has
a smaller multilingual base.

Catalan For Catalan we observe extremely unex-
pected results exceeding XLM-RoBERTa, as mBERT
demonstrates the best accuracy (while still lower than
the average value for other languages), and mGPT is
in second place. mT5 demonstrated a slightly lower
average accuracy, and XLM-RoBERTa performed the
worst.

Czech XLM-RoBERTa’s absolute superiority may
stem from the fact that the compilers of the treebank for
the Czech language emphasized long-distance discourse
relations in accordance with (Poláková et al., 2020),
meaning that to capture a core sense of the sentence
you need to ’parse’ it from the beginning to an end and
keep in mind all the details. As proven, one of the main
advantages of XLM-RoBERTa is the ability to analyze
large text sequences (Conneau et al., 2020).

French The utterance in Romance languages (com-

pared to the linear structure of utterance in English) is
distinguished by ornateness. The main idea is usually
expressed at the beginning and at the end. In this vein,
the accuracy of mGPT can be explained by the sparse
attention mechanism, which allows each output position
to focus on only a subset of input positions, selected
based on predefined patterns or rules (Martins et al.,
2020).

Russian For Russian, we observe the same distribu-
tion that has already been described for Bulgarian. Since
the distribution was almost the same for the Czech lan-
guage (the difference is that the mGPT showed slightly
higher accuracy than mT5), it can be assumed that such
similarity in the results is explained by the affiliation of
the above languages to the same language group.

Latin In (Kroon, 2009), it is established that the struc-
ture of discourse in Latin is characterized by solid frag-
mentation in the sense of the distance between discur-
sive units united by various word forms, which are also
polysemic. Thus, the high average accuracy of most
models in tasks with the Latin language reflects the abil-
ity to build non-trivial connections within the text and
understand the general meaning.

Serbian Since Serbian discourse has not been suffi-
ciently studied before, the only factor by which we can
explain such a distribution of model performances is
the small amount of data for the language under study.
Regarding mBERT’s superiority over XLM-RoBERTa,
it can be assumed that differences in the token masking
procedure explain it - in the case of mBERT, it is always
a fixed set of tokens when the model is working, which
may help in working with low-resource languages.

Turkish XLM-RoBERTa achieved the highest perfor-
mance, surpassing mBERT, mT5, and mGPT. However,
mBERT still performed better than mGPT and mT5;
mT5 showed the lowest accuracy among the four mod-
els.

5.2 Results by tasks

Now, we will examine the correlation between each
model’s understanding of discourse and different types
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Figure 1: Average accuracy depending on the language and type of model

of tasks. As seen from Figure 5.2, the models show
the best performance on Cloze Story Test (CST) and
Next sentence prediction tasks. In both tasks, the focus
of the prediction is the last sentence of the document.
However, the accuracy on a similar task, the Discourse
coherence (DC) task, is much lower. We can conclude
that the number of sentences is not a crucial factor, as
for the DC test, there was a sequence of 5 sentences
provided, while for CST, all documents consisted of 4
sentences. However, the position of a shuffled sentence
appears to be important.

Binary sentence ordering is the only task where
mGPT copes with it best, but in all other tasks, it
demonstrates the lowest accuracy rates due to obvious
issues like the lack of some investigated languages in
the mGPT’s training data.

Cloze story test In this task XLM-RoBERTa shows
the best performance. Our results replicate the results
by Conneau et al. (2020) where they show that XLM-
RoBERTa surpasses mBERT on cross-lingual classi-
fication, but specifically with low-resource languages
used in training data. XLM-RoBERTa’s superiority over
mBERT can be explained not only by its overall bet-
ter accuracy in most tasks but also by the phenomenon
called the "generalization gap”, which occurs when a
language model’s ability to perform well on downstream
tasks exceeds its performance on the validation set dur-
ing training.

Discourse coherence Even though one of the two
main mBERT’s objectives is Next sentence prediction,
we should remember that the DC task provides the
model with not two but several sentences as input to de-
termine whether they are coherent. As shown by the re-
sults, XLM-RoBERTa copes better with long sequences
because compared to mBERT, more extensive training
data with lengthier sequence segments is trained. Re-
sults for this task indicate that the model’s architecture
type does not play a crucial role in this case. Although
mBERT and XLM-RoBERTa are encoders, mGPT is a
decoder, and mT5 is an encoder-decoder transformer,
we can see that mT5 and mGPT-2 have shown almost
the same results, which are relatively close to mBERT’s
accuracy.

Next sentence prediction NSP is a task of the type

for which we expect high accuracy of predictions from a
model whose main specificity is text generation (mGPT).
Hypothetically, bidirectional self-attention is not re-
quired in this case, and it is enough to predict the output
based only on the previous context. To understand why
mGPT still performs the worst and mT5 shows the same
results as XLM-RoBERTa (thereby neutralizing the im-
portance of having a decoder in the architecture), we
must consider the differences between generating the
next sentence and a single token. Presumably, for the
accurate recognition of the next sentence, the context of
both the previous and the subsequent sentences plays a
decisive role, the complete understanding of which is
impossible without the encoder (due to the mechanism
of bidirectional attention).

Sentence ordering Unexpectedly, mBERT performs
better than XLM-RoBERTa, which differences in the
masking procedures for XLM-RoBERTa and mBERT
may have caused. In XLM-RoBERTa, the masking of
0.15 of tokens is dynamic and changes for each pre-
training epoch. Our results correlate with (Rothe et al.,
2020) where the authors demonstrated that mBERT per-
forms best with sequence-splitting tasks, indicating that
its understanding of sentence ordering exceeds XLM-
RoBERTa’s.

Sentence position In this case, XLM-RoBERTa
demonstrates the best results. This task is similar to
the previous one, the difference is that in SO not all pro-
posals are mixed, but only four and another randomly
selected. In contrast, in the SP all proposals for incor-
rect options occupy new randomly selected positions.
Presumably, in this case, XLM-RoBERTa’s superiority
is explained by the fact that XLM-RoBERTa was trained
on a much larger corpus of text data than mBERT, which
allowed it to learn more complex and nuanced patterns
in language. Additionally, XLM-RoBERTa was trained
for longer than mBERT.

Discourse connective prediction For this task where
the input consists of two sentences and transformers
must predict correct connective XLM-RoBERTa un-
surprisingly demonstrates the best results. This result
can be attributed to the NSP loss being removed in
XLM-RoBERTa’s architecture and the whole input be-
ing replaced with full sentences. An obvious problem
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Figure 2: Average accuracy depending on the task and type model
BSO: Binary Sentence Ordering, CST: Cloze Story Test, DC: Discource Coherence, NSP: Next Sentence Prediction,

SO: Sentence Ordering, SP: Sentence Position, DCP: Discourse Connective Prediction

with mGPT and mT5 in solving these kinds of tasks is
their generative objective since the sample used for fine-
tuning may lack the necessary connectives, in which
case the correct answer simply cannot be generated by
the model by definition and will eventually be read as
incorrect.

6 Discussion

The influence of the discourse structure in English
The so-called ‘complicated simple sentences’ (Dagnev
et al., 2019) in Bulgarian generate heavy complemen-
tation, and that is the main difference between Bulgar-
ian and English rhetorical structure. It can be that the
model borrows discourse patterns from the language
that prevails in the training sample. Thus, presumably,
the fewer languages in the model and the greater the
presence of English, the greater the accuracy in those
languages whose discursive patterns are similar to pat-
terns in English. The results obtained for Catalan, which
is also structurally significantly different from English,
display the same trend and can be explained by right-
branching (right-dislocation constructions), which is not
often found in English.

mGPT’s sparse attention mechanism Due to
mGPT’s performance for French and Russian we can
hardly consider that the sparse attention mechanism ap-
plied for mGPT helps to cope best with long sequences
found in Russian, rather it turns out to be the best in
the case when the main topic of the utterance is concen-
trated at the beginning and end of the text (as in French).
At the same time, for Russian Kaplan (Kaplan, 2006)
establishes a structure characterized by situationality,
instability of discourse patterns and a constant change
of focus of text, which, although in some sense similar
to the ornate rhetorical structure in French (both are non-
linear with respect to discourse in English), differs in the
lack of integrity according to Kaplan. It can be assumed
that this difference is the reason for the strong decrease
in the accuracy of the mGPT for Russian compared to
French.

Models performing similarly with languages be-
longing to the same group The hypothesis that the mod-

els act equally (in relation to each other) for languages
belonging to the same language group and therefore
having common discourse patterns is confirmed by the
example of French and Latin. At the same time, this is
still a hypothesis, since such a distribution seems to be
universal in most cases and has also been recorded for
most languages of the Slavic group. This assumption is
contradicted by the distribution of model accuracy ob-
tained for Serbian, but in this case it seems appropriate
to refer to the lack of resources of this language.

Advantages of dynamic masking procedure In the
case of Turkish, we were talking about shared arguments
that occur when two distinct discourse connectives use
the same text span as their argument. This can create am-
biguity or confusion for the reader or listener, as it may
not be immediately clear which connective governs the
argument. Properly contained arguments occur when a
larger text span that is the argument of one connective
contains a smaller text span that is the argument of an-
other connective. For XLM-RoBERTa, the complexity
of text may be potentially overcome via dynamic mask-
ing, as in this case the number of potentially different
masked versions of each sentence is not bounded like
in mBERT, therefore the probability of understanding
complicated structures gets bigger. At the same time,
we can see that dynamic masking procedure benefits
only in cases where the complicated structure of the text
does not change drastically. For instance, in SO task
this change could lead to a deterioration in the quality
of the model’s performance in this case, since the SO
task assumes that for incorrect examples all sentences
in a sequence are being shuffled. Accordingly, in this
case, masking the fixed part of the input can serve as an
advantage of mBERT.

mT5’s superiority over mGPT In the NSP task we
can assume that the results obtained can be explained
by the fact that in mT5 the decoder typically produces
two additional tokens: the class label and an end-of-
sequence token, which can contribute to a better un-
derstanding of the connectivity of the final element of
the sequence and the previous elements. This hypothe-
sis can be applied to all results in which mT5 exceeds
mGPT in accuracy.
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How context and focus sentence position affects
models’ performance In tasks in which the highest
accuracy of the models’ performance was recorded, the
focus sentence for prediction is fixed (always the last,
only the size of the sequence varied). Nevertheless,
context definitely affects the model’s performance on
the task. For example, models perform worse on a task
in which it is required to determine the correctness of the
order of sentences within a binary sequence (0.61) than
on a task containing multiple sequences (0.77). Also,
quite unexpected and contrary to hypotheses results
were obtained for the task Sentence Position. In the
original paper, the BERT-Large accuracy for SP was
0.538, while in our case we got an 0.8 accuracy. Such a
difference in the results may indicate the importance of
the first position in the sequence, the weight of which
in the context of the multi-head attention method is the
largest.

7 Conclusion
Our work is devoted to the study of the degree of dis-
course acquisition by various multilingual models. De-
spite the fact that many tasks and hypotheses were built
on the materials of their predecessors, our research dif-
fers from them in that it involves several languages in
discourse probing at once and combines completely
different tasks that ultimately somehow test the under-
standing of the model of the whole text. Also, some
of our results do not correspond to the conclusions of
other researchers which analyzed English and other
few languages (Chinese in most cases) and add new
information about the understanding of the language
by individual models. Moreover, we have come to a
conclusion that models, on average, perform equally
in low-resource and conventional (popular) languages
with binary-classification tasks. This result may indi-
cate the presence of certain trends associated with the
assimilation of the document structure by models, which
apply to all idiolects. We also identified some charac-
teristics of tasks and training samples that affect the
performance of the model, such as the size of the se-
quence, the number of sentences involved in shuffle, the
focus of prediction (the last sentence is often easier to
predict than the first) – and this factor is stronger than
the significance of the size of the context. The more ran-
domness there is in choosing proposals that will change
the position in the document, the better the performance
of some models, for example, XLM-RoBERTa, since its
main principle is masking an unfixed set of tokens. Con-
sequently, we have identified certain aspects of tasks
that models generally do worse with, such as predicting
the connective marker when there is a limited amount of
resources, as well as those factors of individual model’s
architecture that worsen the results. We also compared
the results obtained with the accuracy of the predictions
of monolingual models and did not reveal a significant
deterioration in the quality of transformers.
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A Examples of tasks’ generation
The ideas for all the tasks were taken from the articles of the predecessors. At the same time, all the previous
probing studies, the tasks from which we borrowed, were mainly conducted on the basis of English and they did not
use multilingual models. Therefore, we needed to adapt all the borrowed tasks in such a way that they correspond to
the treebanks of any language from the database. This is one of the reasons why in our study we did not test the
models’ understanding of segmentation into clauses: in each language the division into clauses occurs differently,
therefore, we are not allowed to implement a universal code for extracting EDU. All tasks, except for the discourse
connective prediction, are a binary classification problem. This approach was chosen to better evaluate the accuracy
of the models. Taking into account that many of the languages in the sample are not very large and have not been
studied sufficiently, their datasets are also small. As a result, if, for instance, in the case of a task for the order of
sentences in a sequence, integer answers with an order were submitted to the input, not all numeric sequences would
occur in the training sample. Therefore, given that all analyzed models have masking objects, correct and incorrect
sequences should be generated by the models themselves. Thus, the correct sequences are marked as 1, the incorrect
ones as 0.

A.1 Discourse connective prediction
Unlike previous approaches(Koto et al., 2021), we did not set a frequency threshold for accounting the connective
due to the limited shapes of the data for some languages. Following the approach presented in (Malmi et al., 2017),
we predict only connectives which occur in the beginning of the sentence, considering this as a base position for
an explicit binding marker. This choice is explained by the fact that before testing the understanding of implicit
connectives by a multilingual model, we must first pay attention to explicit ones.

Sent1 Sent2 Discourse Connective
Obviously because I
want to vote If anyone else has voted, what did you guys vote for? And

Table 2: Example of a discourse connective prediction task

A.2 Sentence position
The position of a sentence within the text can provide context and help to understand the overall structure and
purpose of the document. The opening sentences often provide an introduction to the topic, while the following
sentences provide more detailed information and support the main idea. (Chen et al., 2019a) discovered that in the
SP task, removing the surrounding sentences can make it more challenging to accurately predict the position of the
target sentence, as the model has less information to work with. Due to the fact that the context plays a crucial role
in a sentence position, we decided to take 5-sentence sequences for our dataset and swap the fourth of them with the
other randomly chosen sentence in a sequence. This method was partly proposed by (Mostafazadeh et al., 2016),
and, although in the described article researchers swap the forth sentence with the first one, we decided not to swap
fixed elements of a text, and choose one of them randomly, so we complicated the task, because usually models
demonstrate high results in this test.

Examples Labels
The problem is that customers can find features between low-end camera companies. It’s tough to
make money branching out when your appeal is in your focus. If they continue to add features th,ey
can justify their likely sky-high valuation.

1

The Greater New Orleans Fair Housing Action Center (GNOFHAC) filed a housing discrimination ast
week. The complaint, filed with the United States Department of Housing and Urban Development.
Thomas Housing Development residents, the City of New Orleans. VI redevelopment of St

0

Table 3: Example of a sentence position task

A.3 Binary sentence ordering
This task differs from SP in that a much smaller amount of context is supplied to the input, so this test allows us to
evaluate the ability of the model to determine the relationship between the minimum context of two sentences.

A.4 Discourse coherence
In order to evaluate the ability of a model to capture local discourse coherence, it would need to be able to capture
characteristics of the entity being discussed or the topic of the sentence group, and perform inference across multiple
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Examples Labels
Based on specific intelligence inputs, Army arrested Ghulam Mohiuddin Lone, a
LeT man, from Doda district. During the preliminary interrogation, Lone ’confessed’
his involvement in the blasts and gave several vital clues

1

Salon is clean and girls are nice. I didn’t know what I was missing 0

Table 4: Example of a binary sentence ordering task

sentences to determine the coherence of the discourse. This can be a non-trivial task, as it requires the model to have
a deep understanding of the underlying meaning and context of the text being analyzed. Connectivity within the
document, in accordance with our research and the previous work, is determined from 6 sentences. In our case, this
number is fixed. Negative examples are created by replacing one of the sentences with a sentence from another text.

Examples Labels
This idea may seem strange if they are familiar with the King James Version’s translation: "In the
beginning, God created the heaven and the earth." However, as we have seen, this translation is not
correct. Even so, there might seem to be room for the idea of creation made from nothing. It might
appear to readers that this idea of creation from nothing is expressed or symbolized in Genesis 1:2
by the mention of "void and vacuum". These two nouns, connected by a conjunction and forming a
fixed, com pound phrase, would seem to describe precisely the kind of nothingness that facilitates the
concept of creation ex nihilo.

1

Genesis 1 envisions creation not simply as God making; it is as much as a process of "separation" and
differentiation of elements from one another, as we will see in chapter 3. It involves a transformation
from an unformed, wate1y mass into the world that sustains human existence with water.Creation
is a process in which a deity makes the world as it came to be. Psalm 33:6-7 nicely expresses this
transformation. Let’s consider this more closely.

0

Table 5: Example of a discourse coherence task

A.5 Next sentence prediction
In the source paper there were 3 negative candidates and a single positive one for the next sentence, but we adopted
it as a binary classification problem, therefore, for negative examples of sequences we shuffle the last sentence with
the other sentence, but not within one document to sustain the text structure.

Examples Labels
It was ok, but the place was old. It was clean, but just a little dumpy. Hard to get
into, though. 1

Horrible customer service. I came in to get a nice gift for my wife. But thankfully
there are other flowers shops around 0

Table 6: Example of a Next sentence prediction task

A.6 Sentence ordering
Originally this task was done by shuffling from 3 to 7 sentences, providing the model with the correct ordering and
then predicting it. We reworked it by shuffling all the sentences for the incorrect sequences. This method allows the
model to select the most consistent sequences in the dataset and further develop a coherency metric based on NLP
analytics (Barzilay and Lapata, 2017).

A.7 Cloze story test
As was described earlier, in this task, the model receives a document containing 4 sentences as input and chooses
the best completion for the text. We changed this task by making the answers binary and shuffling the last sentences
in the sequence for negative samples. We also did not take into account text biases conducting stylistic feature
analysis (Rishi Sharma, 2018) as it is harder to trace on a large language data. In (Mostafazadeh et al., 2016) it is
claimed that cloze story test indeed helps to identify the model’s understanding of the text coherence. If a model
performs well on this task, it suggests that it has some level of understanding of the story’s narrative structure and
can generate coherent and logical endings based on that understanding.
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Examples Labels
This is unlike the situation last year in Asia when we evacuated US citizens from
areas that were hit by the tsunami - a phenomenon that is much less predictable than
the Hezbollah-provoked destruction that rained down on Lebanon. The American-
Arab Discrimination Committee is suing Condoleeza Rice and Donald Rumsfeld,
charging that they mismanaged the evacuation efforts

1

My favorite so far in Bellevue. They have good sushi for a good price 0

Table 7: Example of a sentence ordering task

Examples Labels
Heh, yep, I like to wear silk chemises. Also panties even stockings with garter belt
.Later on, I red somewhere that it’s seakness 1

You’ve already asked this . Why would someone post the location of a dealer in a
public place? Drop by my house, I can get you some real cheap. Give me an address
or something please idk

0

Table 8: Example of a cloze story test task

B Detailed results
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Task Language Models
mBERT XLM-RoBERTa mGPT mT5

Cloze story test

Bulgarian 1.0 0.924 0.899 0.9
Catalan 0.947 0.9 0.948 0.934
English 0.838 0.892 0.865 0.784
French 0.875 0.889 0.625 0.633

Armenian 0.8 0.943 0.829 0.8
Latin 0.906 0.969 0.903 0.906

Russian 0.875 0.884 0.625 0.75
Czech 1.0 1.0 0.909 0.879

Turkish 0.833 0.917 0.708 0.792
Serbian 0.971 1.0 0.941 0.941

Binary sentence ordering

Bulgarian 0.517 0.724 0.759 0.621
Catalan 0.577 0.615 0.808 0.615
English 0.759 0.552 0.793 0.586
French 0.514 0.6 0.943 0.429

Armenian 0.8 0.8 0.6 1.0
Latin 0.762 0.78 0.75 0.75

Russian 0.515 0.697 1.0 0.455
Czech 0.77 1.0 0.97 0.75

Turkish 0.529 0.588 0.971 0.5
Serbian 0.8 0.4 0.8 0.453

Discourse coherence

Bulgarian 0.75 0.719 0.594 0.594
Catalan 0.548 0.645 0.546 0.677
English 0.875 0.833 0.75 0.708
French 0.333 0.667 0.998 0.667

Armenian 0.615 0.769 0.462 0.615
Latin 0.75 0.75 0.45 0.55

Russian 0.667 0.689 0.333 0.667
Czech 0.571 1.0 0.857 0.571

Turkish 0.75 0.25 0.25 0.25
Serbian 0.5 0.7 0.4 0.4

Discourse connective prediction

Bulgarian 0.226 0.29 0.161 0.258
Catalan 0.313 0.313 0.375 0.125
English 0.4 0.35 0.4 0.45
French 0.429 0.429 0.429 0.286

Armenian 0.184 0.026 0.158 0.105
Latin 0.077 0.154 0.031 0.077

Russian 0.357 0.214 0.286 0.286
Czech 0.167 0.292 0.125 0.167

Turkish 0.051 0.999 0.051 0.063
Serbian 0.25 0.03 0.25 0.033

Next sentence prediction

Bulgarian 0.758 0.788 0.576 0.727
Catalan 0.968 0.563 0.688 0.625
English 0.981 0.939 0.697 0.758
French 0.936 0.733 0.7 0.733

Armenian 0.957 0.967 0.5 0.9
Latin 1.0 0.998 0.97 1.0

Russian 0.922 0.742 0.452 0.903
Czech 0.958 1.0 0.783 0.99

Turkish 0.94 0.774 0.677 0.839
Serbian 1.0 0.986 0.833 1.0

Table 9: Overall results of different models on each task in each language
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Task Language Models
mBERT XLM-RoBERTa mGPT mT5

Sentence ordering

Bulgarian 0.759 0.793 0.62 0.586
Catalan 0.531 0.563 0.656 0.5
English 0.917 0.792 0.75 0.625
French 0.682 0.682 0.727 0.729

Armenian 0.629 0.63 0.519 0.593
Latin 1.0 0.91 0.893 1.0

Russian 0.867 0.8 0.767 0.811
Czech 0.923 0.934 0.962 0.808

Turkish 0.897 0.689 0.828 0.862
Serbian 0.833 0.867 0.852 0.7

Sentence position

Bulgarian 0.912 0.765 0.797 0.559
Catalan 0.761 0.61 0.71 0.585
English 0.775 0.815 0.8 0.6
French 0.52 1.0 0.47 0.75

Armenian 0.667 0.714 0.703 0.333
Latin 0.815 0.963 0.74 852

Russian 0.4 0.92 0.42 0.4
Czech 0.636 0.727 0.545 0.455

Turkish 0.667 0.556 0.444 0.431
Serbian 0.714 0.857 0.688 0.786

Table 10: Overall results of different models on each task in each language
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Abstract
Discourse relation classification within a mul-
tilingual, cross-framework setting is a chal-
lenging task, and the best-performing systems
so far have relied on monolingual and mono-
framework approaches. In this paper, we in-
troduce transformer-based multilingual models,
trained jointly over all datasets—thus cover-
ing different languages and discourse frame-
works. We demonstrate their ability to outper-
form single-corpus models and to overcome (to
some extent) the disparity among corpora, by
relying on linguistic features and generic infor-
mation about the nature of the datasets. We also
compare the performance of different multilin-
gual pretrained models, as well as the encoding
of the relation direction, a key component for
the task. Our results on the 16 datasets of the
DISRPT 2021 benchmark show improvements
in accuracy in (almost) all datasets compared to
the monolingual models, with at best 65.91%
in average accuracy, thus corresponding to a
4% improvement over the state-of-the-art.

1 Introduction

Discourse relation classification is the process of
identifying the semantic-pragmatic relations be-
tween clauses or sentences, forming the discourse
structure of a document. It is considered a crucial
step in building knowledge graphs (Zhang et al.,
2022) and NLP downstream tasks requiring tex-
tual coherence and additional context, for example,
text generation (Bosselut et al., 2018) or summa-
rization (Xu et al., 2020), text categorization (Liu
et al., 2021), and question answering (Jansen et al.,
2014).

These relations, also called rhetorical relations,
may be considered explicit, when the connection
is denoted by the presence of distinct words called
connectives, or implicit, i.e. relations expressed
without a discourse connective. For example, the
concession relation between the two arguments is
expressed with the connective however in the first

example below, while in the second example, the
relation manner is implicit. Most previous studies
focused on implicit discourse relation classifica-
tion, which is considered a harder task than the
prediction of explicit relations. However, our set-
ting requires that the system identifies both explicit
and implicit relations simultaneously, a configura-
tion that is more realistic and includes corpora with
and without annotations of explicit markers.

1. [It’s best to wash adults’ overalls alone, espe-
cially men’s.] [However, it is okay to wash
just a few items with them, like blue jeans.]
(GUM_whow_overalls)
Label: CONCESSION

2. [The ad would have run during the World Series
tomorrow,] [replacing the debut commercial of
Shearson’s new ad campaign, “Leadership by
Example.”] (wsj_2201)
Label: EXPANSION.MANNER

Varied typologies of discourse relations have
been presented in the literature and applied to anno-
tate several corpora in different languages. In this
paper, we are presenting an approach to address
multilingual, multi-framework discourse relation
classification. We use as a take-off point the DIS-
RPT Shared Task on Discourse Relation Classifi-
cation across Formalisms and its datasets covering
various languages and frameworks (Zeldes et al.,
2021), and compare our results to the current state-
of-the-art system on the DISRPT data, which is
composed of monolingual models, DisCoDisCo
(Gessler et al., 2021).

Our multilingual approach is based on joint train-
ing across all available corpora, covering varied lan-
guages and discourse frameworks. We conduct ex-
periments over 16 corpora, covering 11 languages
and 3 discourse frameworks. We jointly train a
classifier with all the datasets of the Shared Task,
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and we compare different transformer-based multi-
lingual pretrained models. We extend the feature-
based approach proposed by Gessler et al. (2021)
and Gessler et al. (2022), to investigate its effect
within a multilingual, cross-domain setting. Each
DisCoDisCo monolingual model used different fea-
tures, hence we evaluate which features are more
informative in our joint setting. We also enhance
our models with features targeted to our multilin-
gual, cross-framework setting. Moreover, we test
the effect of relation direction to the classification
process. We examine two methods of expressing
the direction of the relation between two units, ei-
ther by annotating it with new tokens (Gessler et al.,
2021) or by switching the position to unify it across
relations (Metheniti et al., 2023). We adhere to the
use of pretrained models of base size and fine-tune
them for the discourse relation classification task.
This ensures reproducibility, and shorter training
times and computational power required.

Overall, we observe that XLM-RoBERTa mod-
els perform better than BERT models and that,
contrary to the monolingual models presented in
(Gessler et al., 2021), for the multilingual, cross-
framework settings, using all available features is
the most beneficial for all models. For the encod-
ing of the relation position, we observe that en-
coding with additional tokens is more beneficial
than switching the argument position, and both ap-
proaches are better than none. Finally, we report
state-of-the-art performance on discourse relation
classification with a maximum of 65.91% in aver-
age accuracy over all the datasets, thus outperform-
ing previous results by about 4%. The code for
fine-tuning the classifiers can be found on GitLab1.

2 Previous Work

Most of the existing literature on discourse rela-
tion classification has focused on implicit relations,
since explicit ones are considered easier to pre-
dict, with already accuracy above 90% with simple
models and features (Pitler and Nenkova, 2009).
However, it has been shown that the task can be
more difficult for different domains or languages
associated with small datasets (Xue et al., 2016;
Scholman et al., 2021; Johannsen and Søgaard,
2013).

Approaches for implicit relation classification
have either made use of linguistic features (Lin
et al., 2009) or the least ambiguous connectives

1gitlab.irit.fr/melodi/andiamo/discret_feat

as implicit connectives (Qin et al., 2017), or even
explicit connectives (Shi et al., 2017; Kurfalı and
Östling, 2021). More recently, several approaches
have been proposed relying on transformer-based
architectures and pre-trained language models,
demonstrating their effectiveness for domain trans-
fer (Shi and Demberg, 2019), or for learning effec-
tive representation of sentences for the task (Nie
et al., 2019; Sileo et al., 2019), with also attempts
relying on additional pre-training of language mod-
els (Kishimoto et al., 2020).

The DISRPT Shared Tasks were created to mo-
tivate research on challenging discourse analysis
tasks, within a multilingual, cross-framework set-
ting, by providing unified file formats for multiple
discourse datasets. There have been two editions
including the task on Discourse Relation Classifica-
tion (Zeldes et al., 2021; Braud et al., 2023b): since
not all datasets have annotations distinguishing be-
tween explicit and implicit relations, the focus is
on predicting simultaneously all types of relations.
This makes for a more realistic scenario, where the
nature of the relation is not assumed to be known,
and it corresponds to the task performed by a dis-
course parser.

In DISRPT 2021 (Zeldes et al., 2021), there were
two submitted systems, for 16 datasets and 11 lan-
guages. DisCoDisCo (Gessler et al., 2021) is a sys-
tem based on monolingual and corpus-specific clas-
sifiers based on pretrained BERT language models.
The inputs were enriched with handcrafted features
and direction annotations (described in detail in
Section 3.2). It was the most successful system,
with an average 61.82% accuracy. Meanwhile, Dis-
cRel (Varachkina and Pannach, 2021) aimed for a
hierarchical and multilingual approach. They used
sentence-level embeddings made with Sentence-
BERT (Reimers and Gurevych, 2019) and stacked
random forest classifiers, to predict coarse-grained
relations first and then fine-grained ones. They
achieved 54.23% averaged accuracy.

In DISRPT 2023 (Braud et al., 2023a), three
systems were submitted. Some datasets were up-
dated from 2021, a new framework was added
(DEP, Yang and Li, 2018), and 10 new datasets
and 2 new languages were added, for a total of 26
datasets and 13 languages. HITS (Liu et al., 2023)
was the system with the best performance for 2023.
It employed a combination of framework-based,
multilingual, and monolingual classifiers, based on
large pretrained language models. To enhance per-
formance, they also employed bootstrap aggregat-
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ing techniques and adversarial training. The aver-
age accuracy score was 62.36% overall. When the
score is calculated by including only the corpora
available in 2021, the average accuracy is 58.18%
(Braud et al., 2023b), thus a lower score than Dis-
CoDisCo.2 In DiscReT, we (Metheniti et al., 2023)
created multilingual classifiers trained jointly on
all languages and corpora. We used pretrained
multilingual BERT language models (Devlin et al.,
2019) and adapters (Houlsby et al., 2019). We also
incorporated modifications on the label distribu-
tion to reduce the total number of labels across
all corpora (see Section 3.3); however, there were
problems with fully reverting the labels for the eval-
uation process. The average accuracy was 54.44%.
DiscoFlan (Anuranjana, 2023) used the Flan-T5
generative language model (Chung et al., 2022) and
trained monolingual models. The prompts queried
the model for the relation between the two units.
They post-process the model’s output to match the
labels of each corpus label set (see Section 3.3).
Accuracy was 31.2% on average.

3 Methodology

3.1 Dataset

For the multilingual, cross-framework motivation
of our experiments, we use the datasets created for
the DISRPT Shared Task (Zeldes et al., 2021) for
Task 3: Discourse Relation Classification across
Formalisms.3 We are using the datasets of the
2021 edition so that our results can be directly
compared to the results of Gessler et al. (2021).
These datasets are made of 16 corpora, in 11 lan-
guages, annotated in one of the following theoreti-
cal frameworks: PDTB (Penn Discourse Treebank
Prasad et al., 2004), RST (Rhetorical Structure The-
ory, Mann and Thompson, 1988) and SDRT (Seg-
mented Discourse Representation Theory, Asher
and Lascarides, 2003). In all datasets, despite the
different frameworks, discourse relations are anno-
tated between pairs of segments that are primarily
clauses or at most sentences.

3.2 DisCoDisCo augmentation methodology

Gessler et al. (2021) was the winning system of
the DISRPT 2021, and compared to the results
of the 2023 models on the common corpora, it

2Note that the comparison is inequitable, because there
have been changes in some corpora, e.g. English GUM.

3The datasets and their statistics can be found in
github.com/disrpt/sharedtask2021.

is still the most successful system on the relation
classification task. The submitted system is com-
posed of multiple models; each model is a classifier
fine-tuning a monolingual pretrained BERT model
trained on one dataset. They use the same mono-
lingual pretrained model for datasets of the same
language but train each dataset separately. They
apply two methods of feature augmentation: hand-
crafted features in addition to the input sequence,
and annotation of the relation direction between
the two units.

DisCoDisCo features Regarding the additional
features of the input sequence, Gessler et al. insert
manually created features as a dense embedding
before the encoder. The feature vector is added
between the [CLS] token and the input sequence
tokens, and it includes sequence-level information
with categorical and numerical features. Categori-
cal features are embedded whereas numerical fea-
tures are log-scaled or binned and embedded, and
the feature layer is padded for the leftover dimen-
sions.
The authors create a total of 28 features for each
input sequence. These features were created by
exploiting existing annotations (e.g. GENRE from
the GUM corpus, SPEAKER identities from STAC
corpora), by calculating them (e.g. LENGTH, DIS-
TANCE), with the help of the syntactic parses from
the DISRPT 2021 Tasks 1-2 datasets, or with ex-
ternal libraries (e.g. SpaCy (Honnibal et al., 2020)
to eliminate stop-words for the LEXICAL OVER-
LAP features). The full list of these features can
be found in Table 1, which includes information
from Gessler et al. (2021) and the system’s source
code. While they generate all features for all in-
puts and corpora, in their submitted system for the
DISRPT 2021 Shared Task, for the discourse rela-
tion classification task, they only use a few of these
features for each corpus-specific model. These
decisions seemed to be geared toward optimizing
performance rather than being based on language,
framework, or human insights; for example, only
using the features of one of the units. For our exper-
iments, we are testing both the use of all features
and the use of only the “common” features that
were used for at least one dataset.

Unit direction annotation Discourse relations
are annotated between pairs of text segments. Some
relations can be directed, meaning that the order of
the arguments of the relation is meaningful. This
feature depends on the way relations are encoded,
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Feature in JSON Feature Type Example Description Used

nuc_children Nucleus’ Children Num. 2 No. of discourse units in Unit 1 5
sat_children Satellite’s Children Num. 2 No. of discourse units in Unit 2 8
genre Genre Cat. reddit Genre of a document (where available) 5
u1_discontinuous Discontinuous Cat. True Whether Unit 1’s tokens are not all contiguous in the text 3
u2_discontinuous Discontinuous Cat. True Whether Unit 2’s tokens are not all contiguous in the text 5
u1_issent Is Sentence Cat. True Whether Unit 1 is a whole sentence 3
u2_issent Is Sentence Cat. True Whether Unit 2 is a whole sentence 5
u1_length Length Num. 9 Length of Unit 1, in tokens -
u2_length Length Num. 13 Length of Unit 2, in tokens -
length_ratio Length Ratio Num. 0.3 Ratio of unit 1 and unit 2’s token lengths 3
u1_speaker Name of Speaker 1 Cat. Rainbow Name of Speaker (available only for STAC) -
u2_speaker Name of Speaker 2 Cat. Markus Name of Speaker (available only for STAC) -
same_speaker Same Speaker Cat. True Whether the same speaker produced Unit 1 and Unit 2 2

u1_func Unit Function Cat. root Universal Dependencies Relation of Unit 1’s Head to the
Head of the input sequence 1

u1_pos Part of speech &
Morphological Tag Cat. VBN Part of speech & Morphological tag of the Unit 1’s Head -

u1_depdir Universal Part of
speech Tag Cat. ROOT Part of speech of the Unit 1’s Head wrt. the Head of the

input sequence 8

u2_func Unit Function Cat. advcl Universal Dependencies Relation of Unit 2’s Head to the
Head of the input sequence 8

u2_pos Part of speech &
Morphological Tag Cat. VB Part of speech & Morphological tag of the Unit 2’s Head 8

u2_depdir Universal Part of
speech Tag Cat. LEFT Part of speech of the Unit 2’s Head wrt. the Head of the

input sequence 7

doclen Document Length Num. 214 Length of the document, in tokens -
u1_position Position Num. 0.4 Position of Unit 1 in the document, between 0.0 and 1.0 9
u2_position Position Num. 0.4 Position of Unit 2 in the document, between 0.0 and 1.0 -

percent_distance Percent of distance Num. 0.05 No. of discourse units between Unit 1 and Unit 2 divided
by sequence length -

distance Distance Num. 7 No. of other discourse units between Unit 1 and Unit 2 9
lex_overlap_words Lexical Overlap Cat. assets sold List of overlapping non-stoplist words in Unit 1 and Unit 2 -
lex_overlap_length Lexical Overlap Num. 3 No. of overlapping non-stoplist words in Unit 1 and Unit 2 1
unit1_case Uppercased letter Cat. cap_initial Whether the unit starts with a capital letter or not 1
unit2_case Uppercased letter Cat. other Whether the unit starts with a capital letter or not 1

Table 1: List of all features generated by the DisCoDisCo system, in the preprocessing stage, with descriptions.
“Type" refers to whether the feature is categorical or numerical. With “No. Used” we note how many corpus-specific
DisCoDisCo models used said feature (out of 16 models in total).

we could have different labels with the arguments
following the order of the text (e.g. cause vs re-
sult), or one unique label where the first argument
has always the same role compared to the second
regarding the semantics of the relation. All existing
studies focusing on discourse relation identification
consider this information as given: they present to
the learning model the arguments in the order given
by the annotation, thus first, then second argument
of the relation. It is not the case when one performs
full discourse parsing: the parser knows that two
segments are attached, but not in which order, and
the segments are presented in the order of the text.
In order to better understand this important aspect
of the task, we investigate different encodings of
this information within a transformer architecture.

In the DISRPT datasets, the pairs of segments
are presented in the linear order of the text, but

an additional column indicates the order of the
arguments for the annotated relation. Gessler et al.
introduced two pseudo-tokens (not as BERT special
tokens) in order to encode the direction between
the two units:
• If the direction of the relation follows the lin-

ear order of the text, a case annotated as (1>2)
in DISRPT data, the } token is added after the
[CLS] token and before Unit 1 and the > token
before Unit 2.

• If the direction of the relation is reversed, a case
annotated as (1<2) in DISRPT data, the < token
is added after Unit 1 and the { token after Unit 2.

3.3 Proposed additional augmentation

Corpus-specific features Previous approaches
to training multilingual, cross-framework classi-
fiers with all corpora and languages reported results

94



lower than monolingual systems. We assumed that
one issue was the lack of guidance of the model,
where it was hard for the model to make corre-
lations between datasets. In order to tackle this
issue, we add at the start of each sequence some
additional tokens that characterize the dataset and
should help the model to link samples from the
same language or framework. We add as additional
tokens, after the [CLS] token and before the input
sequence tokens, the following tokens:

• Language: the language of the corpus in English
(e.g. English, French, German, etc.);4

• Corpus: the name of the dataset in the DISRPT
2021 data (e.g. deu.rst.pcc, eng.rst.rstdt,
fra.sdrt.annodis, etc);

• Framework: the framework name (e.g. rst, pdtb,
sdrt, dep).

Feature embedding as tokens Instead of creat-
ing a dense embedding as Gessler et al. did, we are
adding the additional features in the input sequence
as tokens. Each feature value (numerical, categor-
ical, and Boolean) is added to the vocabulary, in
order not to be split into subwords by the tokenizer.
Only the value of the feature is added, not its key, to
not create an excessive amount of new tokens (e.g.
all numbers encoded separately for each numerical
feature). For example, the new token 0.1 does not
refer to a number in the text but may refer to the fea-
ture u1_position or length_ratio, depending on its
order in the input sequence. This extends the size
of the vocabulary and, therefore, extends the size of
the token embedding matrix of the model to match
the embedding matrix of the tokenizer. This tech-
nique stays close to the process of concatenating
the feature vector with the token vector while assur-
ing reproducibility with the HuggingFace models
(Wolf et al., 2020).

Unit direction unification In addition to imple-
menting the relation direction annotation of the
DisCoDisCo system (i.e. additional tokens), we
are also testing the effectiveness of unifying the
direction by switching unit positions. In Methen-
iti et al. (2023), we proposed to reorder the two
units in the input sequence, to follow the order of

4Preliminary experiments with the language token in the
corpus’ original language (e.g. English, Français, Deutsch,
etc.) showed the same performance as with the language token
in English since the models we are using contain multilingual
embeddings.

the arguments of the relation, instead of the linear
order of the text as encoded in DISRPT files. If
the arguments are in the same order as in the text
(1>2), then the input is unchanged, but if they are
in reverse order (1<2), the units have their position
switched in the input sequence of the model.

Label merging The joint training set of the 16
corpora of the DISRPT 2021 Shared Task con-
tains 126 labels, making for a complex learning
problem. These labels come from three different
annotation frameworks, and sometimes overlap;
for example, the labels Expansion.Correction in
tur.pdtb.tdb (Turkish, PDTB) and correction
in eng.sdrt.stac (English, SDRT) point to the
same relation. Suggestions for unified label sets
are limited to specific frameworks or do not cover
all relations present in corpora (Benamara and
Taboada, 2015; Braud et al., 2017; Varachkina and
Pannach, 2021). We adapt the label harmonization
that we proposed for the DISRPT 2023 Shared Task
datasets, which implements minimal substitutions
to less-frequent labels, and lower-casing (Metheniti
et al., 2023). The number of our labels was reduced
from 126 originally to 102 labels.

Label Filtering Multilingual, multi-framework
classification models provide a probability distri-
bution of every label included in the training set,
regardless of the target language and framework.
We took inspiration from the strategy of Anuran-
jana (2023) who addressed the problem of gener-
ating annotations that may not match the labels of
the training set by filtering the output of their gen-
erative model so that it converts them to existing
labels. We are also post-processing our classifi-
cation model label outputs, and we keep in the
predictions only labels coming from the target cor-
pus’ framework. Thus a label that is present in
the combined training corpus but not in the target
framework label set will not be returned, even if it
were assigned a higher probability by the model.

3.4 Classification models

We fine-tune multilingual classifiers built on
pretrained multilingual transformer-based mod-
els. Fine-tuning is performed with all train-
ing sets of all languages and datasets jointly,
while evaluation is performed on the evaluation
and test sets of each dataset individually. We
used PyTorch (Paszke et al., 2019) and the Hug-
gingFace libraries to build our classifiers, with
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Model DisCoDisCo
2021 (BERT) mBERT DistilmBERT XLM mBERT DistilmBERT XLM

Relation direction Add. tokens Add. tokens Switching units

No features 60.41 59.54 56.81 62.09 58.36 55.69 60.52
Common DisCoDisCo
features 61.82 62.56 60.92 64.86 59.75 57.24 61.14

All DisCoDisCo features - 63.09 60.28 64.50 62.33 59.08 63.95
Language, Corpus,
Framework (LCF) - 61.76 59.17 64.13 58.34 55.69 60.52

LCF + Common - 63.46 62.01 65.91 61.12 57.75 62.88
LCF + All - 63.67 61.92 65.53 63.89 59.65 63.51

Table 2: Average accuracies of the models, reported on the test set. We report the results of the DisCoDisCo system
with individual models trained with or without their specific features and the DisCoDisCo relation annotation. For
our multilingual models, we report models trained with the DisCoDisCo direction annotation (“Add. tokens”) or the
DiscReT direction normalization (“Switching units”). The models were trained with different sets of features or
without. In bold are the best scores for each column, so for model and direction fixed.

the models: bert-base-multilingual-cased,5

distilbert-base-multilingual-cased,6 and
xlm-roberta-base.7 Each classification model
is trained for 10 epochs, keeping the best result
out of the 10 epochs, based on the development
set. The fine-tuning process for these models,
per epoch, was around 1 hour for DistilmBERT,
2 hours for mBERT, and 2 hours 10 minutes for
XLM-RoBERTa, on a GPU cluster with 4 Nvidia
Geforce GTX 1080TI graphics cards.

Multilingual BERT (mBERT) (Devlin et al.,
2019) is a pretrained model based on BERT. It has
been trained on Wikipedia data of the top 104 lan-
guages, with masked language modeling (MLM)
and next-sentence prediction objectives. The base
and cased version of the model contains 12 lay-
ers, 12 heads, and 177M parameters. We selected
it, in order to compare it with the DisCoDisCo
models that were built on monolingual BERT-base
architectures. DistilmBERT (Sanh et al., 2019) is a
multilingual distilled version of mBERT with the
same training set and objectives. The base and
cased model has 6 layers, 12 heads, and 134M pa-
rameters. As a lighter version of BERT, it would be
interesting to compare a BERT-based model with
fewer parameters. XLM-RoBERTa (Conneau et al.,
2020) is a multilingual pretrained model based on
RoBERTa. It is pretrained on 2.5TB of filtered
CommonCrawl data in 100 languages. The base
version of the model has 12 layers and 279M pa-
rameters. RoBERTa models have outperformed
BERT in several datasets in the Shared Task (Liu

5huggingface.co/bert-base-multilingual-cased
6huggingface.co/distilbert-base-multilingual-cased
7huggingface.co/xlm-roberta-base

et al., 2023), therefore we decided to include them
in our experiments.

4 Results

In Table 2 we present the average accuracy for all
the multilingual classification models we trained,
with different pretrained models, with different
combinations of features, and with different han-
dling of relation annotation. We report the results
of DisCoDisCo (Gessler et al., 2021) in the second
column, and the results obtained by our system
in the others. The second row indicates how the
direction of the relation is encoded, based on unit
direction annotation (“Add. tokens”) as in Gessler
et al. or by unit direction modification (“Switching
units”) as in Metheniti et al. In the Appendix, the
results for individual test sets can be found: in Ta-
ble 4 for models trained with features and direction
annotation based on additional tokens, in Table 5
for models trained with features and direction uni-
fication based on switching units, and in Table 6
for models trained without features, with different
direction handling (including no encoding of the
direction at all).

Overall, our models outperform the state-of-the-
art system DisCoDisCo in several settings, when
linguistic features (i.e. “Common/All DisCoDisCo
features”) and/or dataset information (“LCF”, Lan-
guage, Corpus, Framework) are used, with at best
65.91% in average accuracy, against 61.82% for
DisCoDisCo. This demonstrates that single multi-
lingual, cross-framework models are able to lever-
age correlations between the different datasets, and
thus take advantage of a larger amount of data if
fed with additional information.
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For the models most similar to DisCoDisCo,
i.e. using mBERT with annotations of direction
(“Add. Tokens”), our results are very close to theirs:
60.41% vs 59.54% (“No features”) and 61.82% vs
62.56% (“Common features”). XLM-RoBERTa
models performed better than the mBERT-based
models and also surpassed the lightweight Distilm-
BERT models. They were the ones that steadily sur-
passed the DisCoDisCo system, with 62.09% and
64.86% respectively for the same configurations.
Moreover, the mBERT models also performed bet-
ter than the DisCoDisCo baseline, when they were
provided with the LCF tokens, either when limited
to “Common features” (63.46%), or when using
“All features” (63.67%).

Observing the different sets of features that we
used, the addition of any features improves the ac-
curacy of multilingual classification, and the best
configuration was, in most cases, the features used
by Gessler et al. (2021), with the addition of corpus-
specific features. When we used additional tokens
to encode the direction of the relation, the most
beneficial set of features for all the models was the
“common” features, i.e. only the features used by
at least one model in the DisCoDisCo 2021 sys-
tem. We notice that the model with the highest
accuracy of all is the XLM-RoBERTa model, us-
ing this encoding of the direction and the common
DisCoDisCo and LCF features. However, using all
features in this setting leads to very similar results
(-0.4%). When the direction is encoded by switch-
ing the units, the situation is reversed: results are
better when using all the features rather than only
the common ones. The addition of the LCF tokens,
alongside the DisCoDisCo features, showed an in-
crease in accuracy as well. For the XLM-RoBERTa
models, the presence of all features was also most
beneficial, but not necessarily the presence of the
LCF features.

Looking at individual datasets, our models out-
performed the DisCoDisCo 2021 system in all
but one dataset, the Basque eus.rst.ert (by
0.15%, Table 4). For some datasets, the improve-
ment was significant (with XLM-RoBERTa mod-
els), for example up to 15.72% for spa.rst.sctb
(Spanish) and over 8% for fas.rst.prstc (Farsi)
and zho.rst.sctb (Chinese). The mBERT mod-
els trailed not far behind the XLM-RoBERTa
ones, however, there was an instance where an
mBERT model was more successful, mBERT
with all DisCoDisCo and LCF features for
fra.sdrt.annodis (French). Also, models with

all features were more successful for the French,
Portuguese, and Spanish datasets.

Comparing the performance between the two
ways of handling the direction of the relation,
the direction annotation based on additional to-
kens was the better option for most datasets
when the DisCoDisCo features were used. How-
ever, for the Dutch nld.rst.nldt and Portuguese
por.rst.cstn datasets, the performance was iden-
tical with either setting. Observing the effect of
the direction handling without the addition of fea-
tures, we note that, while the method based on ad-
ditional tokens performed better overall, there were
instances where switching the arguments was bet-
ter (English eng.rst.rstdt, eng.sdrt.stac,
Spanish spa.rst.rststb), and one dataset for
which no change was marginally better (Portuguese
por.rst.cstn), see Tables 4, 5 and 6 in Appendix.

5 Discussion

Our multilingual approach outperformed the mono-
lingual approach of DisCoDisCo (Gessler et al.,
2021) in all but one dataset, the Basque one. Our
initial assumption was that the use of the multi-
lingual setting would be beneficial since the use
of more data is favorable to the models and the
instances of less frequent labels would be higher.
Indeed, for the very small datasets spa.rst.sctb
(Spanish, 326 train sentences) and zho.rst.sctb
(Chinese, 361 train sentences), the improvement
was elevated with all models. For the largest
datasets (eng.pdtb.pdtb, English, 44.5K train
sentences; rus.rst.rrt, Russian, 19K train sen-
tences; tur.pdtb.tdb, Turkish, 25K train sen-
tences) there was also an improvement of 3− 4%.
In the case of eus.rst.ert (Basque) with 1.6K
train sentences, we observed the label distribu-
tion; it has 25 unique labels and similar distri-
butions to spa.rst.rststb, spa.rst.sctb, and
zho.rst.sctb. We observe the classification re-
port results (Pedregosa et al., 2011) for the most
successful model in Table 3. In the 2021 edition of
the data, there were a few labels in this dataset with
misspellings (motibation instead of motivation),
which were corrected in the 2023 edition. These
labels were not changed by the DiscReT mappings
and were not corrected in order to stay true to the
2021 data. Even with these errors, however, this
is not the smallest, most complex, or relation-rich
dataset. Therefore, the failure of the Basque dataset
may be related to the language’s typological dif-
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precision recall f1-score support

motibation 0 0 0 2
summary 0 0 0 3
concession 0.58 0.65 0.61 17
purpose 0.87 0.80 0.83 50
joint 0 0 0 1
causation 0.51 0.51 0.51 37
interpretation 0.50 0.08 0.13 13
circumstance 0.76 0.67 0.71 48
expansion.conjunction 0.28 0.48 0.35 25
unconditional 0.50 0.25 0.33 4
evaluation 0.30 0.56 0.39 16
anthitesis 0 0 0 5
unless 0.59 0.62 0.60 21
solution-hood 0 0 0 8
result 0.50 0.53 0.51 34
background 0.52 0.76 0.62 29
means 0.69 0.68 0.68 37
conditional 1.00 0.33 0.50 9
preparation 0.90 0.85 0.87 73
elaboration 0.66 0.69 0.67 140
list 0.63 0.44 0.52 54
evidence 0.40 0.25 0.31 8
sequence 0.37 0.48 0.42 23
justify 0.42 0.62 0.50 8
restatement 0.60 0.23 0.33 13

accuracy 0.60 678
macro avg 0.41 0.37 0.37 678
weighted avg 0.62 0.60 0.60 678

Table 3: Classification report for the eus.rst.ert
(Basque) test set, with the XLM-RoBERTa model with
Common and LCF features (epoch 8).

ference from the rest, as it benefits less from the
multilingual pretrained language models.

Comparing the use of different models, we ob-
serve that the XLM-RoBERTa base models are
more successful, probably because of their larger
number of parameters. For the original Dis-
CoDisCo model, the use of BERT-based mod-
els was obligatory for most languages, as at the
time there were fewer options available, espe-
cially for less common languages. The mBERT
base models were not far less successful than the
XLM-RoBERTa, with the help of features. The
DistilmBERT models are far too optimized and
lightweight, missing parameters that were, as is
shown, necessary for the classification process.

Overall, the addition of features, even as sim-
ple as additional tokens in the input sequence, im-
proved classification accuracy significantly. In the
monolingual setting, it was possible to test different
feature sets to configure which was the best, but for
the multilingual setting, selecting features is not
straightforward, as different corpora contain differ-
ent annotations (e.g. the GUM and STAC corpora
are the only ones with the SPEAKER information).

The small differences in accuracy between using all
features and only the ones used for the DisCoDisCo
2021 system are produced because, in a multilin-
gual setting with all the datasets used jointly, some
features that are informative for some corpora will
not be for others, if the annotation does not exist.
The addition of the language, framework, and cor-
pus name was also beneficial, in order to annotate
the presence of corpus-specific features, even if the
information of language is not directly accessible
to the model.

Finally, regarding the relation direction, human
intuition is different than the way models process
input. The proposal to unify all relation directions
by switching the arguments (Metheniti et al., 2023)
sounds beneficial in theory, especially when the
same relation can be initiated in either unit. How-
ever, transformer-based models are not necessarily
sensitive to word order; even though positional
information is injected in them, some research sug-
gests that they are not sensitive to permutations
(Pham et al., 2021; Gupta et al., 2021). However,
other research supports that not all permutations
are processed equally (Sinha et al., 2021) and that
the models learn structural information (Wang and
Chen, 2020; Papadimitriou et al., 2022). It is, there-
fore, understandable that the presence of additional
tokens noting the direction as in (Gessler et al.,
2021) may communicate more information about
the relation direction to the models, than switching
unit positions. However, there was also a smaller
improvement with the unification of the direction;
this points to the models either being capable of
constructing a rudimentary structure of the two
arguments or the models not being completely in-
sensible to word order.

6 Conclusion

In this paper, we reprised the DISRPT 2021 Shared
Task on Relation Classification across Formalisms
and revisited the most successful model of the last
two editions, DisCoDisCo (Gessler et al., 2021).
We adapted DisCoDisCo methodologies to mul-
tilingual relation classification models, with the
addition of techniques and suggestions from other
participating teams of the 2023 edition (Metheniti
et al., 2023; Anuranjana, 2023).

We found that XLM-RoBERTa models outper-
form BERT models, in the multilingual setting, es-
pecially with the presence of DisCoDisCo’s hand-
crafted features. The most successful model was
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trained only with the features used by DisCoDisCo
models, as opposed to all features created in the
preprocessing stage—but this success was only
marginal to the use of all features, and was not
true for all architectures. The addition of corpus-
specific tokens (language, corpus name, frame-
work) was also beneficial in the multilingual setting.
Finally, annotating the relation direction with ad-
ditional tokens was more successful than unifying
the position of the two arguments, due to the make
of transformer-based models. It should be noted
that this information proved crucial and that further
studies are needed on this aspect, in particular on
the possibility of predicting direction and on the
heterogeneity of existing corpora with regard to its
encoding.

As a future direction, we are considering using
our approach on the updated DISRPT 2023 bench-
mark, which includes modified corpora, additional
corpora in more languages, and some small valida-
tion datasets that allow for testing out-of-domain
performance.
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A Appendix: Full classification results

Model Control m d x m d x m d x m d x m d x

Features Common Features All Features LCF LCF + Common Features LCF + All Features

deu.rst.pcc 39.23 41.54 38.46 45.00 42.69 37.69 48.85 36.92 31.15 40.00 41.92 41.15 44.23 40.38 39.62 43.08
eng.pdtb.pdtb 74.44 73.64 70.71 74.48 73.68 70.14 74.97 74.61 72.66 76.83 74.48 72.18 77.45 74.39 72.35 76.25
eng.rst.gum 66.76 66.43 64.61 68.15 67.29 65.76 68.05 63.18 61.98 67.43 67.34 65.57 67.96 67.05 65.04 68.87
eng.rst.rstdt 67.10 61.48 59.49 63.48 58.75 56.52 59.95 68.26 67.66 69.98 69.10 68.17 70.44 69.88 67.94 68.96
eng.sdrt.stac 65.03 62.78 63.18 65.83 64.04 63.18 65.23 58.81 59.40 62.25 63.58 61.92 66.16 62.85 61.92 65.50
eus.rst.ert 60.62 56.93 56.49 57.23 58.26 56.78 56.93 55.31 54.28 57.37 57.23 58.55 60.47 56.78 56.49 57.82
fas.rst.prstc 52.53 58.11 56.08 60.64 57.26 56.08 59.97 55.91 53.72 59.80 58.11 56.25 60.98 58.45 55.07 58.11
fra.sdrt.annodis 46.40 50.56 45.44 48.96 51.52 44.16 47.20 48.80 43.20 49.28 49.28 44.48 49.28 51.36 44.48 47.84
nld.rst.nldt 55.21 51.84 51.53 57.67 53.07 52.45 58.59 48.16 46.01 56.75 54.29 49.39 58.59 54.60 51.84 57.06
por.rst.cstn 64.34 67.28 68.01 69.85 68.75 66.54 68.38 68.38 63.97 68.38 68.75 69.12 69.49 69.85 66.54 68.75
rus.rst.rrt 66.44 68.91 67.25 71.02 68.73 66.48 71.30 65.04 63.74 67.71 68.66 67.39 71.19 69.47 68.34 70.59
spa.rst.rststb 54.23 55.16 51.64 57.75 55.4 51.64 54.93 53.99 50.47 56.57 56.81 54.69 55.16 56.81 54.93 59.39
spa.rst.sctb 66.04 71.70 75.47 76.10 75.47 72.33 75.47 74.84 74.84 74.84 73.58 78.62 78.62 73.58 79.25 81.76
tur.pdtb.tdb 60.09 58.53 54.27 62.80 58.77 54.27 62.32 57.11 54.50 63.51 57.35 55.69 62.80 56.87 57.58 64.22
zho.pdtb.cdtb 86.49 87.47 85.36 89.58 87.86 85.62 88.79 87.73 84.30 88.65 88.13 84.83 89.45 88.52 85.22 88.52
zho.rst.sctb 64.15 68.55 66.67 69.18 67.92 64.78 71.07 71.07 64.78 66.67 66.67 64.15 72.33 67.92 64.15 71.70

AVERAGE 61.82 62.56 60.92 64.86 63.09 60.28 64.50 61.76 59.17 64.13 63.46 62.01 65.91 63.67 61.92 65.53

Table 4: Results of models with features and direction normalization based on additional tokens as in Gessler
et al. (2021), for all datasets. The models are: DisCoDisCo 2021 System with features (Control), mBERT (m),
DistilmBERT (d), and XLM-RoBERTa (x).

Model Control m d x m d x m d x m d x m d x

Features Common Features All Features LCF LCF + Common Features LCF + All Features

deu.rst.pcc 39.23 33.08 33.46 41.92 39.62 35.77 43.08 31.92 26.15 35.00 37.31 33.08 40.77 40.38 35.77 43.46
eng.pdtb.pdtb 74.44 70.98 68.37 71.78 72.66 69.34 73.37 72.44 70.05 73.90 73.55 70.45 74.52 75.01 71.42 75.45
eng.rst.gum 66.76 63.46 61.65 64.04 67.53 61.65 67.38 58.54 56.10 61.50 64.71 62.41 64.99 66.38 63.89 66.52
eng.rst.rstdt 67.10 60.56 59.54 60.70 59.63 58.42 61.21 65.89 63.62 66.73 67.80 66.87 67.89 68.82 67.70 69.28
eng.sdrt.stac 65.03 64.17 62.58 66.62 64.37 62.32 67.09 59.54 58.68 61.79 63.05 62.78 64.83 64.17 62.45 66.49
eus.rst.ert 60.62 53.54 52.65 53.98 57.52 56.19 57.82 50.44 45.43 51.62 54.57 51.18 53.39 59.59 53.39 56.49
fas.rst.prstc 52.53 53.21 51.18 55.24 57.43 53.38 59.12 50.68 49.16 53.89 53.38 51.18 56.93 58.95 55.24 57.60
fra.sdrt.annodis 46.40 48.16 42.72 47.84 48.64 40.96 48.16 47.84 43.20 48.48 49.44 42.24 46.88 48.96 38.24 45.28
nld.rst.nldt 55.21 50.92 45.40 51.53 53.37 48.77 58.90 45.40 41.72 51.23 51.23 43.87 55.21 55.21 51.53 53.68
por.rst.cstn 64.34 68.01 65.44 68.38 68.75 66.54 70.59 66.54 67.28 68.38 66.91 64.71 68.01 67.28 63.60 67.65
rus.rst.rrt 66.44 66.51 64.69 67.82 68.87 67.18 70.10 62.26 58.78 63.00 66.41 63.74 66.94 68.62 66.76 69.26
spa.rst.rststb 54.23 54.93 52.82 55.16 54.93 51.41 56.34 54.69 50.94 53.99 55.63 51.41 55.87 56.57 53.05 55.40
spa.rst.sctb 66.04 71.07 66.67 71.07 72.96 71.07 72.33 69.18 67.30 72.33 74.21 70.44 79.25 78.62 69.81 74.84
tur.pdtb.tdb 60.09 50.24 48.34 54.74 56.64 54.03 61.61 50.24 49.76 57.11 50.00 49.76 56.87 57.58 55.45 60.19
zho.pdtb.cdtb 86.49 84.30 83.11 85.22 86.41 84.70 87.60 84.30 81.93 86.54 84.96 83.25 85.88 87.60 83.91 87.20
zho.rst.sctb 64.15 62.89 57.23 62.26 67.92 63.52 68.55 63.52 61.01 62.89 64.78 56.60 67.92 68.55 62.26 67.30

AVERAGE 61.82 59.75 57.24 61.14 62.33 59.08 63.95 58.34 55.69 60.52 61.12 57.75 62.88 63.89 59.65 63.51

Table 5: Results of models with features and direction normalization based on switching units as in Metheniti
et al. (2023), for all datasets. The models are: DisCoDisCo 2021 System with features (Control), mBERT (m),
DistilmBERT (d), and XLM-RoBERTa (x).

103



Model Control m d x m d x m d x

Direction No change Switching units Add. tokens

deu.rst.pcc 33.85 31.15 28.46 35.77 31.92 26.15 35.00 38.46 33.08 42.31
eng.pdtb.pdtb 75.63 65.22 63.89 68.68 71.95 70.05 73.90 72.35 69.87 73.99
eng.rst.gum 62.65 51.08 47.97 54.95 60.21 56.10 61.50 57.29 53.18 60.26
eng.rst.rstdt 66.45 49.42 48.40 50.95 64.73 63.62 66.73 52.44 51.14 55.45
eng.sdrt.stac 59.67 53.64 53.58 57.28 57.62 58.68 61.79 54.70 55.30 57.62
eus.rst.ert 59.59 49.85 46.31 50.44 50.74 45.43 51.62 57.52 51.03 57.08
fas.rst.prstc 51.18 51.86 48.82 54.90 50.84 49.16 53.89 56.42 53.38 58.45
fra.sdrt.annodis 48.32 48.64 42.88 48.80 47.68 43.20 48.48 49.28 44.16 48.80
nld.rst.nldt 52.15 47.55 42.33 51.84 45.40 41.72 51.23 48.16 46.01 57.98
por.rst.cstn 67.28 66.18 64.71 69.49 68.01 67.28 68.38 67.65 64.34 69.12
rus.rst.rrt 65.46 59.69 57.72 62.50 62.29 58.78 63.00 65.67 63.67 67.39
spa.rst.rststb 54.23 52.82 51.17 51.41 52.35 50.94 53.99 53.99 50.47 57.04
spa.rst.sctb 61.01 60.38 63.52 59.75 71.70 67.30 72.33 69.81 71.07 71.07
tur.pdtb.tdb 57.58 51.66 47.87 59.48 50.71 49.76 57.11 58.06 53.79 61.37
zho.pdtb.cdtb 87.34 80.87 78.89 82.85 82.85 81.93 86.54 84.17 84.30 88.13
zho.rst.sctb 64.15 56.6 49.69 55.35 64.78 61.01 62.89 66.67 64.15 67.30

AVERAGE 60.41 54.79 52.26 57.15 58.36 55.69 60.52 59.54 56.81 62.09

Table 6: Results of models without features and different direction handling, for all datasets. The models are:
DisCoDisCo 2021 System with features (Control), mBERT (m), DistilmBERT (d), and XLM-RoBERTa (x).
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Abstract

Question Generation (QG), the process of gen-
erating meaningful questions from a given con-
text, has proven to be useful for several tasks
such as question answering or FAQ generation.
While most existing QG techniques generate
simple, fact-based questions, this research aims
to generate questions that can have complex
answers (e.g. "why" questions). We propose a
data augmentation method that uses discourse
relations to create such questions, and experi-
ment on existing English data. Our approach
generates questions based solely on the context
without answer supervision, in order to enhance
question diversity and complexity. We use
an encoder-decoder trained on the augmented
dataset to generate either one question or multi-
ple questions at a time, and show that the latter
improves over the baseline model when doing
a human quality evaluation, without degrading
performance according to standard automated
metrics.

1 Introduction

Question generation is the task of automatically
producing varied questions about a document or
a set of documents. It is used to facilitate match-
ing real users’ questions looking for information
contained in those documents, for instance in the
context of Customer Relationship Management
or producing FAQs (Mass et al., 2020), in dia-
logue systems to improve interaction with users
(Li et al., 2017), to develop interactive learn-
ing for educational purposes (Yao et al., 2022;
Scharpf et al., 2022; CH and Saha, 2023; Eo et al.,
2023) or as auxiliary tasks for e.g. summarization
(Pagnoni et al., 2023). More generically, it can help
question-answering (QA) systems by augmenting
the amount of instances available for training, as in
(Duan et al., 2017) where automatically generated
questions are integrated within a text-based QA
system, or in (Bartolo et al., 2021) where they are
used as adversarial data to improve robustness.

As pointed out in e.g. (Sultan et al., 2020; Eo
et al., 2023), question diversity is crucial, meaning
that a QG system should be able to produce dif-
ferent types of questions, with varied lexical con-
tent and associated explicit and implicit answers.
However, the majority of the current research tech-
niques in QG have primarily focused on factoid
and multiple-choice questions, where the systems
are designed to retrieve factual information or re-
quire short-span answers. Since they rely more
on reasoning, complex questions might help the
user to gain deeper and multiple perspectives on a
topic. This makes them especially useful in learn-
ing environments, complex dialogue systems, and
applications that call for a better understanding of
text.

On the other hand, generating complex questions
is a challenging task, as the system must have a
grasp of underlying semantic relationships between
different parts of the text. This is where discourse
relations can play an important role: discourse,
or rhetorical, relations are the semantic-pragmatic
links between sentences or clauses within a text,
describing e.g. causal, temporal or manner connec-
tions. We assume that including discourse relations
into the generation process could help the system to
produce complicated questions that accurately rep-
resent the depth and complexity of the text while
also being contextually relevant. For instance, rec-
ognizing a "cause-effect" discourse relation can
inspire "why" questions that aim to go deeper into
the reasons behind a certain occurrence or circum-
stance addressed in the text.

In this paper, we present an answer-agnostic QG
system, based on a Transformer-driven model fine-
tuned specifically for question generation. The
emphasis of our QG system is on generating com-
plex questions using discourse relations, with a
particular focus on causality related questions to
enhance contextual understanding. Our approach
relies on data augmentation: the system is fine-
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tuned on reference datasets for QA that are re-
versed to perform the QG task, and augmented
with "why" questions that are automatically built
from discourse annotated data using simple heuris-
tics. By using gold annotated data for discourse,
we ensure the quality of our synthetic data. We use
several datasets, the Stanford Question Answering
Dataset or SQuAD (Rajpurkar et al., 2016) and
Explain Like I’m Five, or ELI5 (Fan et al., 2019)
for training a generator, and the Penn Discourse
Treebank 2.0 (Prasad et al., 2008) for data augmen-
tation. We evaluate the results using both automatic
evaluation metrics comparing generated questions
to existing reference questions about the same para-
graphs, and a human assessment of the quality of
the generated questions, since automated metrics
do not account well for the variety of outputs from
answer-agnostic models.

2 Related work

Question generation aims at producing relevant
questions from documents, that could be a single
text or a collection, or other types of inputs such as
knowledge bases or images. In this paper, we focus
on generating questions from a single document,
using datasets in which each source text (i.e. con-
text) is associated to question-answer pairs. In this
context, many annotated datasets, primilarly built
for QA, have been used for QG with two different
settings: answer-aware systems provide the context
and the targeted answer to generate the question,
while answer-agnostic ones only rely on contexts.

First systems for QG were rule-based: Heilman
and Smith (2010) proposed to apply syntactic mod-
ifications to generate question from declarative sen-
tences, while Dhole and Manning (2020) refined
generating patterns using semantic resources. In-
terestingly, Agarwal et al. (2011) demonstrated the
importance of discourse connections for QG by
designing patterns also relying on discourse con-
nectives, i.e. specific expressions that can trigger
discourse relations (e.g. because, but, as a result...),
and that also constrain the type of the question to be
generated. We also rely on syntactic templates and
discourse information, but we significantly extend
this line of work by using gold discourse annota-
tions and by also including implicit relations.

Current approaches rely on neural architectures,
either RNNs (Duan et al., 2017; Liu, 2020) or
Transformers (Scialom et al., 2019; Lopez et al.,
2020; Grover et al., 2021). As in our work, Scialom

et al. (2019); Lopez et al. (2020) proposed an
answer-agnostic QG system based on a Trans-
former architecture but only evaluated on SQuAD,
where complex questions are almost nonexistent.
Within the same setting, Grover et al. (2021)
demonstrated the ability of a T5-model to gener-
ate relevant and natural questions, but the authors
highlighted the challenge of evaluating generated
questions using SQuAD: while the answer-agnostic
setting encourages diversity, the generated ques-
tions could be far from the reference ones, an issue
we address through human evaluation (see Section
8).

While these studies successfully applied trans-
former models such as T5 to QG, they primarily
focuses on generic, simple questions, leaving com-
plex questions less explored. Beside (Agarwal
et al., 2011), discourse information was also lever-
aged in Stasaski et al. (2021) where rules are used
to extract cause-effect relations in SQuAD: a lan-
guage model then generates questions on both the
cause and effect aspects, and the synthetic ques-
tions are evaluated via a QA task. Contrary to
this work, we use causal relations that are man-
ually annotated to create synthetic data to aug-
ment a generic QG model. In addition, relevant to
our work is the approach introduced in (Lal et al.,
2021): the authors propose simple transformations
based on syntactic templates to create a corpus of
"why" questions. Our heuristics to generate ques-
tions are inspired by this work, but our evaluation is
not done directly on these synthetic, possibly noisy
questions, but on a natural, classic benchmark (e.g.
SQuAD).

Also using data augmentation, Ashok Kumar
et al. (2023) rely on prompting an LLM using
context-answer-question triplets to generate a set
of new questions, using varied decoding strategies
with the aim of increasing diversity. These ques-
tions are then ranked, based on perplexity or on
a separate model, and the best ranked is added to
the training set of a Flan-T5 model fine-tuned on
FairytaleQA (Xu et al., 2022a) to generate ques-
tions given context-answer pairs. The evaluation
demonstrates that the approach allows to generate
questions for which the answer is implicit, i.e. no
directly present as text span but need to be inferred.
Our approach is much simpler, relying on heuris-
tics to generate questions, with a focus on difficult,
complex questions while their approach aims at
producing generic diversity, with no insight on the
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Figure 1: Proposed Pipeline For Complex Question Generation Task.

types of questions generated.

3 Methodology

The pipeline for our question generation task is
illustrated in Figure 1 and consists of the following
elements:

• Two primary datasets, namely SQuAD, and ELI5,
serve as a basis for training a model. Since we
want to create an answer-agnostic model we only
use the context paragraphs and the associated
questions as input (ignoring information about
the answer).

• The primary datasets are augmented using dis-
course annotated data, namely the PDTB2 dataset.
We extract sentences with specific relations anno-
tated (causal relations).

• We apply a manual rule-based approach to derive
why-questions from these extracted sentences, re-
lying on their syntactic structures, and add them to
the primary datasets, with the original sentences
from PDTB2 as context paragraphs.

• The augmented dataset is then used as an input
for fine-tuning an encoder-decoder model from
the T5 family, with two different setups:

– PCSQ (Per Context Single Question), in which
each training instance includes a context para-
graph and a corresponding single question as-
sociated with it. The context and question to-
gether serve as a ’training instance’ for the T5
model during the fine-tuning process. A para-

graph can thus appear several times with differ-
ent questions associated.

– PCMQ (Per Context Multiple Questions), in
which each training instance contains a con-
text and all the questions associated with this
context.

PCMQ makes for a more complex decoding, but
is supposed to encourage question diversity and
avoid redundant generations. This setup is made
possible because the reference answer for each
question is ignored, and so a given paragraph is
associated to several different questions in SQuAD.

Given the scarcity of complex questions in ex-
isting datasets, we aim to expand our training ex-
amples by integrating more "why" based questions.
We thus use the PDTB2 dataset which contains
documents annotated with discourse relations, in-
cluding causality relations. These can be signaled
by discourse markers, such as "because", "as", and
"since", or be implicit, and the annotation consists
of a typical marker that could be inserted.

We take the sentences from the PDTB2 dataset
for both implicit and explicit relations that repre-
sent causal relations and produce questions based
on some predefined rule-based templates. The rules
operate on the syntactic structure of a sentence to
identify the main verb and auxiliary, and transform
it to produce a grammatically correct interrogative
sentence, in a manner similar to how data was pro-
duced in the dataset of (Lal et al., 2021). Table
1 contains some example questions produced by
this procedure. More sample of questions gener-
ated based on discourse relations is displayed in
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Sentence/Arg1 Tense Question Template Generated Question

[jaguar was shocked by mr.
ridley’s decision]ARG1

because [...]ARG2

Past Why{aux}{rest_arg1}? Why was jaguar shocked by mr.
ridley’s decision?

the beebes’ symptoms were
not related to the carpeting

Past Why{aux}{neg} {rest_arg1}? Why were not the beebes’
symptoms related to the carpeting?

frequently, clients express
interest in paintings but do

not end up bidding

Present Why do {rest_arg1}? *Why does frequently, clients
express interest in paintings but do

not end up bidding ?

Table 1: Questions generated based on the question templates. Discourse relations link two spans of text ARG1 and
ARG2 (explicitly with a marker or implicitly). Except for the first example, we only show the first argument of the
causal relation (ARG1) as it is the only part used to create the question. Underlined text in the Sentence/ARG1
column represents verbs, auxiliary verbs, or negation particles extracted from the original sentence. Text in bold in
the Question Template column represents fixed elements used in creating the question templates. The generated
question column showcases the final questions formed using the respective templates, and incorrect question
formations are marked with a star.

Appendix A.

4 Datasets

There are numerous datasets available for ques-
tion generation tasks, including but not lim-
ited to NewsQA (Trischler et al., 2017), MS
MARCO (Nguyen et al., 2016), Natural Ques-
tions (Kwiatkowski et al., 2019), FairytaleQA (Xu
et al., 2022b), SQuAD (Rajpurkar et al., 2016), and
ELI5 (Fan et al., 2019). Initially, these datasets
were designed for question-answering tasks, yet
they are now also broadly used in question gener-
ation research. For the present work we rely on
two datasets, namely SQuAD and ELI5, to perform
question generation from a given text.

SQuAD is chosen for its diverse range of source
paragraphs and questions from Wikipedia, it is com-
monly used as a reliable benchmark for both QA
and QG. The dataset was produced by Stanford Uni-
versity academics and contains a sizable number
of paragraphs that were taken from Wikipedia arti-
cles (Rajpurkar et al., 2016). For our experiment,
we use the training and development datasets from
SQuAD v2.0, which were created by Rajpurkar
et al. (Rajpurkar et al., 2018) in 2018.1 However,
SQuAD focuses mostly on simple factoid ques-
tions, so the ELI5 dataset, consisting of more com-
plex questions, is incorporated.

ELI5 which stands for "Explain Like I’m Five",
is another popular benchmark dataset used for tasks
like QA, QG, and other NLP tasks. It is sourced
from the subreddit r/explainlikeimfive. It provides
long-form answers and is available from the Hug-

1Retrieved from the GitHub page https://rajpurkar.
github.io/SQuAD-explorer/.

ging Face website.2 In the ELI5 dataset, each in-
stance consists of a question and user-provided
answers on reddit. In our context, we consider the
answer as the source paragraph and the questions
as our system’s input.

PDTB2.0: Additionaly, we use the Penn Dis-
course Treebank Version 2.0 (PDTB2) (Prasad
et al., 2008) that provides discourse annotated texts.
The PDTB2 is used here to leverage discourse
marker-based annotations and produce additional
data to augment the training set. Other corpora
exist for discourse annotations, but the PDTB is the
largest annotated dataset for English including an-
notations for discourse relations (e.g. cause, result,
manner), both explicit – that is triggered by a dis-
course connective (e.g. because, as a result, then...)
–, and implicit – no lexical marker. Of particular
interest, the PDTB2 has annotations of causal rela-
tions that we use to create "why" questions. We use
the version provided from the CoNLL 2016 Shared
Task (Xue et al., 2016), with level-2 annotations
(15 different relation types).

5 Experiments

Our experiments aim at evaluating the influence of
the training data composition, the model size, and
the generating procedure as outlined in Section 3.

PCSQ vs PCMQ: We build the training set dif-
ferently for the PCSQ and PCMQ setups: for PCSQ
– i.e. one question per paragraph –, we select para-
graphs and all questions about them to generate one
instance per paragraph-question pair ; for PCMQ,

2https://huggingface.co/datasets/eli5.
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Input: Many locals and tourists frequent the southern California coast for its popular beaches, and the
desert city of Palm Springs is popular for its resort feel and nearby open spaces.
Reference Question: Other than the desert city why do many locals and tourists frequent southern
California?
Baseline: How many locals and tourists frequent the southern California coast?
SQuAD+ELI5: What city has a beach?
+ELI5+PDTB (Exp): Why do many locals and tourists frequent the southern California coast?
+ELI5+PDTB (Exp+Imp): Why do many locals and tourists frequent the southern California coast?

Table 2: Example of generated questions by different models in PCMQ approach for SQuAD test data.

all questions about a paragraph are concatenated in
the same instance.

Training data composition: For the training
data, we use SQuAD data as a baseline, and vary
the training set by adding either (i) ELI5 data only,
or (ii) ELI5 and the generated questions from the
explicit examples of the PDTB, or (iii) ELI5 and
the generated questions from both the implicit and
explicit examples of the PDTB.

For the baseline dataset (SQuAD) we keep ap-
proximately 50k instances for the PCSQ setup, and
compare to similarly-sized datasets, by having 20k
instances from SQuAD and 30k instances from
ELI5. The additional augmentation from the PDTB
is much smaller, with about 1, 600 instances gen-
erated from explicit relations, and 1, 550 from im-
plicit relations.

For the PCMQ setup we cannot hold the number
of instances constant without restraining SQuAD
too much (there are only 19k paragraphs in total),
so we chose to start from a baseline including all
of SQuAD + 30k ELI5 instances (note that there
are much less questions per paragraph in ELI5).
We kept the SQuAD-only setup for comprehensive-
ness, but the PCMQ setup is not entirely fair to this
dataset compared to the others.

While the training and development sets of
SQuAD are publicly available, the test set is not
accessible to the public. So we divided the devel-
opment set evenly, allocating 50% for validation
and the remaining 50% for testing.

Models The experiments are conducted using the
T5-base model, which is available in the Hugging
Face transformers library.3 The code, written in
Python, uses the PyTorch library for fine-tuning the
model. This experiment was conducted in a Google
Colab Pro environment. The T5 base model has

3https://huggingface.co/docs/transformers/
index

220 million parameters. The T5 tokenizer han-
dled data preprocessing, limiting input sequences
to 512 tokens and target sequences to 64 tokens.
The training involves a batch size of 4, a gradient
accumulation size of 32, and 3 epochs, employing
the Adam optimizer with a learning rate of 1e-4.

Decoding and post-processing To ensure diver-
sity and comprehensiveness in questions, we keep
a generation beam of four results for each test para-
graph. In the case of PCSQ this ensures we have
more than one question to match to the several ref-
erences in SQuAD. In the PCMQ approach, the
model independently generates varying lengths of
questions per set, offering a greater variety com-
pared to PCSQ. We need some post-processing
to remove duplicate questions and some not well-
formed ones, lacking a ’?’ mark (incomplete gener-
ations), and this impacts the final count of questions
obtained for each input text. Examples of questions
generated by different models are shown in Table
2. In Table 9 in Appendix C, we provide a more
complete example of a question generated by the
"+ELI5+PDTB (Exp+Imp)" model in the PCMQ
setup.

6 Automated evaluation

We generated questions in both approaches on the
SQuAD left-out paragraphs and evaluated against
the corresponding reference questions using auto-
mated evaluation metrics: BLEU (Bilingual Eval-
uation Understudy) (Papineni et al., 2002), ME-
TEOR (Metric for Evaluation of Translation with
Explicit ORdering) (Lavie and Denkowski, 2009),
and ROUGE-L (Recall-Oriented Understudy for
Gisting Evaluation-longest common subsequences
or LCS) (Lin, 2004). These metrics are widely
adopted in the literature for evaluating question
generation. The evaluation tasks involved the use
of the following library packages: the Natural Lan-
guage Toolkit (NLTK), ROUGE, and METEOR
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Approach Training BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

PCSQ SQuAD Baseline 37.51 25.25 18.54 13.81 45.57 46.13
+ELI5 36.77 24.41 17.75 12.99 45.07 45.24
+ELI5+P-E 37.10 24.74 18.09 13.40 45.18 45.18
+ELI5+P-(E+I) 37.51 25.11 18.36 13.56 45.53 45.53

PCMQ SQuAD alone 33.48 21.94 15.86 11.60 41.27 40.34
SQuAD+ELI5 33.55 22.14 16.12 11.86 41.52 40.36
+ELI5+P-E 33.78 22.39 16.32 12.03 41.63 40.77
+ELI5+P-(E+I) 33.89 22.45 16.34 12.07 41.63 40.91

Table 3: Comparative performance of PCSQ and PCMQ approaches with different models. The scores are given in
percentages. The highest scores in each metric and approach are highlighted in bold. Here, the baseline model is
trained on the SQuAD dataset only. The results are presented for t5-base models. P-E and I stand for PDTB explicit
and implicit relations respectively. Note that PCMQ/SQuAD alone is here for reference but not comparable to the
other PCMQ setups.

in calculating BLEU (1 to 4), Rouge-L, and ME-
TEOR scores. Note that those measures, relying on
common ngrams or subsquences between reference
and system outputs, are moderately appropriate to
our setup, where we try to generate more diverse
questions than are present in the reference, without
a target answer. We address this problem with a
human evaluation in Section 8.

A total of 500 paragraphs were chosen from
the SQuAD test dataset to assess the question-
generation capability of our model. These para-
graphs consist of multiple reference questions,
and correspondingly, our model generates multi-
ple questions for each paragraph. To accommo-
date the presence of multiple references and gener-
ated questions per paragraph in the SQuAD dataset,
we implemented a mapping approach to find out
which reference and generated question pairs are
more relevant to each other for the evaluation, es-
pecially focusing on one-to-one match between
reference and generated questions. For both PCSQ
and PCMQ approaches, we combined questions
generated for each context’s four outputs from the
beam. Using automatic evaluation metrics such as
BLEU, ROUGE-L, or METEOR, we then calcu-
lated scores for each pair of matched generated and
reference questions. This filtering resulted in a one-
to-one matching between generated and reference
questions, ensuring meaningful evaluation of our
model’s question-generation accuracy. Given the
decoding procedure, the average number of non-
duplicate generated questions was about 3.9 for
PCSQ, and 9.5 for PCQM (with small variations
depending on the training data).

7 Results

The results presented in Table 3 provide insights
into the impact of data augmentation and the ef-
fectiveness of PCSQ and PCMQ approaches. For
PCSQ, the model trained solely on SQuAD slightly
outperforms augmented models in all mentioned
evaluation metrics, highlighting the effectiveness
of focused training on a single dataset. On the other
hand, PCMQ, when using everything from SQuAD,
ELI5, and the PDTB2 augmentation, outperforms
slightly the baseline in BLEU (1 to 4), ROUGE-L,
and METEOR.

When train with PDTB derived instances, the
number of "why" question is higher (+38% when
using explicit and implicit with PCMQ wrt the
baseline, +24% with only explicit). In PCSQ,
the increase in "why" questions is limited (going
from 0 for the baseline to 10 for the full training
data), reflecting its lower effectiveness in generat-
ing this question type. Questions in "how" do not
seem positively affected (each system generates al-
most the same amount), but we did not distinguish
simple "how" questions (asking for quantities, i.e
"how much/many") and more complex ones. We
just observed that some generated "how" questions
were causal in nature, but more manual analysis is
needed to evaluate this precisely.

Thus, aligned with our objective, our augmen-
tation techniques effectively increased the number
of generated "why" questions, particularly within
the PCMQ models, without detrimentally affecting
the quality of the questions generated as a whole,
at least according to the automated metrics.

This is notable since our models are not trained
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on example answers, meaning they can generate
questions about any aspect of the chosen paragraph,
for which it is likely the reference does not include
any question-answer pair.

This is why it is important to have a separate,
more fine-grained evaluation of the quality of the
generated answers, and this is the subject of the
following section.

Model how why

SQuAD alone 866 63
SQuAD+ELI5 747 64
+ELI5+P-E 781 78
+ELI5+P-(E+I) 772 87

Table 4: The table presents the number of "why" and
"how" questions generated by various models in PCMQ
approach. The results are presented for T5-base mod-
els. Here, the baseline model is trained on the SQuAD
dataset only. P-E and I stand for PDTB explicit and
implicit relations respectively.

8 Human evaluation

Model Bad ≈ ok Good

Baseline 39.29 10.71 50.00
All+P-E 40.43 2.13 57.45
All+P-(E+I) 26.15 3.08 70.77

Table 5: Human quality assessment of generated ques-
tions in % according to the data that was used to train
the generation model (PCMQ setup). Baseline means
T5 was only fine-tuned on SQuAD.

We conducted a human evaluation to assess the
quality of questions generated in PCMQ approach
by three models: Baseline model, +ELI5+PDTB
(Exp), and +ELI5+PDTB (Exp+Imp), all fine-
tuned from the T5-base model. Two of the au-
thors annotated a subset of randomly selected ques-
tions and their context from the SQuAD test dataset
using a set of 7 predetermined categories that in-
cluded subcategories for incorrect questions (more
details are provided in Appendix 12); the selection
was done by a third author, who kept hidden the sys-
tem that produced each question. There were 137
annotated questions, some generated by more than
one system. Adjudications of annotations were
done by the two annotators. It turned out some of
the error subcategories were quite similar, and the
final categories were restricted to three cases: (1)
the generated question is good: fluent, and can be

answered from the source paragraph, (2) the gen-
erated question is almost good: minor disfluency
and the answer is in the paragraph, (3) the question
is either impossible to understand or too vague, or
the paragraph does not contain an answer to the
question.

Cohen’s kappa (κ) was 0.48 on the 7 original
categories, indicating a moderate level of inter-
annotator agreement, but was 0.74 when only dis-
tinguishing between good questions and all the rest.

Table 5 presents the model-wise percentage dis-
tribution of the final adjudicated categories, pro-
viding insights into the quality assessment of gen-
erated questions. The +ELI5+PDTB (Exp+Imp)
model exhibits fewer "bad" questions and a sub-
stantial increase in "good" questions compared to
the baseline, presenting improved question quality
with explicit and implicit relation augmentations.

Moreover, from the annotated questions, we de-
termined the distribution of good, almost okay, and
bad questions for each question type (e.g., what,
why, etc.), see Table 6. We can see for instance that
implicit examples help generating more why ques-
tions (32), but with a cost on the average quality of
the questions (61% of good questions), while using
only explicit examples has a much higher quality
(79% of good questions, vs 55% for the baseline)
with less why questions generated (12). This is
done on a small sample of "why questions" so must
be taken with a grain of salt.

9 Conclusion

We presented an approach based on discourse re-
lation annotations to augment a question genera-
tion training set, in the case of a general answer-
agnostic question generation system, and with a
focus on causal questions. Our experiments show
that with a small set of additional instances we can
make the system generate more causal questions
with a good quality, as evaluated by human anno-
tators, and with almost no difference with respect
to classic automated metrics for question genera-
tion. This is only preliminary, as the results would
need to be tested on different base question-answer
corpora, and more human evaluation would be pre-
cious to better separate the roles of the different
factors at play here. It would also be interesting to
investigate the impact of including other discourse
relation types to generate different kinds of ques-
tions (e.g. "how" questions with relations of the
type "goal" or "manner").
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% correct nb
Type Model

How
ELI5+Exp 58.33 12
ELI5+Exp+Imp 80.95 21
Baseline 50.00 18

Others ELI5+Exp 0.00 1

What
ELI5+Exp 43.75 16
ELI5+Exp+Imp 70.00 5
Baseline 61.36 22

When
ELI5+Exp 75.00 4
ELI5+Exp+Imp 100.00 4
Baseline 33.33 3

Where
ELI5+Exp 0.00 1
Baseline 75.00 2

Who
ELI5+Exp 100.00 1
ELI5+Exp+Imp 100.00 3

Why
ELI5+Exp 79.17 12
ELI5+Exp+Imp 60.94 32
Baseline 54.55 11

Table 6: Breakdown of the number of questions in the
human evaluation by type, with the % of correct ques-
tions and the number of generated questions.

10 Limitations

The proposed approach augments existing datasets
and thus depends on the quality and diversity of
this basis. We are also reliant on existing annotated
discourse data, which is costly to produce, and ex-
ist only in various quantities for some languages.
As mentioned in the conclusion, the results would
need to be tested on different base question-answer
corpora and other languages, and more human eval-
uation is needed to better separate the roles of the
different factors at play here. A limitation of our
evaluation is the use of automated metrics, which
are already known not to be very adequate to com-
pare semantically equivalent questions if they have
lexical differences, but are even more inappropriate
with the goal to produce diverse questions not tied
to existing answers.
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Paragraph Generated Questions
Due to the heavy rain, the soccer match was
canceled1, and as a result, the players were
disappointed3. Since the field was waterlogged,
it was unsafe to play6. The organizers made the
decision to cancel the match7, and consequently,
the players had to wait for another opportunity to
showcase their skills4. Additionally, the spectators
were also disappointed5 because they were eagerly
looking forward to the game. The cancellation of
the match, due to the inclement weather, not only
affected the players’ morale but also dampened
the overall excitement surrounding the event.

1. Why was the soccer match canceled?
2. Why was the soccer match canceled due to
heavy rain? (Incorrect Question)
3. What caused the players to be disappointed?
4. What caused players to wait for another oppor-
tunity to showcase their skills?
5. Why were spectators disappointed?
6. Why was it unsafe to play?
7. Who made the decision to cancel the match?

Table 7: Example of generation from one paragraph. The table presents a text passage along with a set of generated
questions intended to reflect cause-effect relationships described within the text. Corresponding answers within the
text passage are color-coded to match their respective questions, and annotated with superscripts denoting question
numbers for clear cross-referencing. The question is generated by +ELI5+PDTB (Exp) model in PCMQ approach.

A Sample of Generated Questions from Data Augmentation

The questions generated from the PDTB2 dataset, along with the corresponding discourse relation and
discourse connective used in their formulation, are presented in Table 8.

Sentence: jaguar was shocked by mr. ridley’s decision because management had believed
the government wouldn’t lift the golden share without consulting the company first. (Explicit
Relation)
Connective : because
Arg1: jaguar was shocked by mr. ridley’s decision
Question: Why was jaguar shocked by mr. ridley’s decision?
Sentence: jeastern airlines’ creditors have begun exploring alternative approaches to a chapter
11 reorganization , they are unhappy with the carrier’s latest proposal. (Implicit Relation)
Connective : None
Arg1: jeastern airlines’ creditors have begun exploring alternative approaches to a chapter 11
reorganization
Question: Why have eastern airlines’ creditors begun exploring alternative approaches to a
chapter 11 reorganization?

Table 8: Examples of generated questions for both explicit and implicit relation from PDTB2 dataset.

B Sample of Generated Questions

We have included some samples of generated questions from the fine-tuned models on test dataset in Table
9 and 10. In Table 9, for a given input paragraph, the augmented model in PCMQ approaches generated 4
set of questions where each question set may contain various length questions.

C Human Annotation

C.1 Sample of Annotated Questions
We have provided some sample questions that have been annotated by the annotators. The annotated
questions can be found in Table 11.
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Input: The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people
who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were
descended from Norse ("Norman" comes from "Norseman") raiders and pirates from Denmark, Iceland
and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West
Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish
populations, their descendants would gradually merge with the Carolingian-based cultures of West
Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of
the 10th century, and it continued to evolve over the succeeding centuries.

Generated Questions:

1. Who gave their name to Normandy? What was the name of the region in France? Who did the
Normans swear fealty to? When did the distinct cultural and ethnic identity of the Norman people
emerge?

2. What was the name of the Normans in the 10th and 11th centuries? What was Normandy? Who
did the Norman people swear fealty to? When did the distinct cultural and ethnic identity of the
people emerge?

3. What was the name of the Normans in the 10th and 11th centuries? What was Normandy? Who
did the Norman people swear fealty to?When did the distinct cultural and ethnic identity of the
people emerge? How did the people of Normand

4. Who gave their name to Normandy? Who did the Normans swear fealty to?What did the people
of Normands mix with? When did the distinct cultural and ethnic identity of the Norman people
emerge?

Table 9: Example of input text and generated questions in PCMQ format for SQuAD test set. The question is
generated by "+ELI5+PDTB2(Exp+Imp)". The incorrect questions are red-colored and the yellow-highlighted text
present an incomplete question.

Input: Price controls exacerbated the crisis in the US. The system limited the price of "old oil" (that
which had already been discovered) while allowing newly discovered oil to be sold at a higher price to
encourage investment. Predictably, old oil was withdrawn from the market, creating greater scarcity.
The rule also discouraged development of alternative energies. The rule had been intended to promote
oil exploration. Scarcity was addressed by rationing (as in many countries). Motorists faced long lines
at gas stations beginning in summer 1972 and increasing by summer 1973.
Reference Question: Why was old oil withdrawn from the market?
Baseline: What was withdrawn from the market?
SQuAD+ELI5: What did the price control limit?
+ELI5+PDTB (Exp): Old oil was withdrawn from the market creating what?
+ELI5+PDTB (Exp+Imp): Why was old oil withdrawn from the market?

Table 10: Example of generated questions by different models in PCMQ approach for SQuAD test data.
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Input Text Generated Questions Category
Price controls exacerbated the crisis in
the US. The system limited the price of
"old oil" (that which had already been
discovered) while allowing newly dis-
covered oil to be sold at a higher price
to encourage investment. Predictably,
old oil was withdrawn from the market,
creating greater scarcity. The rule also
discouraged development of alternative
energies. The rule had been intended
to promote oil exploration. Scarcity
was addressed by rationing (as in many
countries). Motorists faced long lines at
gas stations beginning in summer 1972
and increasing by summer 1973.

Why was old oil withdrawn from the
market?

Good question. Answer is present in
the text.

Highly concentrated sources of oxygen
promote rapid combustion. Fire and
explosion hazards exist when concen-
trated oxidants and fuels are brought
into close proximity; an ignition event,
such as heat or a spark, is needed to
trigger combustion. Oxygen is the oxi-
dant, not the fuel, but nevertheless the
source of most of the chemical energy
released in combustion. Combustion
hazards also apply to compounds of
oxygen with a high oxidative potential,
such as peroxides, chlorates, nitrates,
perchlorates, and dichromates because
they can donate oxygen to a fire.

How do compounds with oxidation po-
tential contribute oxygen to?

Incorrect question but with relevant
words from the input.

As indigenous territories continue to be
destroyed by deforestation and ecocide,
such as in the Peruvian Amazon indige-
nous peoples’ rainforest communities
continue to disappear, while others, like
the Urarina continue to struggle to fight
for their cultural survival and the fate
of their forested territories. Meanwhile,
the relationship between non-human
primates in the subsistence and sym-
bolism of indigenous lowland South
American peoples has gained increased
attention, as have ethno-biology and
community-based conservation efforts.

Why do indigenous territories continue
to be destroyed by deforestation and
ecocide?

Grammatically correct but the answer
doesn’t exist.

Table 11: Sample of Annotated Questions by the Annotators. Red-colored text represents the answer texts for the
question within the paragraph. The input paragraph is from SQuAD test dataset.
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Question Category Description
Good question. Answer is present in the text. The answer to the generated question exists in the

given sentence/paragraph.
Incorrect question but with relevant words from

the input.
The generated question contains some

words/phrases from the input, but the question is
not grammatically correct and/or does not make

sense.
Question and answer are mixed The generated question contains some part of the

answer.
Grammatical mistake The generated question is grammatically

incorrect.
Grammatically correct but the answer doesn’t

exist
The generated question is grammatically correct,
but the answer to the question does not exist in

the input context.
Completely vague The generated question is not meaningful, too

vague.
Two valid questions are mixed The generated question contains two questions

from different parts of the input.

Table 12: Description of different category set for question evaluation

C.2 Question Category for Annotations
The annotators assigned each question to one of the seven predetermined categories. Details of each
category are provided in Table 12.
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Abstract

This paper proposes a classification model for
single label implicit discourse relation recog-
nition trained on soft-label distributions. It
follows the PDTB 3.0 framework and it was
trained and tested on the DiscoGeM corpus,
where it achieves an F1-score of 51.38 on third-
level sense classification of implicit discourse
relations. We argue that training on soft-label
distributions allows the model to better discern
between more ambiguous discourse relations.

1 Introduction

The Penn Discourse Treebank (PDTB) framework
(Miltsakaki et al., 2004; Prasad et al., 2008) defines
36 discourse relation senses organized hierarchi-
cally according to three levels of sense granularity
(Prasad et al., 2019). Being able to correctly recog-
nize these discourse relations in a text is of great
importance for many downstream NLP tasks.

While current explicit discourse relation recogni-
tion (EDRR) models can already obtain F1-scores
of 90.22 (Xue et al., 2016) when considering the
second-level sense, the task of implicit discourse
relation recognition (IDRR) remains arguably the
hardest task in discourse analysis with state-of-the-
art models reaching F1-scores of 55.26 (Liu and
Strube, 2023) at the second-level sense. The gap in
performance between the two tasks stems from the
inherently subjective nature of IDRR, where even
trained expert human annotators find it difficult to
agree on the sense annotation of implicit discourse
relations (Rohde et al., 2016; Hoek et al., 2021).

The difficulty in IDRR is evidenced by the inter-
annotator agreement on different corpora. While
we do not have access to the inter-annotator agree-
ment of the last version of the PDTB 3.0 corpus
(Prasad et al., 2019), the agreement at the third-
level sense of PDTB 2.0 (Prasad et al., 2008) was
of 80% - which also includes the easier to anno-
tate explicit relations (45.6% of the entire corpus).

Moreover, 1,075 (4.93%) of the 21,827 implicit dis-
course relations on the PDTB 3.0 corpus were an-
notated with two senses since the annotators could
not agree on a single sense. This difficulty is also
highlighted in the DiscoGeM corpus (Scholman
et al., 2022a), where the inter-annotator agreement
at the implicit third-level sense was 60%. However,
if we allow implicit relations to convey multiple
senses depending on the interpretation of the reader,
disagreements do not necessarily indicate inaccu-
racies in labeling (Aroyo and Welty, 2013; Pavlick
and Kwiatkowski, 2019; Jiang and de Marneffe,
2022). In fact, it might be helpful in downstream
NLP applications to have a distribution of multiple
interpretations for ambiguous texts (Basile et al.,
2021; Pyatkin et al., 2023).

In this paper, we propose a single label implicit
discourse relation recognition model trained on
soft-label distributions. The model follows the
annotation guidelines of PDTB 3.0 (Prasad et al.,
2019) and was trained and tested on the DiscoGeM
corpus (Scholman et al., 2022a). We argue that
training on soft-label distributions allows the IDRR
model to better generalize and discern between
the possible multiple interpretations of more am-
biguous texts. Our model reaches an F1-score of
51.38 on third-level sense classification of implicit
discourse relations in the DiscoGeM corpus (Schol-
man et al., 2022a) while state-of-the-art IDRR mod-
els (Liu and Strube, 2023) achieve an F1-score of
55.26 on second-level sense classification in the
PDTB 3.0 corpus (Prasad et al., 2019).

2 Previous Work

In recent years, different models have tried to lever-
age the power of language models either through
fine-tuning (Long and Webber, 2022; Liu and
Strube, 2023) or prompt-tuning (Zhao et al., 2023;
Chan et al., 2023) to face the challenging task of
IDRR. So far, these efforts have relied on the prin-
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ciple that there should be a single sense in the inter-
pretation of implicit discourse relations. However,
IDRR is an inherently ambiguous task even for ex-
pert human annotators (Pavlick and Kwiatkowski,
2019; Jiang and de Marneffe, 2022).

Acknowledging the importance of including
sources of ambiguity in human inference in the
evaluation of natural language processing tasks led
to a recent paradigm shift in discourse annotation.
Rather than relying on expert annotators to find a
single label for each implicit relation, recent annota-
tion efforts (Yung et al., 2019; Pyatkin et al., 2020;
Scholman et al., 2022a,b; Pyatkin et al., 2023) have
crowdsourced this task to multiple workers in order
to capture the possible multiple interpretations of
more ambiguous relations.

The idea that discourse annotation can often be
ambiguous is not new (Stede, 2008) and had al-
ready been highlighted by Huber et al. (2021) at
the nuclear level of the RST framework (Mann
and Thompson, 1988). In their work, Huber et al.
(2021) proposed a weighted approach to the anno-
tation of nuclearity in discourse relations following
the RST framework where, similarly to the PDTB
framework, a consensual annotation is hard to ob-
tain (Demberg et al., 2019; Costa et al., 2023).

3 Dataset

In this work we used the DiscoGeM corpus (Schol-
man et al., 2022a) to train and test our IDRR clas-
sification model. The corpus contains 6,505 inter-
sentential implicit discourse relations following the
PDTB 3.0 annotation guidelines distributed across
three different genres: 2,800 implicit discourse re-
lations in political texts, 3,060 in literary texts and
645 in encyclopedic texts.

Rather than relying on a few trained annotators
to find a sense label for each implicit discourse
relation, the DiscoGeM corpus crowdsourced the
annotation of each relation to multiple participants
which allowed to capture a distribution of labels
for each relation. Participants were asked to insert
a discourse connective between the two arguments
of each relation and the authors then inferred the
associated sense label from the third-level senses
in the PDTB 3.0 (Prasad et al., 2019). Through
this method, Scholman et al. (2022a) were able to
collect 65,863 annotations from 199 participants
for a total of 6,505 implicit discourse relations.

3.1 Data Preparation

We generated two datasets based on the DiscoGeM
corpus (Scholman et al., 2022a): one containing the
arguments and the sense distribution of each dis-
course relation and one containing the arguments
as well as their context (the adjacent text before
and after each argument). We used the arguments
(with or without context) as the input of our model
and the sense distribution as the target values to cal-
culate the soft cross-entropy loss. Figure 1 shows
the character length distribution of both datasets.

Figure 1: Distribution of character length size of the
arguments of the discourse relations in the DiscoGeM
corpus with and without additional textual context.

The dataset containing only the arguments
(ARG1+ARG2) has an average length of 245 char-
acters and the dataset including the context of the
arguments (ARG1+ARG2 with context) has an av-
erage length of 531 characters. To ensure a bal-
anced distribution of senses in the training and eval-
uation of our model, we determined the sense with
the highest score for each discourse relation and
then split both datasets equally while preserving
the same distribution of majority-senses in train-
ing and testing. Figure 2 shows the majority-sense
distribution of both datasets, after splitting 80%
(5,204) of the 6,505 implicit discourse relations for
training and 20% (1,301) for testing.

Note that the DiscoGeM corpus (Scholman et al.,
2022a) was annotated only with 27 of the 36 third-
level senses in the PDTB 3.0 (Prasad et al., 2019).
The BELIEF and SPEECHACT senses were not in-
cluded in the annotation process. However, as Fig-
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Figure 2: Distribution of the majority-sense labels in
the training and testing splits of both our datasets.

ure 2 shows, not all of the 27 senses occurred in
the annotated texts.

4 Classification Model

Similarly to the current state-of-the-art model in
IDRR (Liu and Strube, 2023), we based our classi-
fication model on the bidirectional RoBERTa-base
(Liu et al., 2019) language model. We fine-tuned
the sequence classification model from Hugging
Face1 with a single classification layer using a
soft cross-entropy loss with a mean reduction over
batches to allow training with soft-label distribu-
tions and we optimized our model using the Adam
method (Kingma and Ba, 2015). We then inferred
the single label sense of each discourse relation
at the evaluation stage from the element with the
highest score at the output of the model. All of the

1https://huggingface.co/docs/transformers/
model_doc/roberta

code used in this paper can be found on GitHub2.

4.1 Fine-Tuning

To optimize our model for the present task, we con-
ducted a series of experiments with different hyper-
parameters to determine the configuration which
yielded better results. We did not, however, exper-
iment with different values for the beta terms in
the Adam optimizer. Instead, we used the recom-
mended values for fine-tuning RoBERTa (Liu et al.,
2019): β1 = 0.9 and β2 = 0.98. Table 1 shows the
impact of training the model with different epochs
(EP) and batch sizes (BS), while keeping a constant
learning rate (γ = 1e−5) and no decay (λ = 0). In
these experiments we considered only the dataset
made of the arguments of the discourse relations
(see ARG1+ARG2 in Figure 1).

Hyperparameters F1 Precision Recall

EP: 10 / BS: 16 49.98 49.55 51.35
EP: 10 / BS: 32 50.91 50.62 51.58
EP: 10 / BS: 64 51.38 51.54 52.19
EP: 20 / BS: 64 50.59 50.67 51.04

Table 1: Evaluation of our model with different epochs
(EP) and batch sizes (BS), while keeping a constant
learning rate (γ = 1e−5) and no decay (λ = 0).

The values highlighted in bold in Table 1 show
the best configuration on the test split: EP = 10
and BS = 64. For smaller batch sizes and higher
epochs, the model performed better in training but
worst in testing. Given the relatively small dataset,
these configurations might have been more prone to
over-fitting. Keeping the optimal number of epochs
and batch size, in Table 2 we studied the influence
of different learning rates (γ) and the impact of
introducing a linear decay (λ) in the performance
of the model.

The values highlighted in bold in Table 2 show
the best configuration on the test split: γ = 1e−5

and λ = 0. Similarly to the number of epochs
and batch sizes, higher learning rates led to better
results in training but worst in testing. The same
phenomenon occurred with the introduction of the
linear decay rate. This hints at the susceptibility
of the model to over-fitting and emphasizes the
importance of carefully selecting hyperparameters
to ensure better generalization.

2https://github.com/CLaC-Lab/
Implicit-Discourse-Relation-Recognition
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Hyperparameters F1 Precision Recall

γ: 5e-5 / λ: 0.0 48.77 49.91 49.42
γ: 2e-5 / λ: 0.0 49.43 49.64 50.88
γ: 1e-5 / λ: 0.0 51.38 51.54 52.19
γ: 1e-5 / λ: 0.1 49.67 50.78 50.73

Table 2: Evaluation of our model with different learning
rates (γ) and with decay (λ), for 10 epochs and a batch
size of 64.

5 Results and Analysis

Having selected the optimal hyperparameter con-
figuration (EP = 10, BS = 64, γ = 1e−5 and
λ = 0), we applied our classification model to
the task of IDRR under two different settings. In
the first setting we considered only the arguments
of the discourse relations as input to our model,
while in the second setting we also took into con-
sideration their adjacent textual context. In both
settings, the model outputs a soft-label distribution
over the possible third-level senses in the PDTB
3.0 (Prasad et al., 2019), from which the sense with
the highest score is selected and evaluated against
the respective majority-sense from the DiscoGeM
corpus (Scholman et al., 2022a). Table 3 presents
the results of our model under both settings.

Input F1 Precision Recall

ARG1+ARG2 51.38 51.54 52.19
ARG1+ARG2 (with context) 43.67 43.22 45.43

Table 3: Results of third-level sense classification of
implicit discourse relations considering the arguments
without and with additional textual context.

As indicated in Section 3.1, our model is based
on the RoBERTa (Liu et al., 2019) language model,
whose maximum input length size is 512. How-
ever, the average length of the input with context
is 531 characters, while the average length of the
input without context is 245 characters (see Fig-
ure 1). The results in Table 3 indicate that the extra
contextual information gain does not outweigh the
information lost to truncation, as we obtain higher
scores on all metrics for the shorter inputs without
context. We include the confusion matrix of the
output of our model without context in Table 4 of
Appendix A.

Although we did not test our model directly on
the PDTB 3.0 corpus (Prasad et al., 2019), our

results suggest the benefits of training IDRR clas-
sification models on soft-label distributions. Our
model obtained an F1-score of 51.38 on a subset
of the DiscoGeM corpus (Scholman et al., 2022a),
while the current best model in IDRR (Liu and
Strube, 2023) obtained an F1-score of 55.26 on a
subset of the PDTB 3.0 corpus (Prasad et al., 2019).
In their work, Pyatkin et al. (2023) obtained an
accuracy of 41% on a subset of the PDTB 3.0 cor-
pus when training their model on the union of the
DiscoGeM and the QADiscourse (Pyatkin et al.,
2020) corpora.

6 Conclusion

In this paper we proposed a single label implicit dis-
course relation recognition model trained on soft-
label distributions from the DiscoGeM corpus and
evaluated it on single label classification to allow an
easier comparison against existing state-of-the-art
IDRR models. We obtained an F1-score of 51.38
on third-level sense classification of implicit dis-
course relations on the DiscoGeM corpus following
the PDTB 3.0 annotation guidelines. Our results
hint at the possible benefits of training IDRR clas-
sification models on soft-label distributions to help
generalize and discern between possible multiple
interpretations of ambiguous texts.

7 Limitations and Future Work

In this work we trained and evaluated our model
using only the DiscoGeM corpus. Although the
training was done using soft-labels, the evaluation
considered only single labels. We would now like
to evaluate the performance of our model also on
the soft-label prediction task itself using soft evalu-
ation metrics. In addition, since most state-of-the-
art IDRR models are trained and evaluated on the
PDTB 3.0 corpus, we would also like to evaluate
the performance of our model on single label clas-
sification using the PDTB 3.0 corpus. This would
allow us to draw a direct comparison between our
approach and other existing IDRR models.

Finally, our proposed classification model con-
sists of a rather simple configuration of the
RoBERTa-base model with a sequential classifi-
cation layer on top. In future work, we would like
to explore more elaborate model configurations.
We would also like to train our model on the tra-
ditional single label IDRR classification task and
use it as a baseline to evaluate the true potential of
training our model on soft-labels.
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SYNCHRONOUS 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0

PRECEDENCE 2 66 0 1 20 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 8 0 0 0 0 0 0 0 0

SUCCESSION 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

REASON 0 0 0 48 11 0 0 0 0 0 0 0 2 3 0 12 0 0 1 0 12 0 0 0 0 0 0 0 0

RESULT 0 22 0 20 245 0 0 0 0 0 0 0 0 23 2 0 63 0 0 8 0 31 0 0 0 0 0 0 0

ARG1-AS-COND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG2-AS-COND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG1-AS-NEGCOND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG2-AS-NEGCOND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG1-AS-GOAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG2-AS-GOAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG1-AS-DENIER 0 0 0 3 2 0 0 0 0 0 0 2 3 0 0 6 0 0 0 4 0 0 0 0 0 0 0 0 0

ARG2-AS-DENIER 0 0 0 1 11 0 0 0 0 0 0 1 19 1 0 12 0 0 1 0 3 0 0 0 0 0 0 0 0

CONTRAST 0 1 0 6 4 0 0 0 0 0 0 1 2 3 0 10 0 0 0 0 1 0 0 0 0 0 0 0 0

SIMILARITY 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 1 0 0 0 0 0 0 0 0

CONJUNCTION 0 17 0 24 46 0 0 0 0 0 0 3 11 1 0 187 0 0 5 0 31 0 0 0 0 0 0 0 0

DISJUNCTION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG1-AS-INSTANCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG2-AS-INSTANCE 0 2 0 6 4 0 0 0 0 0 0 0 0 0 0 11 0 0 21 0 11 0 0 0 0 0 0 0 0

ARG1-AS-DETAIL 0 0 0 3 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

ARG2-AS-DETAIL 0 1 0 21 16 0 0 0 0 0 0 1 1 0 0 37 0 0 5 0 88 0 0 0 0 0 0 0 0

EQUIVALENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG1-AS-MANNER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG2-AS-MANNER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG1-AS-EXCEPTION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG2-AS-EXCEPTION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARG2-AS-SUBSTITUTION 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIFFERENT-CONN 0 1 0 2 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0

NOREL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4: Confusion matrix for the majority third-level sense classification of implicit discourse relations considering
only the arguments without the context of the relation as input. Color gradients are calculated at the target level
(row-wise).
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Abstract

ARRAU is an anaphorically annotated corpus
designed to cover a variety of aspects of
anaphoric reference in a variety of genres, in-
cluding both written text and spoken language.
The objective of this annotation project is to
push forward the state of the art in anaphoric
annotation, by overcoming the limitations of
current annotation practice and the scope of cur-
rent models of anaphoric interpretation, which
in turn may reveal other issues. The resulting
corpus is still therefore very much a work in
progress almost twenty years after the project
started. In this paper, we discuss the issues
identified with the coding scheme used for the
previous release, ARRAU 2, and through the
use of this corpus for three shared tasks; the
proposed solutions to these issues; and the re-
sulting corpus, ARRAU 3.

1 Introduction

Although the scope and ambition of anaphoric an-
notation projects has enormously increased in the
last twenty years (Poesio, 2004; Hinrichs et al.,
2004; Pradhan et al., 2007, 2012; Poesio and Art-
stein, 2008; Uryupina et al., 2020; Recasens and
Martí, 2010; Rahman and Ng, 2012; Nedoluzhko,
2013; Muzerelle et al., 2014; Cohen et al., 2017;
Zeldes, 2017; Webster et al., 2018; Bamman et al.,
2020; Sakaguchi et al., 2020; Khosla et al., 2021;
Yu et al., 2022a; Nedoluzhko et al., 2022) a number
of open questions about anaphoric annotation re-
main, and many if not most of the existing corpora
have limitations either in size or coverage.

The ARRAU annotation (Poesio and Artstein,
2008; Uryupina et al., 2020; Poesio et al., 2018)
is a long-term project to expand the range of
anaphoric annotation by creating an anaphorically
annotated corpus covering a wide variety of as-
pects of anaphoric reference (Poesio, 2016). The
annotation project started in 2004 as the result of
a series of studies of the reliability of ’difficult’ as-

pects of anaphoric annotation (Poesio, 2004; Poesio
and Artstein, 2005b,a; Artstein and Poesio, 2006,
2008) and the first release was primarily focused
on anaphoric reference in dialogue (Poesio and
Artstein, 2008). The scope of the annotation then
broadened both in terms of linguistic aspects that
were annotated and in terms of genres, resulting in a
second release in 2013 (Uryupina et al., 2020). This
second release was then used as the core dataset for
the 2018 CRAC Shared Task (Poesio et al., 2018),
the first shared task for anaphora resolution cover-
ing also identification of non-referring expressions,
bridging reference and discourse deixis; and as ad-
ditional material for the 2021 and 2022 CODI-CRAC

shared tasks on anaphora resolution in dialogues
(Khosla et al., 2021; Yu et al., 2022a). These shared
tasks highlighted the need to revise the annotation
guidelines for a range of phenomena including dis-
course deixis and genericity and reference in dia-
logues. They also revealed a number of issues with
tokenization and markup. We therefore started an
extensive reannotation and cleaning up, resulting in
a third, substantially revised release of the corpus.

In this paper we discuss the issues identified
with the previous annotation, the revised annotation
scheme and guidelines, the cleaning up procedure,
and the new corpus resulting from this effort.

2 Anaphoric Annotation

We review in this Section the aspects of anaphoric
interpretation captured in the ARRAU annotation.

Identity Anaphora Most modern anaphoric an-
notation projects cover identity anaphora as in (1).

(1) [Mary]i bought [a new dress]j but [it]j
didn’t fit [her]i.

However, many other types of identity anaphora
exist, as well as other types of anaphoric relations,
discussed below.
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Split-antecedent anaphora In most corpora, plu-
ral reference is only marked when the antecedent
is mentioned by a single noun phrase. But in split-
antecedent anaphors (Eschenbach et al., 1989;
Kamp and Reyle, 1993) such as (2), plural pro-
noun they refers to a set composed of two entities
introduced by separate noun phrases.

(2) [John]1 met [Mary]2. [He]1 greeted [her]2.
[They]1,2 went to the movies.

Such references are not annotated in many corpora,
or They is treated as a bridging reference.
The semantic function of noun phrases The
nominal expressions in (1) are examples of refer-
ring noun phrases, which either introduce new en-
tities in a discourse (first mention of Mary and the
new dress) or link to previously introduced entities
(pronouns it and her). But NPs can serve different
functions. Quantificational NPs such as No one in
No one would put the blame on him/herself (Partee,
1972) do not refer to an individual or set of individ-
uals, but can still participate in anaphoric relations
even though anaphoric reference to quantifiers has
distinctive properties (Partee, 1972) and is subject
to semantic constraints (Karttunen, 1976). Pred-
icative noun phrases express properties of objects:
for instance, in sentence (3), the NP a busy place
does not introduce a new discourse entity or refer
back to an existing discourse entity, but expresses a
property. Finally, in languages like English, forms
like it and there can also be used to express seman-
tically vacuous expletives as well as pronouns, like
the it in It is four o’clock. Distinguishing referring
from non-referring nominals is a part of the task
of interpreting anaphoric expressions which can-
not be evaluated in corpora where non-referring
expressions are not annotated.

(3) [This] seems to be [a busy place]

Discourse deixis The term ‘anaphoric reference’
covers a wide variety of phenomena, not all
of which are annotated in all corpora. Event
anaphora is the type of anaphoric reference ex-
emplified by that in (4), which does not refer to an
entity introduced by a nominal, but to the event of
a white rabbit with pink ears running past Alice.

(4) ... when suddenly a White Rabbit with pink
eyes ran close by her. There was nothing so
VERY remarkable in [that]; nor did Alice
think it so VERY much out of the way to
hear the Rabbit say to itself, ’Oh dear! Oh

dear! I shall be late!’ (when she thought it
over afterwards, it occurred to her that she
ought to have wondered at [this], but at the
time it all seemed quite natural); ....

Event anaphora is a subtype of the more complex
phenomenon of discourse deixis (Webber, 1991;
Kolhatkar et al., 2018) which also includes refer-
ences like this in (4), which refers to the fact that
the Rabbit was able to talk. Not many corpora at-
tempt to cover the entire range of discourse deixis.

Bridging references and other non-identity
anaphora Possibly the most studied type of non-
identity anaphora is bridging reference or asso-
ciative anaphora (Clark, 1977; Hawkins, 1978;
Prince, 1981) as in (5), where bridging reference
the roof refers to an object which is related to /
associated with, but not identical to, the hall.

(5) There was not a moment to be lost: away
went Alice like the wind, and was just in
time to hear it say, as it turned a corner,
’Oh my ears and whiskers, how late it’s
getting!’ She was close behind it when she
turned the corner, but the Rabbit was no
longer to be seen: she found herself in [a
long, low hall, which was lit up by a row
of lamps hanging from [the roof]].

Other types of non-identity anaphora also exist, be-
sides bridging references. Examples include other
anaphora like the other in (6), as well as identity
of sense anaphora such as a blue one in (7) (Poesio,
2016).

(6) John gave one book to Mary, and [the
other] to Bill.

(7) John bought a red ball, and Mary [a blue
one].

The interplay between anaphora and other se-
mantic properties of nominals Often, whether
two mentions corefer depends on how they get se-
mantically interpreted in other respects. In (8), for
instance, whether the mention bananas in 40.2 is
interpreted as coreferring with mention bananas
in 37.8 depends on whether these bare plurals are
taken to be references to the generic kind bananas
(Carlson and Pelletier, 1995). If those mentions are
interpreted as non-generic, they would not corefer.
Some anaphoric corpora therefore include an anno-
tation of noun phrases’ genericity (Uryupina et al.,
2020; Nedoluzhko, 2013).
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(8)

37.1 M: all right
37.2 : and then at the same time

...
37.5 : E2 was zipping over to Bath

to pick up a boxcar
37.6 : heading down to Avon
37.7 : to
37.8 : collect [bananas]i
37.9 : and then shipping [em]i back to

Corning
37.10 : shortest route

...
38.1 S: okay so
38.2 : E2
38.3 : goes to Corning
38.4 : then
38.5 : on to Bath
38.6 : and gets a boxcar
39.1 M: m hm
40.1 S: then on to Avon
40.2 : load [bananas]?

Anaphoric reference in dialogue Anaphora res-
olution in dialogue requires systems to handle
grammatically incorrect language suffering from
disfluencies and mentions jointly created across ut-
terances (Poesio and Rieser, 2010) or whose func-
tion is to establish common ground rather than
refer (Clark and Brennan, 1990; Heeman and Hirst,
1995). Dialogue contains more deictic reference,
vaguer anaphoric and discourse deictic reference,
or speaker grounding of pronouns. These complex-
ities are normally absent from news or Wikipedia
articles, which form the bulk of current datasets for
coreference resolution (Poesio et al., 2016). There
has been some research on coreference in dialogue
in English (Byron, 2002; Eckert and Strube, 2001;
Müller, 2008), but very limited in scope (primar-
ily pronominal interpretation), due to the lack of
suitable corpora, although the situation is better for
other languages (Muzerelle et al., 2014; Grobol,
2020).

3 ARRAU 1 and 2

3.1 Genres

The ARRAU corpus1 (Poesio and Artstein, 2008;
Uryupina et al., 2020) was designed to cover a vari-
ety of genres. Initially, the corpus was meant to fo-
cus on anaphoric reference in dialogue and spoken
language (Poesio and Artstein, 2008). Its TRAINS
sub-corpus includes all the task-oriented dialogues
in the TRAINS-93 corpus2 (Heeman and Allen,
1995) already used in Byron’s work on pronom-
inal reference in dialogue (Byron and Allen, 1998;

1http://www.arrauproject.org/corpus
2http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC95S25

Byron, 2002) as well as the pilot dialogues in the
so-called TRAINS-91 corpus. The PEAR sub-corpus
consists of the complete collection of spoken nar-
ratives in the Pear Stories that provided some of
the early evidence on salience and anaphoric ref-
erence (Chafe, 1980).3 Subsequently, the corpus
was extended to cover a substantial amount of writ-
ten text, including news text in a sub-corpus called
RST, consisting of the entire subset of the Penn
Treebank (Marcus et al., 1993) that was annotated
in the RST treebank (Carlson et al., 2003).4 The
GNOME sub-corpus covers documents from the med-
ical and art history genres covered by the GNOME

corpus (Poesio, 2004).

3.2 Annotation scheme
The same coding scheme was used for all sub-
corpora, but separate guidelines were written for
the spoken dialogue and written language sub-
corpora. The original annotation scheme used for
Release 1 (Poesio and Artstein, 2008), focused on
dialogue, is distributed with the dataset and is also
available from the ARRAU corpus page. For the
second release (Uryupina et al., 2020), the guide-
lines for bridging were extended and genericity was
also annotated using the GNOME guidelines, but
a complete new manual was not produced. How-
ever, a fairly extensive description can be found in
Uryupina et al. (2020).

Markable definition Many older anaphorically
annotated corpora impose syntactic, semantic or
discourse-based restrictions on markables. For in-
stance, in ONTONOTES neither expletives nor sin-
gletons are annotated (Poesio et al., 2016). By
contrast, in ARRAU all NPs are considered as mark-
ables, including non-referring expressions (e.g., ex-
pletives such as it or predicative NPs such as a busy
place) in (3), and expressions do not corefer with
any other markable (‘singletons’). Moreover, in
ARRAU non-referring markables are manually sub-
classified into expletives, predicative, and quanti-
fiers. In addition, all generic references are marked,
including premodifiers when the entity referred to
is mentioned again, e.g., in the case of the proper
name US in (9), and premodifiers that refer to a
kind, like exchange-rate in (10).

(9) . . . The Treasury Department said that the
[US]1 trade deficit may worsen next year

3https://www.linguistics.ucsb.edu/research/
pear-film

4https://catalog.ldc.upenn.edu/LDC2002T07
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after two years of significant improve-
ment. . . The statement was the [US]1’s gov-
ernment first acknowledgment . . .

(10) The Treasury report, which is required an-
nually by a provision of the 1988 trade
act, again took South Korea to task for
its [exchange-rate]1 policies. “We believe
there have continued to be indications of
[exchange-rate]1 manipulation . . .

A distinctive feature of ARRAU’s definition of mark-
ables is that, due to its initial focus on dialogue, it
also allows discontinuous markables such as the
collaborative constructed three ... loaded boxcars
in (11), building on (Müller, 2008) and leveraging
MMAX2’s support for such markables.

(11)

S: okay um if you can only pull three
loaded boxcars

U: [three]1

S: yeah [loaded boxcars]1

Referential status A markable can be marked as
semantically non-referring (an expletive, a pred-
icate, a quantifier, a coordination, an idiom, or
incomplete) or referring (either discourse new
or discourse old). Discourse new mentions in-
troduce new entities and thus are not marked as
being coreferent with an entity already introduced
(antecedent). For discourse-old markables, the
annotation of different types of anaphoric rela-
tions is supported. The antecedent of discourse-old
mentions can be either of type phrase (if the an-
tecedent was introduced using a nominal markable)
or segment (not introduced by a nominal markable,
for discourse deixis).5 In addition, referring NPs
can be marked as related to a previously mentioned
discourse entity to identify them as examples of as-
sociative (bridging) anaphora.

Bridging references Annotating — indeed, even
identifying — bridging references in a reliable way
is difficult, which is one of the reasons why so few
large-scale corpora for anaphora include this type
of annotation (Poesio et al., 2016; Kobayashi and
Ng, 2020). The ARRAU guidelines for bridging
anaphora are based on experiments that ran from
(Poesio and Vieira, 1998) to (Poesio, 2004). The
ARRAU Release 1 and 2 guidelines followed the
GNOME guidelines, but with an extension and a
simplification. Annotators were asked to mark a

5Identity anaphora also includes split antecedent plural
anaphoric reference.

markable as related to a particular antecedent if
it stood to that antecedent in one of the GNOME

relations or in the two additional relations

• other, for other NPs, broadly following the
guidelines in Modjeska (2003);

• an undersp-rel relation for ‘obvious cases
of bridging that didn’t fit any other category’.

However, the actual relations were not marked in
ARRAU 1. Relation annotation started with ARRAU

2, but only for the RST portion. One of the objec-
tives for ARRAU 3 was to annotate the relations
underlying bridging reference for all sub-corpora.

Discourse deixis Discourse deixis in its full form
is a very complex form of reference, both to an-
notate and to resolve (Kolhatkar et al., 2018) .
Very few anaphoric annotation projects have at-
tempted to annotate discourse deixis in its entirety
(Kolhatkar et al., 2018). More typical is a partial
annotation, as in (Byron and Allen, 1998; Navar-
retta, 2000), who annotated pronominal reference
to abstract objects; in ONTONOTES, where event
anaphora was marked (Pradhan et al., 2007); and
in (Kolhatkar and Hirst, 2014), which focused on
so-called shell nouns. In ARRAU, a coder specify-
ing that a referring expression is discourse-old is
asked whether its antecedent was introduced using
a phrase (markable) or a segment (discourse seg-
ment). Coders who choose segment have to mark
a sequence of predefined clauses as antecedent.

Genericity ARRAU is not a multi-layer corpus
like ANCORA, GUM, ONTONOTES or the Prague
Dependency Treebank, meaning that other linguis-
tic information relevant for the study of anaphora
(morphosyntax, dependency structure, semantics)
also has to be annotated within the anaphoric layer.
We only discuss in this paper genericity, as it’s the
one among these attributes for which the guidelines
changed in ARRAU 3.

The ARRAU scheme and guidelines for gener-
icity build on the studies of genericity reliability
carried out as part of the GNOME annotation (Poe-
sio et al., 2004). This scheme is based on a gener-
alised notion of scopal dependence for nominals
covering both genericity and scopal dependence on
a range of operators including conditionals, quan-
tifiers, and temporal adverbials. More specifically,
according to the guidelines used for ARRAU 1 and
2, the annotation of the generic attribute is car-
ried out following a decision tree going from the
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easiest cases to the more complex ones. Coders
are first asked to check whether the nominal is in
the syntactic scope of an explicit operator such as
a conditional like if (as in (12)) or an individual
quantifier such as every or most (iquant) In these
cases, the nominal is not marked as generic, but as
being in the scope of the appropriate operator. If no
such explicit quantifier/operator is present, coders
are asked to check whether the nominal refers to
semantic objects whose genericity is left under-
specified, such as substances (e.g., gold), as in (13)
Finally, the annotator is asked whether the sentence
in which the markable occurs is generic, and in
this case, to mark the nominal as generic-yes if it
refers generically, as in (14), or generic-no other-
wise. With these instructions, reasonable intercoder
agreement was achieved (κ = .82) (Poesio, 2004).

(12) New York State Comptroller Edward
Regan predicts a $ 1.3 billion budget
gap for the city ‘s next fiscal year,
a gap that could grow if there is [a
recession]operator−conditional.“

(13) Not that [oil]undersp−substance suddenly is
a sure thing again .

(14) In its report to Congress on [international
economic policies]generic−yes, the Trea-
sury said that any improvement in the
broadest measures of trade, known as the
current account.

3.3 Annotation procedure
ARRAU 1 and 2 were annotated using MMAX2
(Müller and Strube, 2006). All annotation was car-
ried out by trained (computational) linguists. AR-
RAU 1 was primarily annotated at the University of
Essex between 2004 and 2007 under the direction
of Ron Artstein, who also designed the MMAX2
style, and in collaboration with Mark-Christoph
Müller. The initial annotation was then extended
and checked as part of the Johns Hopkins 2007
Workshop on Entity Disambiguation (ELERFED).

ARRAU 2 was annotated at the University of
Trento between 2008 and 2016 under the coordi-
nation of Kepa Rodriguez, Francesca Delogu, Fed-
erica Cavicchio, and Olga Uryupina. Most of the
annotation was carried out by Antonella Bristot.

3.4 Use in shared tasks
In recent years, ARRAU was used for three shared
tasks: the CRAC 2018 shared task on anaphora
resolution with the ARRAU corpus (Poesio et al.,

2018), and the 2021 and 2022 CODI-CRAC shared
tasks on anaphora resolution in dialogue (Khosla
et al., 2021; Yu et al., 2022a).

The use of the corpus for such tasks was enabled
by two improvements brought about by the Uni-
versal Anaphora initiative.6 The first of these was
the development of a tabular markup format ex-
tending the CONLL-U tabular format used for the
CONLL 2011 and 2012 shared tasks on coreference
(Pradhan et al., 2012) with ways to represent the
additional types of anaphoric information encoded
in ARRAU, but consistent with it so that modellers
would understand it better. And second, the de-
velopment of scorers extending the Coreference
Reference scorer (Pradhan et al., 2014) with ways
of scoring the interpretation of these additional phe-
nomena (Poesio et al., 2018; Yu et al., 2022b).

4 ARRAU 3: Summary of the Revisions

The CRAC 2018 shared task revealed a number
of issues with the ARRAU 2 annotation - first of
all with the annotation of bridging references and
discourse deixis- that prompted a first round of
revisions to the annotation scheme and the annota-
tion guidelines. More issues about the annotation
of anaphoric reference in dialogue were revealed
when the data were used for the CODI-CRAC 2021
shared task, resulting in a second round of revi-
sions. During the CODI-CRAC shared task we also
discovered issues with tokenization and with the
way the RST portion had been converted. As a re-
sult, we started revising the corpus by: (i) revising
annotation schemee and guidelines (ii) fixing the is-
sues with tokenization and with conversion. In the
following two sections, we discuss each of these
revisions in detail.

5 Revised Guidelines and Re-annotation

5.1 Revised annotation scheme and guidelines

The changes to the annotation scheme and guide-
lines between ARRAU 2 and ARRAU 3 can be sum-
marized as follows: (i) alternative schemes espe-
cially for the more complex aspects of the annota-
tion (e.g., bridging reference, genericity, discourse
deixis) were carefully analyzed and the annotation
scheme and guidelines for these aspects were (par-
tially) revised at the light of the solutions proposed
in this work; (ii) a more semantic approach was
adopted for the annotation of certain aspects that

6http://www.universalanaphora.org
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had been previously annotated following purely
syntactic guidelines (e.g., predication, genericity);
(iii) for the dialogue sub-corpora, more attention
was paid to aspects of reference in dialogue that pre-
viously had not been sufficiently considered (e.g.,
deictic first and second person pronouns, or the use
of referring expressions for grounding purposes).

Predicative NPs The ARRAU 2 guidelines for
predicative NPs were not very explicit and essen-
tially relied on syntactic information, marking as
predicates object NPs in copular clauses (Antonio
Conte was [an Italian prime minister]) and clauses
with verbs such as become (Antonio Conte became
[the Italian prime minister] as well as appositions
(Antonio Conte, [the Italian prime minister], ar-
rived in London for talks today).

However, the decision whether an NP is predica-
tive cannot always be made on syntactic grounds
alone (Zeldes, 2022). For instance, in [The Italian
prime minister, [Antonio Conte]], arrived in Lon-
don for meetings today, it is the NP in appositive
position (Antonio Conte) that acts as term-denoting,
whereas the outside NP has a predicative function.
In so-called specificational copular clauses, it is
the subject that is predicative, whereas the object
is generally taken to be referential:

(15) [The director of Anatomy of a Murder] is
Otto Preminger

Whereas in so-called identificational copular
clauses, both the subject and object are generally
taken to be referring:

(16) [That woman] is [Sylvia]

Some of these cases were covered in the previous
guidelines, but not systematically. The annotation
guidelines were therefore thoroughly revised, to
make the decision about whether a clause is pred-
icative depend more on semantic criteria.

Non-identity anaphora The first objective of
the revision of the bridging reference annotation
for ARRAU 3 was to add information about the
semantic relation for all subcorpora.

Equally importantly, however, we intended to
produce much more explicit guidance. One issue
was highlighted by the CRAC 2018 shared task (Poe-
sio et al., 2018). Following her participation to the
shared task, in which she found that the approach
proposed by Hou et al (Hou et al., 2014, 2018) for
the ISNOTES corpus (Markert et al., 2012) achieved

very poor results on ARRAU (Roesiger, 2018), Ina
Rösiger et al carried out a detailed analysis of the
difference between the annotation of bridging ref-
erences in the two corpora (Roesiger et al., 2018),
concluding that very different notions of ’bridging’
were used. In ISNOTES, only what they called ref-
erential bridging references were annotated, such
as the door in (17)–cases where the anaphoric ex-
pression contains an implicit anaphoric argument
(the door [of the house]). (We think the term ’refer-
ential’ is misleading, so we will call these bridging
references implicitly anaphoric, or IA.) In AR-
RAU, in addition to implicitly anaphoric bridging
references, a second category of referring expres-
sions was also annotated as bridging references,
that Rösiger et al called lexical bridging references.
One example is Dubrovnik in (18): the NP is not
implicitly anaphoric, but it establishes entity coher-
ence with its anchor Croatia through shared knowl-
edge. (We will call this category of bridging refer-
ences coherence-establishing, or CE.) Rösiger et
al disagreed with this broader definition of bridging
reference, but also pointed out that several exam-
ples of both IA and CE bridging references were
not actually annotated in ARRAU 2.

(17) John walked towards the house. [The door]
was open.

(18) Croatis’s tourism industry has been boom-
ing. The number of yearly visitors to
[Dubrovnik] grew to over 2 million by
2019.

Following that discussion, the annotation guide-
lines for bridging were expanded to provide more
explicit information about these types of bridging
references. Explicit instructions were also added
to mark split-antecedent plurals not as bridging ref-
erences, but using the separate multiple antecedent
mechanism offered by MMAX2. Furthermore, ex-
plicit instructions about identity of sense anaphora
weree added. Further instructions were also added
requiring attributes to be marked as bridging (e.g.,
income in Kellogg reported its financial results for
the year yesterday. [Income] grew to ....).

Genericity Another issue observed while run-
ning the shared tasks was that the guidelines for
genericity followed in ARRAU 1 and 2 has resulted
in an excessively syntactic interpretation of scope
in general and genericity in particular. Consider for
instance the contrast between (19) and (20), from
the TRAINS corpus. We consider instructions as
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introducing an implicit modal operator, and our
guidelines therefore required to annotate NPs in
such utterances as operator-instruction. This
is appropriate for both a boxcar from Elmira and
oranges in (19). However, not all such NPs are in
fact in the scope of the implicit modal operator–for
instance, the boxcar from Elmira refers deictically
to an entity in the visual scence (the TRAINS world
map). As a result, we changed the guidelines to
only annotate NPs in utterances containing implicit
or explicit operators when they were actually in the
semantic scope of the operator.

(19) take [a boxcar from Elmira]i and load [it]i
with [oranges]

(20) take [the boxcar from Elmira]i and load
[it]i with [oranges]

Reference in dialogue One issue with the pre-
vious guidelines that emerged in particular from
the annotation for the CODI-CRAC dataset was that
many aspects of reference in dialogue were not
covered, or covered only in part.

The first such issue was the annotation of first
and second person pronouns. Such pronouns
were not annotated in the TRAINS sub-corpora in
ARRAU 1 and 2, based on the belief that they were
all deictic and referring to one or the other speaker,
such as the instance of you in (21).

(21) S: hello how can I help [you]

However, this belief proved incorrect; first and sec-
ond person pronouns are used in a number of other
ways. E.g., in (22) the two instances of you in the
first utterance are most likely interpreted generi-
cally–U is asking about what is possible in the task.
We revised the guidelines providing directions for
distinguishing between the uses.

(22)

U: an [you] do can [you] do things
simultaneously here or do they have to
be done like can I have the same time
having it the engine

Another issue that had not been sufficiently con-
sidered in previous releases was the relation be-
tween a wh-NP like how long in (23) and the answer
to the question, eight hours. Clearly, this is not a
case of coreference. However, even though wh-NP

are annotated as quantifiers in ARRAU, it’s not a
case of bound anaphora either (as in [No student]i
forgot [their]i passport). In the end, we decided
to mark such cases as cases of associative refer-
ences of type element, given that it may be argued

that the wh-NP denotes a set (the set of possible
answers) of which the answer is an element; but
this decision may be reconsidered in the future.

(23)

U : so [how long] will it take if I take
the two boxcars
. . .

S [eight hours]
U eight hours

A new manual A revised version of the annota-
tion guidelines was produced.7 These new guide-
lines were also used for the annotation of the docu-
ments included in the CODI-CRAC dataset used for
the 2021 and 2022 shared tasks.

5.2 Re-Annotation
The revision proceeded in two passes. In the
first pass we checked the more settled aspects
of the annotation: the attributes encoding mor-
phosyntactic information, referentiality (non re-
ferring / referring), identity anaphora, and bridg-
ing references (including e.g., checking split an-
tecedent anaphora). The second pass was devoted
to the more complex forms of annotation, including
in particular genericity, ambiguity, and discourse
deixis. In this second pass, we also reconsidered
the annotation of the dialogue corpora at the light
of the experience with the CODI-CRAC annotation.
In both passes all documents were checked and pos-
sibly corrected; and each document was completely
checked by each annotator.

6 Correcting tokenization and conversion
errors

ARRAU 3 fixes a couple of errors and inconsis-
tencies in the markup in previous versions. If
the corrections resulted in modifications to the un-
derlying text (the basedata in MMAX2 parlance),
existing annotations were adapted such that they
were still valid. Depending on the complexity of
the corrections, they were performed in a fully
or semi-automatic manner (based on scripts using
pyMMAX2 (Müller, 2020)), with manual checks
afterwards.

6.1 Tokenization
Tokenization, i.e. splitting of text into basedata ele-
ments, was improved for all sub-corpora by using
a more fine-grained splitting scheme than the pre-
vious one, which was only sensitive to white space

7https://github.com/arrauproject/data/blob/
main/ARRAU_3_Annotation_Manual_1.0.pdf
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and punctuation. Most notably, basedata is split at
word-internal non-word characters, including hy-
phens. As a result, hyphenated words (e.g. noun
compounds and other hyphenated multi-word ex-
pressions) will be separated into several contiguous
basedata elements, allowing for more fine-grained
annotation. At the same time, tokenization keeps
track of the original input string composition, in-
cluding white space, and stores, for every basedata
element, the number of leading white space char-
acters. This way, the original text appearance can
be reproduced in the the annotation tool MMAX2,
allowing for a better-to-read, more natural and less
distracting rendering of the display.

6.2 PRD Conversion Errors
Some errors were found in the RST portion of the
dataset. The RST portion was originally converted
from the Penn Treebank PRD format. During the
first round of checks, we discovered that this con-
version had introduced a couple of errors. NPs for
numbers which contained commas as separators
(Example (24), from WSJ_0012) were incorrectly
truncated, resulting in only the first number (4 in
the example) to be imported into the ARRAU data.

(24) ...
(NP (NP average circulation)

(PP of
(NP (NP 4,393,237))))

...

Sentence annotations, which are instrumental for
structuring the annotation tool display by adding
sentence-final line breaks, are derived from the
PRDs top-level S-bracketings. In previous versions
of ARRAU, sentence annotations frequently left out
trailing punctuations, causing both sentence-final
markables to be incomplete, and the display to be
incorrect. Yet another class of errors in previous
versions of ARRAU were caused by imperfect cre-
ation of the PRD files from the original raw files, in
cases where the original text contained slashes. Ex-
ample (25), from WSJ_0207, shows the rendering
in the PRD file (which is also used in ARRAU. In
the original file, however, which is also distributed
with ARRAU, the actual text reads "11 1/2 minutes".

(25) ...
(VP lasts
(NP-TMP (QP 11 1) minutes))

...

While none of these issues are critical, correcting

them may also help a future integration in the cor-
pus of other types of annotation available for the
RST subset, in particular discourse structure but
also for instance PropBank information.

7 ARRAU3: Statistics and Availability

Basic Statistics Table 1 compares the three re-
leases of ARRAU in terms of total number of doc-
uments, tokens, and markables. ARRAU3 is only
slightly larger than ARRAU 2 in terms of docu-
ments (DC) (558 vs 552) tokens (TK) (359,500 vs
348,072) and markables (MK) (106,700 vs 99,582).
The number of non-referring expressions and dis-
continuous markables in ARRAU 3 is also similar
to that in ARRAU 2, suggesting that this aspect of
the annotation is by now fairly stable.

Complex forms of anaphoric reference Table
2 shows that the difference between ARRAU 3 and
ARRAU 2 is much more substantial when consid-
ering more complex cases of anaphoric reference.
The figures for discourse deixis (DD) and split-
antecedent plurals (SP) didn’t change much - sug-
gesting again that these annotations are fairly stable.
However, the number of generic markables (GE),
bridging references (BG) and markables identified
as ambiguous (AMB) are much higher.

Formats The corpus is available in the native
MMAX XML format as well as in the Universal
Anaphora format.

Availability Like the previous version, all of AR-
RAU 3 will be available through LDC, whereas
the copyright-free subcorpora (GNOME, PEAR, and
TRAINS-91) will also be available through the Uni-
versal Anaphora repository.

8 Conclusion and Future Work

ARRAU is a long-term project to push forward the
state of the art in anaphoric annotation. During
each phase of the annotation we discovered new
issues that were then corrected in the subsequent
version. So while we think the newest release is
much improved over ARRAU 2, a number of issues
were identified in the last round of annotation, that
we hope to correct in future releases. They include
in particular several issues related to reference in
dialogue (e.g., how to annotate repairs) as well as
more complex forms of discourse deixis.
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ARRAU1 ARRAU2 ARRAU3
DC TK MK DC TK MK DC TK MK

train 335 182031 57686 333 182424 57489
RST dev 18 12845 3986 18 12845 3962

test 60 33225 10341 60 33225 10319
overall 204 146512 45990 413 228901 72013 411 228494 71770

TRAINS 91 16 14496 2884 16 14496 3706
93 98 69158 14115 98 69158 17262
overall 35 25783 5198 114 83654 16999 114 83654 20968

PEAR 20 14059 3881 20 14059 4008 20 14059 4023

GNOME 2 5 21599 6215 5 21458 6562 5 21458 6571
2001 8 11835 3368
overall 5 21599 6215 5 21458 6562 13 33293 9939

Total 264 184,748 60884 552 348,072 99582 558 359,500 106,700

Table 1: Size comparison between ARRAU 3 and previous releases in terms of documents (DC), tokens (TK), and
markables (MK)

ARRAU2 ARRAU3
GE BG DD SP AMB GE BG DD SP AMB

train 753 2797 496 346 68 5149 5398 578 353 430
RST dev 198 277 36 27 0 814 431 49 26 38

test 487 703 99 63 14 907 966 98 69 110
overall 1438 3777 631 436 82 6870 6795 725 448 578

TRAINS 91 98 74 154 48 22 107 176 163 59 168
93 635 636 708 182 99 651 1007 725 257 245
overall 733 710 862 230 121 758 1183 888 316 413

PEAR 74 333 67 30 31 175 346 71 32 63

GNOME 2 12 692 73 43 16 814 737 74 53 78
2001 800 396 9 0 11
overall 12 692 73 43 16 1614 1133 83 53 89

Total 2257 5512 1633 739 250 9417 9457 1767 849 1143

Table 2: Complex types of anaphora in ARRAU 3 and the previous release ARRAU 2. GE=generic, BG=bridging,
DD=discourse deixis, SP=split-antecedent plurals, AMB=ambiguous.
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Abstract

This study introduces an approach for evalu-
ating the importance of signals proposed by
Das and Taboada in discourse parsing. Pre-
vious studies using other signals indicate that
discourse markers (DMs) are not consistently
reliable cues and can act as distractors, com-
plicating relations recognition. The study ex-
plores the effectiveness of alternative signal
types, such as syntactic and genre-related sig-
nals, revealing their efficacy even when not
predominant for specific relations. An exper-
iment incorporating RST signals as features
for a parser error / success prediction model
demonstrates their relevance and provides in-
sights into signal combinations that prevents (or
facilitates) accurate relation recognition. The
observations also identify challenges and poten-
tial confusion posed by specific signals. This
study resulted in producing publicly available
code and data, contributing to an accessible
resources for research on RST signals in dis-
course parsing.

1 Introduction

Discourse parsing has sparked significant interest
in recent NLP applications. This task goes be-
yond the conventional scope of sentences and may
extend to encompass the identification of Coher-
ence Relations (relations between segments of text)
at the discourse level. One of the most popular
formalisms for representing coherence relations
is Rhetorical Structure Theory (RST; Mann and
Thompson, 1988), which has spurred the construc-
tion of various datasets that are now used for hier-
archical discourse parsing. This last task is chal-
lenging and discourse parsers have not achieved the
same level of success as other tasks at the sentence
level. Moreover, analyzing failure cases, especially
in deep learning-oriented parsers, proves difficult.

Concurrently, research on Coherence Relations
has also been struggling with identifying the exact

Figure 1: Flow diagram for the predictive model for
error / success analysis of the DMRST parser. The
predicted labels are SUCCESS for a successful parse
while ERROR is where the parser fails. The features
here are the signals from Das and Taboada’s Signaling
Corpus (Das and Taboada, 2018a). They are encoded in
a binary feature vector.

linguistic elements that signal them. At the dis-
course level, a diverse array of signals may occur,
making it challenging to discern typical signals
for specific relations and their underlying motiva-
tion. This has been addressed in the work of Das
(2014), where the author provides a comprehen-
sive overview of signals present in the RST-DT
dataset (Carlson et al., 2001) and subsequently an-
notate the signals at play for every relation in this
corpus. This process ultimately has resulted in the
development of the RST Signaling corpus (Das and
Taboada, 2018a). See the Appendix for a compre-
hensive list of individual signals and signal types
for all relations in this corpus.

In the present paper, our aim is to assess the
relevance of Das and Taboada‘s signals in RST dis-
course parsing and understand how they contribute
to the errors or success of a state-of-the-art parser.

We first describe an experimental set up where
we replicate Liu et al.’s DMRST discourse parser
(Liu et al., 2021) which achieves state-of-the-art
results for coherence relation recognition and then
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align the results with the RST Signaling corpus. We
then show that although discourse markers (DMs)
are prevalent in various sorts of relations, they are
not necessarily effective signals (see, for example,
the DM when for the TEMPORAL relation in ex-
ample (1)) , unlike other types of signal such as
syntactic signals (for example, the nominal modi-
fier in example (2)) or genre signals.1

(1) “[representing investor clubs from around the

U.S were attending]
pred:background←−−−−−−−−−

gold:temporal
[when the

market started to slide Friday.]” wsj_2686

(2) “[Negotiable, bank-backed business credit in-

struments]
pred:elaboration←−−−−−−−−
gold:elaboration

[typically financing an

import order.]” wsj_0602

Next, we validate the initial analysis by incor-
porating these signals into a model, using them as
features for a predictive model that distinguishes
between errors and successes of the DMRST parser
(see the flow diagram in Figure 1). We first observe
that these signals could serve as relevant features
in the context of Discourse Parsing before delving
into a more detailed analysis of the signals influ-
encing the parser’s predictions of errors or success.

2 Related Work

2.1 Discourse Markers and beyond
In the broader context of literature focusing on text
comprehension and cognitive linguistics, investiga-
tions into the cognitive aspects of coherence rela-
tions reveal that the presence of discourse markers
(DMs), or connectives as they are sometimes re-
ferred to, tends to facilitate the processing of textual
information (Gaddy et al., 2001). This particular
line of research has primarily delved into recog-
nizing and categorizing coherence relations using
DMs. However, a limitation of this approach is its
failure to address relations that seem unmarked due
to the absence of DMs.

While DMs are commonly considered the most
effective indicators for identifying coherence rela-
tions, studies on signaling show that a significant
proportion of relations occurs in text without the
presence of DMs (Das, 2014). Das and Taboada
(2018b) explore the nature of relations traditionally
considered implicit or unmarked. They reveal that

1pred here corresponds to the predicted label by the
DMRST parser presented in section 3.2 and gold corresponds
to the label annotated in the gold RST-DT dataset.

relations exclusively signaled by DMs constitute
only 18.21% of the RST Signaling corpus. This
suggests that the signaling of coherence relations
is more intricate than previously perceived. The
researchers then propose their own taxonomy of
various signals, ultimately contributing to the de-
velopment of the RST Signaling corpus (Das and
Taboada, 2018a), which we use for the experiments
presented in this article.

2.2 Signals and Discourse Parsers
In early studies researching the effectiveness of lin-
guistic elements for Discourse Parsing, several in-
vestigations have explored the importance of DMs
(Pitler et al., 2008). For instance, the DM if in
example (3) is usually considered to make the CON-
DITION relation easy to identify.

(3) “[If I sell now,]
pred:condition−−−−−−−→
gold:condition

[I’ll take a big

loss.]” wsj_2386

The role of DMs has been emphasized, partic-
ularly in the context of shallow discourse parsing
with the Penn Discourse Treebank (PDTB; Prasad
et al., 2008). Previous studies suggest that in a shal-
low parsing context, which is distinct from RST as
it focuses solely on local relations in text and disre-
gards paragraph-level structures, explicit relations
are the most straightforward to recognize. More-
over, there is a widely held consensus that the sole
signals involved in explicit relations are discourse
markers (DMs). Studies, such as the one conducted
by Knaebel (2021), demonstrate the efficacy of neu-
ral shallow parsers utilizing contextualized embed-
dings in identifying relations explicitly marked by
DMs, achieving an F1 score of 62.75% for explicit
and 40.71% for implicit relations on Section 23
of PDTB v2 (Prasad et al., 2014). Additionally,
the best performing system in the relation classifi-
cation task in the shared initiative established by
Zeldes et al. (2021) reported a mean accuracy of
79.32% for explicit relations and 50.86% for im-
plicit relations in the 2023 edition (Braud et al.,
2023).

Although certain corpus linguistics investiga-
tions have examined DMs in the RST dataset (Das
and Taboada, 2018b; Stede and Neumann, 2014),
only the work conducted by Liu et al. (2023) delves
into the particular role of DMs in RST parsing and
begins to question their pervasiveness as effective
signals. After examining both the RST-DT corpus
and the GUM dataset (Zeldes, 2017) which have
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been annotated with DMs and other signals, they
found that, although DMs have a notable impact,
their significance is overshadowed by certain intra-
sentential characteristics when predicting relation
labels. While this confirms the relatively easier
classification of explicit relations, the subsequent
analysis by the authors indicates that explicitness
is not confined exclusively to discourse markers; it
also extends to other intra-sentential elements. This
emphasizes the need for additional research into
textual elements that explicitly signal coherence
relations.

2.3 Predicting Parsing Errors

When it comes to constructing models to under-
stand parsing performance, our reference is pri-
marily Liu et al.’s investigation, which focuses on
the prediction of parsing errors (Liu et al., 2023).
Liu et al. replicate several parsers and given a co-
herence relations and its signals they predict the
number of parsers that make errors. These parsers
serve the purpose of detecting those cases in which
the relation label assignment is likely or potentially
at fault. Following an analysis of the essential fea-
tures in their predictive model for error analysis,
they note the significance of syntactic signals. This
underscores the importance of determining whether
an Elementary Discourse Unit (EDU) holds a typi-
cal intra-sentential role, such as nominal modifier
or adjunct, as such roles are more likely to be pre-
dicted accurately. Additional influential features
include EDU length, with shorter EDUs more likely
to have comparable instances in the training data
compared to longer ones, and genre, as certain gen-
res present greater difficulty in parsing.

3 Experimental Setup

3.1 Datasets

Our current study uses two RST corpora. One is
the RST-DT dataset (Carlson et al., 2001) which
is widely used for English RST parsing and has
been a standard choice for evaluating RST parsers.
Additionally, we here incorporate the RST Signal-
ing corpus by Das and Taboada (2018a), which is
essentially an extension of the original RST-DT
dataset. The signaling dataset contains additional
annotations pertaining to the linguistic elements
that signal coherence relations within the original
RST corpus.

3.1.1 RST Discourse Treebank
The RST-DT is known for its hierarchical tree struc-
tures and was initially annotated with 76 coherence
relations. The relations investigated here come
from the RST-DT test set, which contains a total
of 38 documents. As for the relations labels, we
currently employ the harmonized set of 18 labels
as described by Braud et al. (2017).

3.1.2 RST Signaling Corpus
In the RST Signaling corpus, every single relation
in the RST-DT has been annotated for the linguistic
element(s) that signal the relation. In this corpus,
a total of 50 different signals are identified (Das
and Taboada, 2019). The authors distinguish be-
tween three main classes, viz. single, combined
and unsure. The single signals belong to one of
the following types: DM, reference, lexical, seman-
tic, syntactic, graphic, genre, and numerical. With
combined signals multiple (single) signals co-occur.
”unsure” is used a signal label with those relations
where the annotators were either unsure or were
unable to identify any specific signal .

Regarding Liu et al.’s remarks about difficulties
exploiting data from the RST signaling corpus, it
is important to note that the data indeed offers an
alignment of the annotations with specific tokens.
However, an error in the calculation of token po-
sitions in the annotations scheme was identified
and subsequently rectified. Following the recalcu-
lation of positions, we are now able to align the
RST signals from Das and Taboada 2018a with the
RST-DT test set.2

3.2 DMRST Discourse Parser

The experimental setup first replicates the DMRST
parser developed by Liu et al. (2021). This parser,
based on XLM-RoBERTa-base (Conneau et al.,
2020), is a top-down multilingual system that con-
currently handles EDU segmentation and RST tree
parsing. Its suitability for our purposes lies in its
state-of-the-art performance in relation label predic-
tion. The authors have provided access to a well-
trained model through a readily available model
checkpoint optimized for inference. This partic-
ular model underwent training on a multilingual
collection of RST discourse treebanks, offering na-
tive support for six languages: English, Portuguese,
Spanish, German, Dutch, and Basque.

2The code for aligning RST signals and for the experiments
can be found here: https://github.com/metabolean5/signals-as-
features
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We use this model to predict the labels of the
2306 relations in the RST-DT test set and obtain an
accuracy of 0.67 using the RST-Parseval metrics
(Marcu, 2000).

It is worth noting that, although the parser can
predict tree structure and discourse relations di-
rectly from raw text, our study opts to utilize gold
EDU segmentation. In our experimental configura-
tion, we input both the raw text from the original
RST-DT test set and the segment breaks based on
gold EDU segmentation.

4 Analysis

4.1 Preliminary Analysis of RST Signals

Here, we present an initial analysis of the signal
distribution across the RST-DT test set. While we
previously delved into Das and Taboada’s analysis
in the related works section, we now wish to under-
score additional aspects of their signal annotation
work. Notably, a significant disparity exists among
various types of relations and their corresponding
signals. For example, the ATTRIBUTION relation,
the most successfully recognized relation by the
DMRST parser, has only one relation which is sig-
naled by a DM out of 343 relations. The ELABO-
RATION relation, accounting for 796 instances in
the test set, is signaled by a diverse array of signals
(29 different signals), with only 24 cases attributed
to a DM. Additionally, the SAME-UNIT relation is
exclusively indicated by a singular syntactic signal,
namely the interrupted matrix clause (127 cases).

Nonetheless, DMs continue to serve as the main
signal type for certain relations. In the case of
CONTRAST relations within the RST-DT test set,
a DM is used to signal 112 out of 144 instances.
Additionally, for CONDITION relations, 41 DMs
are used in 48 cases, and for TEMPORAL relations,
47 DMs in 73 cases.

4.2 Signal Analysis of Discourse Parser
Performance

4.2.1 DMs
In this section, we examine the specific perfor-
mance of the DMRST parser for certain relations.
The complete statistics for this section are available
in the Appendix.

In cases where the relation is signaled by a DM,
the DMs prove helpful for some relations: for ex-
ample, 83% of the CONDITION relations signaled
by DMs were correctly predicted. However, they
do not necessarily make the identification easier.

For CONTRAST, 73% of the relations signalled by
DMs are successfully predicted and only 33% for
TEMPORAL.

As for BACKGROUND relations, where DMs are
still predominant but not as overwhelmingly so (53
relations signalled by DMs out of 111 cases), the
parser correctly predicts 53% of them. We also
observe that for the 796 ELABORATION relations,
which the parser usually gets right (79% of them
being successfully predicted), only 50% of rela-
tions indicated by a DM (12 out of 24 cases) are
correctly predicted. The most effective signals here
being syntactic.

We also note here, that 9 of the 12 cases which
were not predicted correctly for this relation were
either JOINT (5) or CONTRAST (4) which are rela-
tions where DMs are widely present. The confu-
sion induced by specific DMs can offer valuable
insights into the nature of distractors, a concern ad-
dressed in Liu et al. (2023). An example is the DM
and which is typical of JOINT relations, and which
might function as a distractor despite its intended
role as a signal for ELABORATION. A similar kind
of confusion arises with the discourse marker when
in example (1), frequently causing the parser to
misclassify temporal relations as background rela-
tions and vice versa. Similarly, we also observe that
the DM but, while predominant in the CONTRAST

relation, is also present with lower frequency in var-
ious other relations such as BACKGROUND, JOINT,
ELABORATION, or CAUSE and causes comparable
confusions.

(4) “[Yet another political scandal is racking

Japan.]
pred:contrast−−−−−−−→
gold:cause

[But this time it’s hurting

opposition as well as ruling-party members.]”
wsj_1189

What emerges from this picture, is that in
cases where DMs are typical of certain relations
(CONDITION and CONTRAST), the model picks up
on these DMs and they do play a role in correct
relation label recognition. However, this is not ob-
served for TEMPORAL relations, where DMs offer
little or no assistance. Then again, TEMPORAL re-
lations are generally hard to predict. Finally, when
it comes to other relations where DMs are involved,
we observe that they are not very reliable as sig-
nals and that they tend to create confusion with
other relations typically signaled by DMs as seen
in examples (1) and (4).
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4.2.2 Other signals
Consistent with Liu et al. prior findings, our utiliza-
tion of the RST signaling dataset demonstrates the
effectiveness of syntactic signals for the majority
of relations successfully predicted by the DMSRT
parser. Similar to observations with DMs, rela-
tions typically signaled by specific syntactic cues
exemplify this pattern. Notably, ATTRIBUTION,
with a parser accuracy of 97%, shows 337 out
of 343 relations indicated by the reported speech
signal. ENABLEMENT follows, where 40 out of
46 relations are signaled by the infinitival clause,
with the parser achieving 85% accuracy. The fi-
nal noteworthy example is SAME-UNIT relations
(127 cases), exclusively signaled by an interrupted
matrix clause, predicted by the parser with 95%
accuracy.

In the case of relations such as JOINT or ELABO-
RATION, which are signaled by a variety of signals,
syntactic ones, while not dominant, contribute to
the parser’s accuracy. For instance, with ELABORA-
TION relations, those signaled by a relative clause
(142 cases out of 796) show a 99% success rate in
parser predictions.

(5) “[he hoped for unanimous support for a resolu-

tion]
pred:elaboration←−−−−−−−−
gold:elaboration

[he plans to offer tomorrow]”

wsj_1189

Similarly, in JOINT relations, 80% of accurately
predicted parallel syntactic constructions (repre-
senting 30 out of 212 relations for this label)
demonstrate a comparable pattern.

This implies that, unlike DMs, syntactic signals
remain reliable even when not predominant. This
is attributable to the specificity of syntactic struc-
tures, which are closely tied to individual relations
and are not as ambiguous as DMs. Of note, we see
that syntactic specificity cannot just be explained
by the fact that syntactic signals, unlike DMs, be-
long to a set of repeated sequences or lexicalized
forms. Though that may be the case for the re-
ported speech signal with verba dicendi (verbs like
‘say’, ’report’, and ’declare’), we can see that even
when the relative pronoun that is dropped in exam-
ple (5), the relation is still systematically correctly
predicted.

In a similar manner, although not prominently
featured in the entire RST-DT signaling corpus, the
genre category stands out as an effective signal for
various types of relationship Notably, 83% of the

relations signaled by this category are accurately
predicted.

5 Predictive Model for Success/Error
Analysis

In this section we aim to provide a deeper insight of
the previous analysis by building an error / success
prediction model. Our goal here is to utilize signals
from Das and Taboada’s Signaling corpus to predict
whether the DMRST parser will encounter an error
or not. This approach enables us to assess the utility
of signals in Discourse Parsing and determine if
the presence or absence of these signals is linked
to errors or successful parsing outcomes.

The implementation of our predictive model for
error/success analysis is based on the XGBoost al-
gorithm (Chen and Guestrin, 2016). This ensemble
gradient boosting approach is renowned for its high
accuracy. It has the capability to capture arbitrary
interactions among features and is well-regularized
to avoid overfitting.

The present experiment consists in training an
XGBoost model to predict the DMRST parsing er-
rors, the predicted label set being {1,0} where 1
is a correctly predicted error or successful parse
and where 0 is where our model fails. The sig-
nals from the Signaling Corpus are encoded in a
binary feature vector. With this configuration we
train XGBoost on the 2306 relations outputs by
the DMRST parser and get an 0.78 accuracy for
a randomly selected 761 relations test set. Figure
2 presents an analysis of feature importance using
classification gain which is often used to estimate
feature importance (Shang et al., 2019).

Table 1 gives an overview of the distribution of
the coherence relations in the test set, while Table
2 presents the distribution of the signal classes and
types. Table 3 details the predicted error/success
rate for specific signal types.

5.1 Observations

The most reliable of single signals overall are syn-
tactic ones (91.6% correct+1), genre (83.3% cor-
rect+1), graphical (82.8%) and DM (59.0% cor-
rect+1). Here we note that (specific) syntactic
signals are used with specific coherence relations:
in the case of ATTRIBUTION we find reported
speech, with ELABORATION we find mostly rela-
tive clauses and nominal modifiers and with SAME

UNIT it is the interrupted clause that is used pre-
dominantly to signal the relation. Genre (inverted
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Figure 2: The relative importance of signals as features.
Feature importance is based on classification gain which
is often used to estimate feature importance (Shang et al.,
2019).

pyramid scheme) is almost exclusively (17/18 cor-
rect+1) used with ELABORATION. Graphical sig-
nals, especially colon and dash are used with ELAB-
ORATION, while graphical - items in sequence are
typically used with JOINT. DMs are effective in
signaling the CONTRAST, JOINT and CONDITION

relations. The most used DMs here are but for
CONTRAST, and for JOINT, and if for CONDITION.
With BACKGROUND, CAUSE and TEMPORAL DMs
perform really poorly.

As for signals that appear effective in predict-
ing errors in relation label assignment, there were
three specifically that stood out. Thus indicative
word was encountered as a signal with a total of 26
cases out of which 15 cases of EVALUATION were
predicted as true error (error+1). lexical chain was
found with a total of 37 cases out of which 20 cases
appear as error+1 (mostly EXPLANATION, CAUSE,
and ELABORATION). Finally, unsure proved to be
a good predictor for error+1. It occurred as a ’sig-
nal’ with a total of 78 cases, 66 (84.6%, Table3)
of which were found to be erroneous which was
correctly predicted by our predictive model. un-
sure occurred most frequently with CAUSE (14/33
cases), EXPLANATION (16/36 cases), and ELABO-
RATION (11/279 cases).

6 Conclusion

We have presented an approach for assessing the
importance of Das and Taboada’s signals within
the context of discourse parsing. Our initial obser-

Relation abs. frq. (N) rel. frq. (%)
attribution 106 13.9
background 36 4.7
cause 33 4.3
comparison 5 0.7
condition 12 1.6
contrast 46 6.0
elaboration 279 36.7
enablement 13 1.7
evaluation 26 3.4
explanation 36 4.7
joint 67 8.8
manner-means 8 1.1
same unit 39 5.1
summary 13 1.7
temporal 26 3.4
textual organization 4 0.5
topic-change 2 0.3
topic-comment 10 1.3
ALL 761 100.0

Table 1: Frequency distribution of coherence relations
in the 761 relations test set.

Sign. class signal type abs. frq. (N) rel. frq. (%)
single DM 144 16.9

reference 8 1.1
lexical 26 3.4

semantic 61 8.0
morph. 8 1.1

syntactic 275 36.1
graphical 58 7.6

genre 24 3.2
numerical 0 0.0

combined sem.+syn. 32 4.2
lex.+syn. 6 0.8

syn.+sem. 11 1.4
syn.+pos. 0 0.0

grap.+syn. 12 1.6
unsure unsure 78 10.2

ALL 761 100.0

Table 2: Signal classes and types in the 761 relations
test set.

vations reveal distinct patterns in the performance
of a discourse parser when graphed for specific
signals, leading to various implications.

Initially, it is noted that DMs are not consistently
reliable signals for all relationships; in fact, they
can be viewed as distractors, causing confusion
between relations signaled by the same DMs. Sub-
sequently, an examination of the effectiveness of
alternative signal types, including syntactic, seman-
tic, and genre-related signals, is conducted. The
findings demonstrate that, despite certain syntactic
signals not being predominant for specific relations,
they still prove to be effective.

Subsequently, we conduct an experiment incor-
porating the modeling of RST signals as features
for an parser error or parser success prediction
model. The results demonstrate the relevance of
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DM 59.0 3.5 3.5 34.0
reference 0.0 25.0 37.5 37.5
lexical 0.0 15.4 84.6 0.0
semantic 11.5 37.7 44.3 6.6
morph. 0.0 0.0 100 0.0
syntactic 91.6 0.4 0.0 8.0
graphical 82.8 1.7 3.4 12.1
genre 83.8 0.0 0.0 16.7
numerical 0.0 0.0 0.0 0.0
ref.+syn. 0.0 50.0 33.3 16.7
sem.+syn. 56.3 0.0 0.0 43.8
lex.+syn. 100.0 0.0 0.0 0.0
syn.+sem. 72.7 0.0 0.0 27.3
syn.+pos. 0.0 0.0 0.0 0.0
grap.+syn. 16.7 33.3 0.0 50.0
unsure 0.0 15.4 84.6 0.0

Table 3: Predicted error/success rate (%) for specific
signal types used to signal coherence relations. Cor-
rect/Error denotes whether the relation label assigned
by the DMRST parser was correct, while 1/0 indicates
whether the Predictive model was able to predict the
accuracy (1=yes, 0=no).

utilizing signals as features, providing valuable in-
sights into the signals (or combination of signals),
that facilitate relation recognition. Moreover, our
observations also shed light on scenarios where
the presence of specific signals might pose chal-
lenges or lead to confusion, making it difficult for
the parser to accurately discern certain relations.

Finally, we plan on sharing both our code and
data, providing a readily accessible resource for
research on RST signals within the context of dis-
course parsing.

7 Limitations

Initially, the examination of imbalances in char-
acteristics constituted a challenge because of the
multilingual composition of the training dataset.
Furthermore, depending on a single model check-
point for experimentation introduces the potential
for errors influenced by coincidental variations in
training. Additionally, we highlight that the corpus
is restricted to newswire data, and exploring data
from different genres is likely to provide additional
insights.

It is also important to mention that in the cur-
rent study, we specifically examined only those
instances of potential signals that were identified
as relevant for labeling coherence relations. This
approach thus excluded what Liu et al. (2023) refer
to as distractors.
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Appendix: Summary of the DMRST parser’s performance for all signals and relations

Relation Signal Type Signal Correct Error Total N
Attribution DM DM 0.00 1.00 1

Syntactic Reported Speech 0.98 0.02 337
Graphical Colon 0.00 1.00 1
Genre Newspaper Style Attr. 0.75 0.25 4

Background DM DM 0.53 0.47 53
Lexical Indicative Word 0.11 0.89 9
Syntactic Past Part. Clause 0.00 1.00 1

Present Part. Clause 0.40 0.60 5
Relative Clause 0.33 0.67 3

Morphological Tense 0.04 0.96 23
Synt.+Positional Present Part. Clause+Beginning 0.50 0.50 2
Unsure Unsure 0.00 1.00 16

Cause DM DM 0.15 0.85 27
Reference Reference 0.00 1.00 1

Comparative Reference 0.00 1.00 1
Lexical Alternative Expression 0.00 1.00 1

Indicative Word 0.00 1.00 3
Semantic Lexical Chain 0.27 0.73 11
Morphological Tense 0.00 1.00 3
Syntactic Infinitival Clause 0.00 1.00 2

Present Part. Clause 0.75 0.25 4
Graphical+Synt. Comma+Present Part. Clause 0.75 0.25 4
Unsure Unsure 0.00 1.00 29

Comparison DM DM 0.36 0.64 11
Reference Reference 0.33 0.67 3

Comparative Reference 0.33 0.67 3
Lexical Indicative Word 0.50 0.50 4
Semantic Lexical Chain 0.14 0.86 7
Syntactic Parallel Synt. Constr. 1.00 0.00 1
Synt.+Semantic Parallel Synt. Constr.+Lex. Chain 1.00 0.00 1
Unsure Unsure 0.25 0.75 4

Condition DM DM 0.83 0.17 41
Unsure Unsure 0.14 0.86 7

Contrast DM DM 0.73 0.27 112
Semantic Lex. Chain 0.25 0.75 12
Syntactic Parallel Synt. Constr. 0.40 0.60 5
Synt.+Semantic Parallel Synt. Constr.+Lex. Chain 0.40 0.60 5
Unsure Unsure 0.05 0.95 20

Elaboration DM DM 0.50 0.50 24
Reference Personal Reference 0.44 0.56 68

Propositional Reference 0.00 1.00 3
Lexical Indicative Word 0.67 0.33 3
Semantic Meronymy 0.80 0.11 18

Repetition 0.75 0.25 61
Synonymy 1.00 0.00 2

Syntactic Nominal Modifier 0.91 0.09 180
Adj Modifier 0.00 1.00 2
Infinitival Clause 0.00 1.00 4
Present Part. Clause 0.62 0.38 8
Relative Clause 0.99 0.01 142

Graphical Colon 0.89 0.11 36
Dash 0.95 0.05 41
Items in Sequence 0.00 1.00 2
Parentheses 1.00 0.00 15

Genre Inverted Pyramid Scheme 0.85 0.15 47
Graphical+Synt. Comma+Present Part. Clause 0.57 0.43 7
Lexical+Synt. Lexical Chain+Subject NP 0.78 0.22 45
Semantic+Synt. General Word+Subject NP 0.50 0.50 2

Meronymy+Subject NP 0.87 0.13 15
Repetition+Subject NP 0.77 0.23 48
Synonymy+Subject NP 1.00 0.00 2

Ref.+Synt. Personal Ref.+Subject NP 0.46 0.54 57
Proposit. Ref.+Subject NP 0.00 1.00 2

Unsure Unsure 0.45 0.55 33
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Relation Signal Type Signal Correct Error Total N
Enablement DM DM 0.00 1.00 1

Syntactic Infinitival Clause 0.85 0.15 40
Unsure Unsure 0.20 0.80 5

Evaluation DM DM 0.25 0.75 8
Lexical Alternative Expression 0.00 1.00 5

Indicative Word 0.10 0.90 50
Graphical Parentheses 0.00 1.00 4
Unsure Unsure 0.15 0.85 13

Explanation DM DM 0.25 0.75 8
Lexical Alternative Expression 0.5 0.5 4

Indicative Word 0.00 1.00 1
Semantic Lexical Chain 0.09 0.91 34
Syntactic Infinitival Clause 0.00 1.00 1
Unsure Unsure 0.18 0.82 44

Joint DM DM 0.83 0.17 76
Lexical Indicative Word 0.38 0.62 8
Semantic Lexical Chain 0.73 0.27 60
Syntactic Parallel Synt. Constr. 0.80 0.20 30
Graphical Items in Sequence 0.98 0.02 41
Synt+Lexical Parallel Synt. Constr.+Lex. Chain 0.85 0.15 20
Unsure Unsure 0.41 0.59 17

Manner-Means DM DM 0.00 1.0 1
Lexical Indicative Word 0.80 0.20 15
Syntactic Present Part. Clause 0.00 1.00 4
Graph.+Synt. Comma+Present Participle Clause 0.00 1.00 2
Lexical+Synt. Indicative Word+Part. Clause 0.86 0.14 14
Unsure Unsure 0.00 1.00 7

Same-Unit Syntactic Interrupted Matrix Clause 0.95 0.05 127
Summary DM DM 0.00 1.00 1

Semantic Lexical Chain 0.00 1.00 1
Repetition 0.00 1.00 2

Graphical Parentheses 0.67 0.33 15
Colon 0.00 1.00 2
Dash 0.00 1.00 1

Genre Inverted Pyramid Scheme 0.00 1.00 3
Lexical+Synt. Lexical Chain+Subject NP 0.00 1.00 1
Semantic+Synt. Repetition+Subject NP 0.00 1.00 1
Unsure Unsure 0.00 1.00 7

Temporal DM DM 0.30 0.70 47
Lexical Indicative Word 0.75 0.25 4
Semantic Indicative Word Pair 1.00 0.00 1

Lexical Chain 0.20 0.80 5
Morphological Tense 0.00 1.00 2
Syntactic Relative Clause 0.25 0.75 4
Unsure Unsure 0.18 0.82 11

Textual Org. Genre Newspaper Layout 0.78 0.22 9
Topic-Change DM DM 0.00 1.00 3

Genre Newspaper Layout 0.80 0.20 5
Unsure Unsure 0.00 1.00 5

Topic-Comment DM DM 0.00 1.00 3
Lexical Alternative expression 0.00 1.00 1

Indicative word 0.00 0.00 1
Semantic Lexical chain 0.00 1.00 4
Unsure Unsure 0.00 1.00 15
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Abstract

Recent language models have significantly
boosted conversational AI by enabling fast and
cost-effective response generation in dialogue
systems. However, dialogue systems based on
neural generative approaches often lack truth-
fulness, reliability, and the ability to analyze
the dialogue flow needed for smooth and con-
sistent conversations with users. To address
these issues, we introduce GroundHog, a modi-
fied BART architecture, to capture long multi-
grained inputs gathered from various factual
and linguistic sources, such as Abstract Mean-
ing Representation, discourse relations, senti-
ment, and grounding information. For experi-
ments, we present an automatically collected
dataset from Reddit that includes multi-party
conversations devoted to movies and TV series.
The evaluation encompasses both automatic
evaluation metrics and human evaluation. The
obtained results demonstrate that using several
linguistic inputs has the potential to enhance di-
alogue consistency, meaningfulness, and over-
all generation quality, even for automatically
annotated data. We also provide an analysis
that highlights the importance of individual lin-
guistic features in interpreting the observed en-
hancements.

1 Introduction

Text generation methods, particularly for conversa-
tional systems, have become increasingly popular
in recent years. The conversational systems play a
crucial role in enhancing the effectiveness of user-
agent interactions (Young et al., 2018; Gu et al.,
2019; Le et al., 2019). Dialogue systems are used
for human-machine conversations on various top-
ics. Some systems are built as question-answering
systems or personal assistants, focusing on specific
domains or general inquiries.

Despite showing impressive response genera-
tion capabilities, language models, even ones like
GPT-4, have shortcomings in terms of truthfulness

(OpenAI, 2023). Consequently, researchers are ex-
ploring methods to combine generative and extrac-
tive approaches in order to make the responses of di-
alogue systems more logical and reliable. Here, the
primary objective is to incorporate external knowl-
edge, resources, or databases into the response gen-
eration process. The previous studies have demon-
strated a substantial enhancement in the quality of
generation by incorporating grounding, which im-
proves the factual accuracy of the responses (Feng
et al., 2020). Grounding input is commonly inte-
grated into dialogue generation models along with
the context of a particular utterance (Zhao et al.,
2020) or a preceding part of the dialogue that rep-
resents the conversational history (Rashkin et al.,
2021).

Furthermore, previous works have explored
leveraging grounding in combination with other
features, including commonsense and named en-
tities (Varshney et al., 2022; Wu et al., 2022),
dialogue acts (Hedayatnia et al., 2020), topic
shifts (Wu and Zhou, 2021), discourse annota-
tion (Khalid et al., 2020), to improve dialogue gen-
eration. Despite the fact that additional linguistic
features are frequently used to improve the con-
sistency of generated dialogues (Ji et al., 2016;
Harrison et al., 2019), previous studies focused
on individual and superficial examination of lin-
guistic features. In our research, we conducted a
more comprehensive analysis, evaluating the rel-
ative significance of each of them and the overall
contribution.

We primarily investigate the impact of various
linguistic features on response generation in a
multi-grained input framework. Specifically, we
analyze the effects of semantic relations derived
from Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013), dialogue acts extracted from
dialogue discourse trees (Stone et al., 2013; Zhang
et al., 2017), and utterance-based sentiment repre-
sentation.
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Experiments on response generation are gen-
erally conducted using open-source sequence-to-
sequence models (Raffel et al., 2020; Rashkin et al.,
2021). Among these models, the BART architec-
ture (Lewis et al., 2020) has gained significant pop-
ularity due to its state-of-the-art performance in
various text generation tasks. Due to its efficiency
in processing linearized inputs, it is often utilized in
graph2text tasks (Ribeiro et al., 2020). Moreover,
this capability can be further extended to analyze
conversation graphs. However, the length of input
texts can often present challenges for Transformer-
based models. In this study, we introduce Ground-
Hog, an approach that uses multiple input encoders
to preserve input information effectively.

Our contributions can be summarized as follows:

• We present a novel dataset consisting of open-
domain conversations for dialogue system
training. This dataset is augmented with lin-
guistic features and grounding, enhancing its
potential for training high-quality models.

• We propose the use of grounding and linguis-
tic features for response generation in dia-
logue systems. An ablation study is conducted
to analyze their individual contributions.

• A modification to the BART architecture is
suggested to effectively capture long multi-
grained inputs.

• We perform an analysis to interpret the im-
provements and discuss our findings.

2 Dataset

The most popular datasets, including open-domain
conversations grounded in Wikipedia information,
are Wizard of Wikipedia (Dinan et al., 2018) and
CMU DoG (Zhou et al., 2018). To narrow the scope
of this study and facilitate the language model train-
ing, CMU DoG was used as a starting point. This
dataset contains 4112 grounded conversations de-
voted to the discussion of Wikipedia articles about
popular movies. To extend the dataset, we collected
Reddit1 conversations on the same topic in English.
Specifically, we parsed conversations from the 25
most popular subreddits related to films, series, and
TV shows. These subreddits provided discussions
that were tied to specific topics or comments. Ad-
ditionally, we gathered comments that mentioned
key phrases such as “movie” and “film”.

1https://www.reddit.com/

Figure 1: Distribution of dialogue lengths in collected
dataset

The dataset preprocessing stage involved remov-
ing images, extra symbols, and emojis, as these
were not considered in our research. In total, our
collected dataset consists of approximately 62,500
multi-party dialogues, with an average of 5 turns
per conversation (see Figure1). The length of ex-
tracted Reddit conversations is significantly shorter
compared to CMU DoG dialogues, which have an
average of 21.43 turns per conversation.

The dataset contains conversations collected
along with linguistic annotations, grounding, and
meta information related to each extracted dialogue.
Specifically, automatically retrieved linguistic fea-
tures for each turn in the dataset are presented in
the following format:

• discourse annotation is represented as identi-
fiers of connected turns with a discourse class
describing the relation between them;

• sentiment class of a turn, accompanied by its
probability;

• AMR graph is provided in simplified form for
each turn.

The process of annotating data is described in
detail in Section 3.1. Our final dataset is publicly
available at the link: https://huggingface.co/
datasets/alexchern5757/groundhog_reddit.

It should be emphasized that all datasets contain-
ing open-domain dialogues share the same limita-
tions related to grounding. Casual conversations
are distinguished by the absence of rigid topic
boundaries, stylistic ambiguity, and a strong re-
liance on context. Evaluative information in these
dialogues is often presented as facts, which can
result in inaccurate grounding extraction.
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3 Methods

3.1 Dialogue Features
In order to generate coherent and truthful responses,
we incorporate grounding and several linguistic
features that describe the current dialogue state as
model inputs.

Discourse Discourse can be represented in var-
ious ways, with one of the most widely used ap-
proaches being Rhetorical Structure Theory (RST)
for plain texts (Mann and Thompson, 1988). RST
employs elementary discourse units to analyze the
structure of the text, whereas in dialogue analysis,
trees are constructed over utterances. Dialogue dis-
course graphs, as introduced by Stone et al. (2013),
extend the concept of standard dialogue graphs by
including discourse labels for each utterance indi-
cating the specific function or pragmatic purpose
of the utterance (e.g., Disagreement, Appreciation,
Question). An example is provided in Appendix A.

The application of discourse annotation, com-
bined with grounding techniques, has demonstrated
the potential for generating media dialogues that
are more consistent and truthful (Majumder et al.,
2020; Chernyavskiy and Ilvovsky, 2023). This in-
tegration of linguistic features and grounding meth-
ods has shown promise in enhancing the quality of
such tasks.

In order to achieve automatic discourse annota-
tion, we implemented and trained the parser model
suggested by Shi and Huang (2019). The train-
ing process was started from scratch and utilized
the Coarse Discourse Sequence Corpus (CDSC)
(Zhang et al., 2017), which is the largest manu-
ally annotated dataset of discourse acts in online
discussions.

Abstract Meaning Representation (AMR) Ab-
stract Meaning Representation is based on directed
acyclic graphs and provides a structured seman-
tic representation of language, including semantic
role annotations consisting of arguments and val-
ues (Banarescu et al., 2013). Given that incorporat-
ing AMR graphs enhances task-oriented dialogue
generation (Yang et al., 2023) and the promising
prospects of integrating AMR with pragmatic in-
tents (Bonial et al., 2020), we use these graphs
as one of the linguistically motivated inputs in the
experiments.

In our dataset, an AMR graph was generated for
each sentence within an utterance, and then these
subgraphs were combined into a single graph. To

reduce the complexity of the representation, we
truncated vertices at a depth beyond a specified
constant. A more detailed description of the AMR
graphs is provided in Appendix A. We adopt a sim-
ilar method to linearize AMR graphs, as proposed
by Ribeiro et al. (2020).

Sentiment The sentiment labels assigned to each
utterance in the dataset indicate the polarity of the
sentiment expressed, using a 3-point scale: Posi-
tive, Negative, or Neutral. The RoBERTa model,
which was trained on tweets, was utilized for the
corresponding labeling task (Barbieri et al., 2020).
To incorporate information about sentiment, special
tokens were integrated into linearized representa-
tions of the dialogues.

Grounding Grounding is an important aspect of
model input as it serves to mitigate the issues as-
sociated with hallucinations in language models.
Generally, when the utterance does not pertain to
an opinion, the main fact can be derived from the
provided grounding.

There are several approaches to fact-control re-
alization for overcoming hallucinations within a
dialogue system. One of them is the use of ex-
ternal memory, which was proposed in RETRO
(Borgeaud et al., 2022) and KELM (Lu et al., 2021)
models when the relevant parts of the training texts
are passed to the cross-attention mechanism at the
stage of next response generation. An alternative
method is to extract grounding text from exter-
nal databases, for instance, by using web mining
like in the Sparrow (Glaese et al., 2022) approach.
LaMDA (Thoppilan et al., 2022) proposes an ap-
proach combining structured factual grounding
from an external knowledge base (Google Search
API) and dialogue context both in the training and
inference stages.

In this paper, we focus on the Sparrow approach
and explore the importance of using grounding for
generating consistent open-domain dialogues. We
use the MediaWiki API2 to conduct searches for
two types of queries: movie titles and entire Red-
dit thread titles. A restriction was imposed to re-
trieve a maximum of five documents for each query.
Subsequently, a summarized version of these doc-
uments was created, consisting of five sentences.
These summaries were then combined into a single
grounding text.

2https://github.com/goldsmith/Wikipedia
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1.  <Positive> just saw Love and
Thunder for the first time this weekend...

3.<Negative>
It's annoying to

watch a movie ...

2. <Negative>
Everyone seems to
hate it because it

took the silliness ...

4. <Neutral>  Good thing we are all
entitled to our own opinions, I guess.... 

1 2 3 4
R24R12

R13

Time

Speaker 1
(<s1>)

Speaker 2
(<s2>)

Speaker 3
(<s3>)

<s1> <u1> <to:u1> <init> <Positive> I just
saw Love and Thunder... </s> <s2> <u2>
<to:u1> <answer> <Negative> Everyone
seems to hate it... </s> <s3> <u3> <to:u1>
<answer> <Negative> It's annoying to watch
a movie with so many jokes crammed in...
</s> <s2> <u4> <to:u3> <appreciation>
<Neutral> Good thing we are all entitled to
our own opinions...

Answer

Appreciation

Answer

Figure 2: Example of the discursively annotated conversation linearization process. Firstly, all nodes are ordered
temporally, forming a chain. Then, it is transformed into text representation using special tokens to display meta
information: ⟨ui⟩ are used for utterance ids; ⟨si⟩ are tokens for speaker ids (are signified by colors); ⟨to:ui⟩ are
used for addressees; and ⟨Rij⟩ are used for relations. Additionally, an ⟨init⟩ token is introduced due to the fact that
the first replica does not have an addressee.

3.2 Dialogue Linearization

The linearization of dialogue graphs plays a crucial
role in our approach. Hoyle et al. (2021) demon-
strated that Transformers exhibit invariance to the
specific method employed for linearization. There-
fore, we employ discourse and AMR graphs for
dialogue modeling, followed by a thoughtful lin-
earization process.

Our linearization procedure is implemented in
the following way. Firstly, all utterances are ar-
ranged in chronological order to establish a linear
sequence. Secondly, each utterance is linearized
independently, taking into account its own char-
acteristics as well as the attributes of the connect-
ing edge to its addressee. To achieve this, each
utterance is assigned a unique identifier, the cur-
rent speaker is indicated, and the addressee state-
ment to which the utterance responds is speci-
fied. Thirdly, the appropriate response strategy
is determined, as indicated by a discourse rela-
tion and sentiment tokens. Finally, the text of
the subsequent utterance is incorporated. We
utilize special tokens to identify speakers, utter-
ances, and addressees, namely {⟨si⟩}, {⟨ui⟩} and
{⟨to:ui⟩} respectively. As an example, a linearized
i-th utterance written by the j-th speaker in re-
sponse to the k-th utterance has the following form:
“⟨sj⟩ ⟨ui⟩ ⟨to:uk⟩ ⟨relation⟩ ⟨sentim.⟩ text”.

We employ a separation token to combine indi-
vidual utterances and create a full representation of
the dialogue state. Figure 2 provides an example of
the conversation linearization procedure. By elimi-
nating all text and sentiment tokens, the linearized
representation can be conveniently converted into
a raw linear discourse representation.

3.3 GroundHog Model

We suggest the GroundHog model as an effective
neural approach for encoding diverse types of input
information. It incorporates multiple Transformer-
based encoders to capture multiple levels of granu-
larity in the input data. Unlike previous approaches
such as Longformers (Beltagy et al., 2020), our
focus is on the attention mechanism within each
input rather than utilizing global attention. In ad-
dition, we reduce the size of the attention matrices
compared to Longformers.

The architecture is based on the customized
BART, as illustrated in Figure 3. Our approach
involves the utilization of multiple texts as input,
on which it does not formally impose restrictions.
The first input text should contain the primary in-
formation, whereas the others should provide sup-
plementary information. In our case, the inputs
are the following: (1) a dialogue history that has
been enriched with discourse and sentiment tokens;
(2) a raw, linearized representation of a discourse
dialogue graph; and (3) an addressee’s utterance
and a part of its AMR graph.

Each input is first processed through a common
tokenizer and then encoded separately using its
own BART encoder. In order to create a more
universal approach, embeddings from all inputs
could be aggregated through convolution. However,
this would substantially change the standard input
format of the pre-trained BART decoder, making
the training process more challenging without a
large dataset for additional pre-training. Therefore,
we divide the inputs into two categories: the main
text and the supplementary texts.

The model does not modify the embedding of
the main text before the decoder, and it retains the
attention mask for this text. The other inputs are
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Text 1

Text 2

Text k

Input 1

Input 2

Input k

BART
Encoder 1
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Encoder 2
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Encoder k
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len_k

Concat Conv1D

BART
DecoderLM HeadTarget

Tokenizer
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sum_lens = 
 len_2 + ... + len_k

Labels (in training)Loss
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Shared
Embedding 
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Attention
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Main

Supplementary

Supplementary
encoders
 raw out

(bs x sum_lens x
emb_dim)

Encoder output
(bs x [len_1 +

enc_out] x
emb_dim)

Encoder output
(bs x [len_1 +

enc_out] x
emb_dim])

Figure 3: GroundHog architecture. The GroundHog architecture comprises individual BART encoders for each
input text, which are subsequently aggregated and used as input for the BART decoder. To reduce the dimensionality
of the inputs, a 1D convolutional layer is applied to all inputs except the main input. The shared embedding layer is
denoted by the gear icon. In addition, intermediate tensor dimensions are indicated (batchsize is denoted as bs).

combined using concatenation and a convolutional
layer. However, this approach may introduce some
disruption to the token order, and consequently, the
attention masks from the encoder for these inputs
are not utilized in the decoder input. In this re-
search, we conducted experiments using different
aggregation methods and determined that the one-
dimensional convolutional layer yielded the most
favorable results.

As in the base model, the language modeling
head is utilized after the decoder. We use the same
tokenizers and shared embedding layer for all en-
coders and the decoder. As is common in language
modeling decoder-based approaches, we employ a
standard cross-entropy loss.

4 Experiments

4.1 Implementation Details

We fine-tuned the base-sized BART (139M param-
eters) model and the GroundHog models based on
it. We used various lengths for different inputs but
the maximum was 1024 tokens. The models were
trained on batches of size 2, with a learning rate of
2e-5, for 5 epochs. For all other hyper-parameters,
we used the default values.

All parsers and datasets used have the open
source MIT license.

Each model was trained on the GPU Tesla V100
32G for approximately 10 hours.

4.2 Automatic Evaluation
In order to conduct a more comprehensive analysis
of the generation of complex responses, we divided
the dataset into two subsets: dialogues with long
last responses (consisting of at least two sentences)
and dialogues with short responses.

We conducted experiments using both the BART
and GroundHog models for the several configura-
tions of the dataset used for fine-tuning:

• In B, we fine-tuned the base BART model us-
ing the concatenation of the dialogue history,
thread title, and grounding as the input.

• In G1, we trained the GroundHog model using
the concatenation of the dialogue histories and
thread titles.

• In G2, we extended input from G1 by adding
grounding.

• In G3, we enriched the dialogue history from
G2 by discourse linguistic tokens.

• In G4, we added separate linguistic inputs as-
sociated with AMR: (1) AMR for the full dia-
logue history (concatenated representations of
single utterances); (2) AMR for the addressee.

• In G5, we extended the input from G4 by
adding sentiment tokens.

In all cases where grounding was utilized, it was
concatenated with the main text input. This was
necessary to ensure that the attention mechanism
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Model Setting ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2
BART B [history; title; grounding] 17.71 3.69 15.95 17.2 2.86

GroundHog G1 [history; title] 17.79 3.71 16.05 16.99 2.88
G2 [+grounding] 17.86 3.85 16.08 17.32 3.00
G3 [+discourse] 17.88 3.87 16.09 17.15 3.04
G4 [+AMR] 17.88 3.80 16.17 17.26 2.94
G5 [+sentiment] 17.91 3.93 16.19 17.25 3.09

Table 1: Model performance on the test set (long responses) for different model input settings. Bi and Gi are
related to the BART and GroundHog models trained using different combinations of inputs. Here, the standard
deviation is less than 0.007 in all cases.

Model Setting ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2
BART B [history; title; grounding] 9.86 2.10 8.98 9.18 1.65

GroundHog G1 [history; title] 9.66 1.88 8.77 8.90 1.40
G2 [+grounding] 9.85 2.16 8.98 9.20 1.70
G3 [+discourse] 10.11 2.37 9.21 9.46 1.90
G4 [+AMR] 9.82 2.06 8.93 9.12 1.56
G5 [+sentiment] 10.23 2.47 9.32 9.52 1.98

Table 2: Model performance on the test set (short responses) for different model input settings.

adequately considered the specific components of
grounding. Simultaneously, grounding was treated
as a distinct input due to its voluminous nature,
which may necessitate its truncation.

For automatic evaluation of generated responses,
we calculated the ROUGE-based3 (Lin, 2004) and
BLEU-based4 (Papineni et al., 2002) scores using
target texts cleared of special tokens (raw texts).
The obtained scores (mean F1 over three runs) are
presented in Table 1 for the long texts.

The GroundHog model (G2) exhibited superior
performance compared to BART across all metrics
when provided with the same inputs. This suggests
that longer inputs are more effectively processed
when handled separately. However, it is important
to note that one limitation of the GroundHog model
is that its decoder requires substantial amounts of
training data to learn effectively from scratch. With
sufficient pretraning, these results can be improved.
Also, triggered by this limitation, we conducted
a grid search and determined that setting the em-
bedding size after the 1D convolutional layer in
GroundHog to 256 would prevent an unnecessary
increase in the decoder’s hidden state.

The results demonstrate that grounding has a
positive impact on the ROUGE and BLEU scores.
This can be attributed to the fact that the gener-
ated responses exhibit a higher level of accuracy
in terms of factual information. However, the ob-

3https://pypi.org/project/rouge/
4https://www.nltk.org/_modules/nltk/translate/

bleu_score.html

served difference is not statistically significant. It
can be attributed to the subjective nature of most of
the generated responses, which often involve per-
sonal evaluations. Additionally, the quality of the
extracted grounding is not optimal, as it is extracted
based on the full dialogues.

It was observed that the inclusion of linguistic
features in the model led to improved performance
compared to a model trained without these features.
Specifically, the model that utilized all linguistic
inputs (G5) achieved the highest scores. The incre-
mental addition of linguistic features resulted in a
monotonic improvement in the ROUGE-L metric
as well as an overall improvement in other scores.

Furthermore, the experiments indicated that the
use of AMR may not be as promising as dialogue
acts or sentiment. This finding can be attributed to
the complexity of the AMR structure.

Results for the short target responses are pre-
sented in Table 2. The overall conclusions drawn
from the analysis are consistent with the find-
ings discussed earlier, with the exception of the
monotonous growth of metrics. However, a note-
worthy observation is that even for short responses,
the GroundHog model exhibits superior perfor-
mance compared to the base BART model.

4.3 Human Evaluation
A human evaluation was conducted to enhance the
assessment process and account for aspects that
cannot be evaluated using automated metrics. The
main objective of this evaluation was to compare
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article is missing the larger trend: the
living generation is processing

through our art the trauma that was
served on us by the recently dead

generation.[...] Artists process their
trauma through their art.

important point, but I do
have to say this is not a
trend in the slightest. Its

art/human history

Not even a "progressive" one, as one might think but the fact that this post
is about parents is a big thing. We are a generation that was created by the

parents of those who produced that film by all means (or by our own
generation\'s) for no good reason.

I feel like if it was a more real phenomenon, no one would be suggesting
that the main offender of all trauma is the artist.

BART

GroundHog
(AMR-based)

a lesser extent I felt Crimes
of the Future had a bit of
controversy around it,

though I’ll note that I’m not
sure I completely

understand what you’re
looking for.[...]

of the Future" is one of the better
movies this year, but I don\'t think
enough people saw it for it to be
"controversial". Also, aside from
Cronenberg\'s recurring love of
"shock value", the underlying

message wasn\'t all that extreme.

<question>
are some

examples of
films with
extreme

underlying
messages?

The only issue is the main premise is to have the future be a happy
one where everything becomes a family of people. If they didn't make

it with POC characters the audience would have never seen it. [...]

BART
(elaboration)

Yeah theyre all quite controversial[...] Im also pretty willing to
recommend "Scorsese as a classic (as itd do if he came out with it),
The Girl Who Would Live is somewhat less controversial than that. It
also has a bit of a strong bad guy theme. So, that brings it closer to

being one of the most radical horror movies of last year. 

GroundHog
(agreement/

answer)
+AMR

Never thought I’d see the
day. Not even a month ago

I was certain that a full
reboot would not happen
and we’d be stuck in this
directionless post-Snyder

DCEU limbo. 

Well we can
certainly blame

him for his
movies

Sure, you can say
you didn't like his
movies, whatever,
but saying that he
was directionless
makes no sense.

This is the same guy that
killed Superman off before

a Justice League movie
and had Batman vs

Superman in Batman’s first
appearance. I’d say he

was directionless

____________________________NEGATIVE_________________________________

Exactly. And Batman in a solo film might have been
the smartest Batman action movie he could've

made

No, I disagree. You can say he was directionless
without giving any concrete evidence that he was

doing so

BART
(positive)

GroundHog
(negative)

(a)

(b)

(c)

Figure 4: Examples of response generation by the base BART model and the GroundHog model fine-tuned with
linguistic inputs. Each color represents a different speaker. The task was to generate text in the last utterance.

the texts generated by the BART model (B) with
those of the GroundHog model employing linguis-
tic features (G5). Experts were tasked with deter-
mining the preferable option for continuing the con-
versation, or whether the alternatives were equal.
Also, each option was evaluated on a 3-point scale
based on coherence (utterance-based), meaningful-
ness, and consistency (dialogue-based) criteria.

Dialogue consistency assessed the connection
between the current utterance and the addressee,
as well as the overall logical progression of the
dialogue. Meaningfulness assessed the semantic
load of the utterance within its general context.
Utterance-based coherence was assessed by evalu-
ating the internal coherence of the utterance.

To ensure reliability in the evaluation process,
the three scales were rated on a scale ranging from
0 to 2 (0 for poor prediction, 2 for good prediction).
To minimize any potential bias, the options for
rating were presented in a random order.

Table 3 presents the evaluation results obtained
from 250 randomly selected dialogues from the
test dataset. The linguistic approach, as observed,
generates responses that are preferred in a larger
number of cases. Additionally, these responses are
more coherent, suitable for continuing the conver-
sation, and formulated with better semantic appro-
priateness. While the overall improvement is not
sizeable, there is notable progress in the generation
of consistent conversations.

# better Coherence Meaning. Consist.
B 79 1.48 1.27 1.38
G5 101 1.53 1.38 1.40

Table 3: Human evaluation results on the random test
subset of 250 dialogues.

5 Discussion

In this section, our major objective is to gain a
deeper understanding of the linguistic features that
contribute to the improved quality of GroundHog.
To this end, we conduct a comparative analysis
of the texts generated by BART (B) and the texts
generated by GroundHog (G5).

Regarding the interpretation of grounding, its
incorporation enhances the factual component of
generation. However, the qualitative aspects of
grounding in our dataset are not very robust, and it
can be a direction for further research.

Sentiment We started our investigation with the
analysis of sentiment due to its ease of interpre-
tation. To assess the sentiment in the generated
texts, we utilized the same classifier that was ap-
plied to the training dataset. The results yielded
an overall accuracy of 0.43 for the BART model
and 0.44 for the GroundHog model, with no size-
able difference observed. It is worth noting that
the majority of texts in the dataset were negative or
neutral, as users generally tend to criticize films or
actors. Specifically, there were 1525 negative utter-
ances, 1374 neutral utterances, and 841 positive ut-
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Model answer elaboration agreement other disagreement appreciation question negative humor
B 1491 1231 446 211 158 107 80 15 1
G5 1508 1174 454 223 159 101 97 22 2

Table 4: Statistics of dialogue acts in texts generated by the base BART and GroundHog models.

terances within the test dataset. Consequently, the
focus should be shifted to generating more accurate
negative responses. In terms of these responses, the
base BART model achieved an F1-macro score of
0.461, while the GroundHog model achieved an
F1-macro score of 0.487. This improvement is
particularly noteworthy as it leads to an overall
enhancement in language modeling.

Figure 4 (a) presents an illustrative MPC exam-
ple. It is observed that all input utterances within
the dialogue are negative in nature. Consequently,
the subsequent utterance should also embody a neg-
ative sentiment, either by aligning with the general
criticism of the film director or by critiquing the
statements expressed by other participants. In this
context, it can be inferred that GroundHog has pro-
duced an appropriate response. Conversely, the
response generated by the base BART model is
positive in sentiment and considered inappropriate.

Discourse Dialogue acts contribute to dialogue-
based consistency and, to some extent, utterance-
based coherence. Since existing models do not ex-
plicitly generate dialogue acts, we utilized a trained
discourse parser to label these acts for compari-
son with the original responses. The GroundHog
model had a higher accuracy score of 0.551 com-
pared to 0.538 for the base model. The confusion
matrices showed similar patterns, but there was a
slight difference in the distribution of dialogue acts
(see Table 4). Specifically, the base model exhib-
ited a higher frequency of “Elaboration”, while the
GroundHog model generated less common rela-
tions such as “Question” and “Agreement”. This
indicates that the linguistic model’s responses are
more diverse without compromising their quality.

In the conversation depicted in Figure 4 (b), it
can be observed that the custom model response
exhibits better consistency. The most correct target
response should include the Answer or Agreement
relations rather than Elaboration. Unlike the BART
model, which lacks information about the previous
response being a question, the GroundHog model
incorporates this knowledge in order to generate a
response that is discursively consistent. Moreover,
GroundHog aims to incorporate the main AMR

entities, such as the concept of “controversial.”

AMR Interpreting the impact of AMR represen-
tations is challenging due to their inherent com-
plexity. Generally, AMR has a direct influence
on the semantic aspect, specifically the representa-
tion of entities and their relations. In this regard,
human evaluation has shown that the scores for
the criterion of “meaningfulness” are higher for
GroundHog texts compared to BART texts.

Figure 4 (c) provides a concrete example il-
lustrating a discussion where each participant ex-
presses their opinion about some statement. Here,
both generative models produced thematically cor-
rect answers. However, the GroundHog model used
more appropriate words, resulting in a response that
was more consistent with the dialogue history. We
hypothesize that this can be attributed primarily to
the AMR input. For the first utterance, the AMR
representation is as follows:

( miss :ARG0 ( article ) :ARG1 ( trend :ARG1
( and ) :ARG1-of ( have-degree ) ) ) ... ( process
:ARG0 ( artist ) :ARG1 ( trauma :poss a ) :instru-
ment ( art :poss a ) )

Therefore, the main entities are “article”,
“trend”, “artists”, “trauma”, and “art”. The
GroundHog model primarily relies on these words,
whereas BART’s response is primarily influenced
by the word “generation”. However, the frequent
occurrence of “generation” does not capture the
underlying meaning of the text.

General View We have determined that linguis-
tic features individually demonstrate utility and
yield interpretive results. There is also the potential
for uncovering valuable hidden insights through
their combination. Nevertheless, our research rep-
resents a step towards achieving a coherent and
meaningful generation.

It is worth considering that linguistic features
can also be manually specified when the current
context is insufficient for parsers to accurately per-
form their tasks. Such manual specifications can
facilitate dialogue management.
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6 Conclusion and Future Work

In this paper, we investigated the efficacy of incor-
porating grounding and multi-grained linguistic in-
formation for multi-party conversation generation.
To address the challenge of handling lengthy input
texts, we proposed the GroundHog model, which
leverages both grounding and linguistic features.

For evaluation, we collected a novel Reddit-
based dataset designed for training dialogue sys-
tems. This dataset was augmented with linguistic
features, including semantic and discourse informa-
tion, as well as sentiment. Experiments involving
both automatic metrics and human evaluation have
shown that generated texts using linguistic inputs
were more preferable. In our supplementary analy-
sis, we interpreted the obtained results.

Further research directions include the investiga-
tion of other linguistic inputs as well as other rep-
resentations of inputs. Also, we plan to experiment
with the recent LLMs to analyze their possibilities
of leveraging linguistic features.

Limitations

Our approach is not constrained by language and
has the potential for universal application. At the
same time, we introduce a novel Transformer ar-
chitecture that ideally requires pre-training on a
large dataset. Furthermore, the effectiveness of the
methodology is constrained by the accuracy and
reliability of the parsers used to extract linguistic
features, as well as the performance of the ground-
ing extraction model.

Ethics and Broader Impact

The use of large Transformer models for training
has been linked to contributing to climate change.
However, it is important to highlight that our re-
search did not involve training these models from
scratch. Instead, we conducted a fine-tuning pro-
cess on pre-existing models.

As is the case with any generative model, it is not
possible to ensure flawless quality in the generated
output. At the same time, we do not make our
model publicly available. We mitigate the risks
associated with generation by filtering the dataset
and making business logic modifications.

The presented dataset was collected from Red-
dit for the purpose of scientific research and sub-
sequent analysis. It may exhibit certain inherent
biases due to its specific origin, and we suggest
using it for scientific purposes only.
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Dialogue Acts Figure 5 illustrates an example of
a multi-party conversation that has been annotated
with dialogue acts. In this figure, each node in the
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You can’t leave any remnants of that universe but I
feel horrible for Henry, he was fantastic.

Truncate at depth = 2

(1)

(2)

(3)

Figure 6: AMR representation for a single utterance
and its truncated (by the first two levels) linearized rep-
resentation. Here, (1) is the input text, (2) is the cor-
responding AMR graph, and (3) is the truncated plain
graph2text representation.

Abstract Meaning Representation Figure 6 il-
lustrates the representation of an utterance and its
linearization using Abstract Meaning Representa-
tion (AMR). In this representation, words from the
utterance are depicted as nodes in a graph, with
edges representing the semantic relations between
them. Higher-level vertices closer to the root of
the graph capture the overall meaning, while lower-
level vertices offer more specific details. In the
given example, the core concept of contradiction is
conveyed through the first two levels of the AMR
graph. To enhance the efficiency of processing and
reduce the length of the linearized representation,
we only truncate the first levels of these graphs.
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Abstract

Discourse analysis plays a crucial role in Nat-
ural Language Processing, with discourse re-
lation prediction arguably being the most dif-
ficult task in discourse parsing. Previous stud-
ies have generally focused on explicit or im-
plicit discourse relation classification in mono-
logues, leaving dialogue an under-explored do-
main. Facing the data scarcity issue, we pro-
pose to leverage self-training strategies based
on a Transformer backbone. Moreover, we
design the first semi-supervised pipeline that
sequentially predicts discourse structures and
relations. Using 50 examples, our relation pre-
diction module achieves 58.4 in accuracy on
the STAC corpus, close to supervised state-of-
the-art. Full parsing results show notable im-
provements compared to the supervised mod-
els both in-domain (gaming) and cross-domain
(technical chat), with better stability.

1 Introduction

Discourse analysis aims at uncovering the inher-
ent structure of documents, where spans of text –
known as Elementary Discourse Units (EDUs) –
are linked by semantic-pragmatic relations such as
Explanation, Acknowledgment, Contrast, etc. Dis-
cursive information is useful in various downstream
applications, from sentiment analysis or fake news
detection (Bhatia et al., 2015; Karimi and Tang,
2019), to summarization or machine translation
(Chen and Yang, 2021; Chen et al., 2020). Current
data-driven methods for discourse parsing have pre-
dominantly been applied to monologues, leading
to limited availability and generalizability of dis-
course parsers for dialogues. As dialogue data
soared in all kinds of forms, the need for automatic
analysis systems has rapidly increased. Here, we
propose to tackle the crucial problem of discourse
relation identification in dialogues, and show per-
formance of a full discourse parser that could en-
hance these applications.

Discourse relation classification labels the arcs
in a discourse graph and is considered the most
difficult part in discourse parsing: it is a multi-way
classification task involving class imbalance and in-
formation at varied levels, from morpho-syntactics,
to semantics, pragmatics and world knowledge.
Discourse relations are often split into explicit –
triggered by connectives (e.g. because, while...)
thus allegedly easier to classify –, and implicit,
without such markers. However, this distinction is
not annotated in dialogue corpora. We thus cast the
task as identifying all relations, which also makes
for a more practical scenario as in DISRPT shared
task (Zeldes et al., 2021).

One of the main hurdles in developing high-
functioning parsing models is the scarcity of anno-
tated data, along with limitations of supervised ap-
proaches in cross-domain scenarios (Liu and Chen,
2021). Strategic Conversations corpus (STAC)
(Asher et al., 2016) – the most commonly used
dialogue dataset annotated using the Segmented
Discourse Representation Theory (SDRT) (Asher
et al., 2003) – contains merely 1000 short docu-
ments. The labeling effort being expensive in terms
of time and labor costs, it appears unlikely to create
new large-scale expert-annotated datasets. Semi-
supervised strategies are thus appealing. A few
studies proposed weak or distant supervision for
naked structure building (Badene et al., 2019; Li
et al., 2023) while missing the important relation
information. Remarkably, despite recent power-
ful Large Language Models (LLMs) such as Chat-
GPT excel in many NLP tasks, discourse parsing
remains a significant challenge, given their poor
performance (Chan et al., 2023a).

In this paper, we extend the bootstrapping ap-
proach to dialogues with even less annotated data,
by relying on self-training (Yarowsky, 1995) where
a model is used to produce pseudo labels and in-
crease training data, a simple method shown as
effective (Rosenberg et al., 2005). Using the BERT
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model (Devlin et al., 2019) as a base classifier and
applying self-training, we achieve competitive re-
sults on a 16-way classification on STAC using
only 50 dialogues for initial training. We also build
a pipeline upon Li et al. (2023)’s work to perform
full parsing, where we assign discourse relations
on established structures, giving important exten-
sions on semi-supervised approaches for dialogues
until now limited to naked structures. Our pipeline
yields 38.6 micro-F1 score with gold EDUs and
32.8 with predicted EDUs: representing strong
baselines for discourse parsing in dialogues with
minimal supervision. This pipeline, or structure-
then-relation approach, allows for a flexible archi-
tecture and greater generalizability. We further
conduct cross-domain experiments by testing on a
re-annotated subset of Molweni (Li et al., 2020) –
a Ubuntu dataset. Despite the domain difference,
our pipeline shows remarkable performances (link
75.6, link and relation 31.2), outperforming super-
vised SOTA models by a large margin1.

To summarize: we propose (1) a simple and ef-
fective method that requires minimal supervision
for discourse relation prediction; (2) a flexible dis-
course parsing pipeline that sequentially handles
all tasks and exhibits strong generalizability; (3)
a comprehensive comparison and in-depth explo-
ration across in-domain and cross-domain scenar-
ios; and (4) a small human-annotated discourse
dataset in the technical chat domain which we will
make public and support cross-domain evaluation.

2 Related Work

Discourse relation prediction as an individual task
receives rich attention, mostly conducted on the
Penn Discourse Treebank (PDTB) (Webber et al.,
2019). Semi-supervised models have been mostly
limited to implicit relation identification relying on
synthetic data (Xu et al., 2018) or translations (Shi
et al., 2019). These methods create pseudo-labeled
data by using expert-composed rules or convenient
linguistic resources: both in short for dialogues.
The more recent effort utilizes Pre-trained Lan-
guage Models (PLMs) (Shi and Demberg, 2019;
Arslan et al., 2021) as backbones as they show su-
perior performance for many classification tasks.
PLMs have also been used as reliable classifiers
to produce pseudo labels in self-training scenar-
ios (Meng et al., 2020; Yu et al., 2021). Through

1Our code and re-annotated dataset are available at https:
//github.com/chuyuanli/DisRel-w-selftraining

prompt adaptation, Chan et al. (2023b) reveal that
implicit relation prediction is still a tricky task,
even for ChatGPT.

In recent years, there has been an increasing in-
terest in discourse parsing in dialogues. A range
of discourse parsers has emerged, including classic
statistical models (Afantenos et al., 2015; Perret
et al., 2016) and neural architecture models (Shi
and Huang, 2019; Wang et al., 2021; Chi and Rud-
nicky, 2022), some are trained within multi-task
learning framework (Yang et al., 2021; Fan et al.,
2022). Although these supervised models achieve
good performance on STAC corpus, they face lim-
itations when applied to cross-domain scenarios
(Liu and Chen, 2021). To address the challenge
of data scarcity, researchers turn to weakly and
semi-supervised methods (Badene et al., 2019; Li
et al., 2023; Li, 2023). Nishida and Matsumoto
(2022) show that co-training can considerably in-
crease cross-domain performance on monologues,
but they benefit from a larger amount of annotated
data than we do for dialogues. Despite the revolu-
tionary achievements offered by LLMs (Ouyang
et al., 2022; Touvron et al., 2023), they remain no-
tably behind fully and semi-supervised benchmarks
in discourse parsing. Chan et al. (2023a) illustrate
that ChatGPT struggles on STAC with 50% F1 gap
from supervised models. Fan and Jiang (2023) find
that ChatGPT tends to establish discourse struc-
tures in a linear fashion. While in-context learning
methods are helpful, their enhancement is limited.

3 Discourse Parsing Pipeline

A standard full discourse parsing involves three
tasks: EDU segmentation, link attachment, and re-
lation prediction (Figure 1). Most previous work
applies a structure-then-relation approach (Afan-
tenos et al., 2015; Shi and Huang, 2019; Liu and
Chen, 2021). We follow the pipeline by providing
relations on the established discourse structures.

3.1 Preliminary: Structure Construction

Our work is founded on Li et al. (2023) which en-
tails the extraction of discourse structures from the
attention matrices in PLMs. In that work, the origi-
nal BART model (Lewis et al., 2020) is fine-tuned
with dialogue-tailored Sentence Ordering task to
better encode dialogue structures. In each atten-
tion head, the attention values among EDUs can be
seen as edge weights. Thus, by using a Maximum
Spanning Tree algorithm, they obtain discourse
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Figure 1: Semi-supervised discourse parsing pipeline proposition. s are utterances; e are EDUs; r are rhetorical
relations. DisCoDisCo model is proposed in Gessler et al. (2021). BART+SO-STAC is BART model fine-tuned on
Sentence Ordering task (Li et al., 2023). BERT-FT is BERT fine-tuned with self-training for relation prediction.

tree structures. That work proves that with just 50
examples, the optimal attention head can be consis-
tently located. The extracted structures on STAC
are found to be non-trivial, achieving 59.3 F1 score.

Although most previous work begins with gold
EDUs, we consider it crucial to evaluate in a de-
ployed scenario where the parser performs EDU
segmentation first. We thus integrate DisCoDisCo
(Gessler et al., 2021), a straightforward sequence
tagging model pre-trained on a random sample of
50 STAC dialogues, into the complete pipeline.

3.2 Relation Prediction Module

Following the setup in DISRPT shared tasks2, we
regard relation identification as multi-way classi-
fication where we classify every pair of head and
dependent EDUs individually. EDU pairs reflect
local coherence. A model trained in this setting is
easily applicable to other discourse frameworks.

Self-Training: Our relation prediction module
contains a classifierM, a small amount of labeled
data L, and a large amount of unannotated data
U . The training process is as follow:M is trained
on L to provide predictions (pseudo labels) on U ;
then, under pre-defined selection criteria, a subset
S ⊂ U is sampled and merged with L for a new
round of re-training.M can be re-trained for many
rounds until a stopping criterion is met.

Classifier M: Our classifier is an uncased
BERT base model appended with a linear projec-
tion and softmax layer to produce relation proba-
bilities. BERT has shown superior performance in
discourse-related tasks (Chen et al., 2019; Atwell
et al., 2021) and is the language backbone of cur-

2https://github.com/disrpt/sharedtask2023/.

rent SOTA model for relation on STAC (Gessler
et al., 2021). We prepare the input relation pairs by
following the Next Sentence Prediction pattern as
in Shi and Demberg (2019): a [CLS] token begins
the sequence, followed by the first EDU, [SEP],
and the second EDU. As additional feature, we
only add the speaker marker at the beginning of the
EDUs since it is the only feature we found decisive
among the ones used in Gessler et al. (2021).3

Sample Selection Criteria: At each round,M
gives pseudo labels on U . The key challenges are
how to measure the confidence of predictions and
how to select a reliable subset S . We loosely trans-
late the output probabilities inM as its predictive
confidence, enabling sorting predicted pairs. We
then define two selection criteria inspired by Steed-
man et al. (2003); Du et al. (2021), either focusing
on the confidence or combining it with class vari-
ety: (a) Top-k: select the top k pseudo-labeled data.
k starts at 800 and increments up 7800, with an in-
terval of 1000. This range corresponds to the top
N × k′ where k′ ∈ [0.0, 0.1] criterion in Nishida
and Matsumoto (2022); (b) Top-class-k: select the
most confident pseudo-labeled data in each class
and together results in k examples. The label ratio
is maintained between L and the augmented set S .
k has the same value as in Top-k.

4 Molweni Re-Annotation

To evaluate the cross-domain adaptability of our
parsing pipeline, we release a newly annotated
dataset, “Molweni-clean”, sourced from the Mol-
weni corpus (Li et al., 2020). Molweni con-
tains 10, 000 SDRT-annotated documents from the

3Our supervised model gives 64.9 versus feature-enhanced
DisCoDisCo 65.0 (Gessler et al., 2021).
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Avg branch Avg depth %leaf Arc length

Molweni 1.63 6.0 0.39 0.23
∼-clean 1.29 6.8 0.28 0.19

Table 1: Tree properties in original Molweni test set and
Molweni-clean. Arc length is normalized.

Ubuntu Chat Corpus (Lowe et al., 2015). How-
ever, it presents heavily redundant documents and
inconsistent annotations (Li et al., 2023), making
the results less reliable. Therefore, we revised the
annotation of a subset of Molweni to ensure a more
robust evaluation (test only).

4.1 Molweni-clean Construction
Molweni test set comprises 500 documents that
can be grouped into 105 clusters. Each cluster
consists of highly similar dialogues, with only one
or two differing utterances (Li et al., 2023). As the
first step of our re-annotation process, we extract
a single document from each cluster, ensuring that
the selected subset contains no duplicates.

The re-annotation is carried out by 3 Ph.D. stu-
dents who are fluent in English, specialized in se-
mantics and discourse and are familiar with SDRT.
We pre-selected 105 documents from the test set
with no duplicates as our annotation candidates. A
set of 8 documents is used for training the annota-
tors who then annotate 10 documents in common,
and 20 more separately, leading to a final subset of
50 dialogues4. The inter-annotator agreement (Co-
hen’s Kappa) is strong (80.6%) for link attachment
and moderate (57.0%) for full structure, similar
to the scores in STAC (Asher et al., 2016), with
details in Appendix B.1.

4.2 Molweni-clean Statistics
Structural Difference: More adjacent links are
presented in Molweni-clean (76% vs. 68%). Intu-
itively, these are simpler structures. The trees in
Molweni-clean are “taller” and “thinner”, namely,
with smaller branch sizes and larger tree depths. On
average, Molweni-clean trees are one step deeper
than the originally annotated ones, as shown in Ta-
ble 1. Additionally, we find 3 documents in the
original annotation that contain multiple roots, re-
sulting in forest structures instead of trees.

Relation Distribution: Although the class dis-
tribution appears to be alike in the two annotations
(details in Appendix B.2), the partition between

4These annotations are publicly available at URL.

#Doc #Turn #Tok #Spk #Rel
Dataset train dev test /doc /doc /doc type

STAC 947 105 109 11.0 48.4 3.0 16
Molweni 9000 500 500 8.8 104.7 3.5 16
∼-clean - - 50 8.5 91.1 3.2 16

Table 2: STAC, Molweni, and Molweni-clean statistics:
number of documents, averaged speech turns, tokens,
and speakers per document (turn/doc, tok/doc, spk/doc).

the same (intra-) and different (inter-) speakers dif-
fers greatly. In Molweni-clean, we observe a much
higher percentage of intra-speaker relations (14.7%
vs. 3.8%). Certain relations, like Continuation and
Elaboration — which, according to the annotation
guideline, should typically occur more frequently
within the same speaker — show a contrasting dis-
tribution in the original annotation. We present a
case study in Appendix B.3.

5 Experimental Setup

Datasets: For the in-domain scenario (gaming),
we utilize STAC, a corpus comprising of online con-
versations that occur during the Settlers of Catan
game. It contains in total 12, 679 relation pairs in
1161 documents. We follow the split in Shi and
Huang (2019). We randomly select a small part
(700 pairs from 50 documents) of the train set as
labeled data L and the remaining examples as raw
data U . A subset from the development set (664
pairs from 50 documents) is used for validation.
All 1128 pairs (109 documents) in the test set are
reserved for testing. The relation distribution is
highly unbalanced, see Appendix A. For the cross-
domain scenario (gaming to technical chat), we use
documents from STAC as the labeled training data,
and the 50 Molweni-clean documents as testing
data. Table 2 shows the statistics.

Evaluation Metrics: For the relation prediction
module, we report accuracy. For the full parsing
pipeline, we employ the traditional evaluation met-
rics, namely, the micro-averaged F1 scores for un-
labeled attachment (link), relation prediction (rel),
and labeled attachment (full).

Full Parsing Baselines: We compare against the
state-of-art parsing model Structured-Joint (SJ)
(Chi and Rudnicky, 2022). Since we work with
small-data setup, we also compare with a simpler
graph-based Arc-Factored dependency parser (Mc-
Donald et al., 2005), by following the implemen-
tation in Nishida and Matsumoto (2022). Further-
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more, to gain insights from the latest LLMs, we
show results from ChatGPT5 (gpt-3.5-turbo model)
using zero-shot and few-shot in-context learning
(Chan et al., 2023a).

Implementation Details: In the relation pre-
diction module, we use the BERT model from
Huggingface (Wolf et al., 2020) and fine-tune for
10 epochs with batch of size 2, learning rate at
2e − 5, AdamW optimizers with a weight decay
at 0.01. For self-training, we give maximum 20
epochs with early stopping at 5, based on the per-
formance on the validation set. We choose 5 groups
of labeled examples for initial training and report
average accuracy with the standard deviation. The
full pipeline is trained using 50 random documents
from STAC training set and is executed 10 times.

6 Relation Prediction Module

6.1 Self-Training Results

Results for relation prediction are presented in Ta-
ble 3. As baselines, we report scores of majority
class Question answer pair (QA pair), the original
frozen BERT base model and the fine-tuned BERT,
both trained with 700 gold pairs. Using this lat-
ter model as a starting point, we present results for
self-training (second part of Table 3) using two sam-
ple selection criteria: top-k and top-class-k. Both
selection strategies show improved performances
with self-training. When k = 5800, both strate-
gies achieve their best scores. This value echos the
selection strategy rank-above-k′ with k′ = 0.6 in
Nishida and Matsumoto (2022). For top-k selec-
tion, when k is small (k < 2800), the number and
variety of selected pseudo-labeled data are small,
resulting in lower accuracy than BERT-ft. When
k is relaxed, the coverage of different classes of
data increases, and the performance hits the highest
point at 58.1. The accuracy then decreases, proba-
bly due to the noise of inaccurate pseudo-labeled
data. In comparison, the top-class-k strategy con-
sistently brings improvement over the initial BERT-
ft model. It also exhibits an upward trend as k
increases, reaching its peak at the optimal value of
5800, followed by a slight decline.

With a significant amount of unlabelled data,
the self-training process can be repeated multiple
times. However, limited by the data size in STAC,
we can only test iterative learning with few values,
k ∈ [800, 1800, 2800]. We define a stopping cri-

5https://openai.com/blog/chatgpt.

Majority class 27.1
BERT (base 700) 40.10.8
BERT-ft (base 700) 56.61.0

Self-training Top-k Top-class-k
#Pair loop1 loop1 loop2 loop3

+ 800 54.13.0 57.71.1 55.91.1 58.11.2
+ 1800 53.63.6 57.31.6 58.41.0 57.42.1
+ 2800 55.71.9 57.60.3 57.51.5 58.12.2
+ 3800 56.62.1 57.61.6 - -
+ 4800 56.80.5 57.81.2 - -
+ 5800 58.10.8 58.00.7 - -
+ 6800 57.81.0 57.90.9 - -
+ 7800 57.80.7 57.02.3 - -

Table 3: Baselines and BERT-ft model self-training
results with Top-k and Top-class-k selection criteria.
Scores are avg accuracy over 5 runs with standard devia-
tion. Best score per row (resp. per column) is underlined
(resp. bold). - not applicable due to data limitation.

Figure 2: Accuracy of fully supervised model (solid
line) and semi-supervised model with {700, 1500, 2500,
5000, 7500} base training data (dashed lines). x-axis:
#relation pairs; y-axis: model accuracy on STAC.

terion at 3 and proceed with top-class-k selection
strategy. We observe (two rightmost columns) ad-
ditional improvements compared to the first loop,
reaching 58.4 at best. We speculate that the model
is re-trained slowly (smaller amount of data), but
steadily (more reliable examples). We anticipate a
better performance with more in-domain raw data.

6.2 Analysis: Model Calibration

One key challenge in self-training is to select error-
free and high-coverage subsets from the pseudo-
labeled data. Top-class-k selection considers the
coverage aspect and less prone to overfitting. How-
ever, good coverage does not imply reliable predic-
tion. The model could fall short in some classes and
bring in noise. In this section, we study the corre-
lation between the model’s predicted probabilities
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and the probabilities of correctness, also known as
the calibration property (Brier, 1950; Jiang et al.,
2021). We start by showing this property of base
BERT-ft model (details in Appendix C.1): frequent
relations (e.g. QA pair and Comment) present pos-
itive correlation while infrequent ones (e.g. Alter-
nation and Correction) do not and have lower con-
fidence. This shows the advantage of top-class-k
strategy by adding these less confident but reliable
examples. However, it also implies that the base
model is not well-calibrated. We investigate two
factors that may influence the model’s calibration:
enhancing the classifier’s accuracy by training on
more base data and employing iterative training.

Base Model Accuracy: We experimentally ob-
serve that with more base training data, the model
performance continuously increases (e.g.: from
700 to 2500, accuracy increases by 7%). In particu-
lar, we test different sizes of base data: {700, 1500,
2500, 5000, 7500} of relation pairs and re-train the
model using top-class-k (k = 1800) selection cri-
terion. The results are displayed in Figure 2. With
larger base volume, the gap between self-trained
model and fully supervised model keeps decreasing.
Interestingly, when the base data hits 5000, self-
trained model achieves comparable performance as
7500 fully supervised model (66.7%), indicating
that 5000 relation pairs (≈ 350 documents) is a
threshold where self-trained model surpasses its
supervised counterpart.

Iterative Training: The concept of multi-loop
self-training aims to enhance the model’s perfor-
mance by incorporating additional training exam-
ples for the infrequent classes, thereby mitigating
the under-fitting issue. We investigate the correla-
tion evolution with three loops for the less-frequent
labels (details in Appendix C.2). Tellingly, the con-
fidence scores for less and non-frequent relations
such as Alternation and Contrast increase from
[0.2, 0.3] to [0.7, 1.0], coupled with higher predic-
tion accuracy (+ 20% ∼ 40%), as displayed in the
confusion matrix in Figure 9.

7 Full Discourse Parsing

7.1 In-Domain Evaluation and Analysis

In-domain performance is evaluated on the STAC
test set, with results in Table 4 (left part).

Baselines: We replicate the SOTA supervised
model Structured-Joint (SJ) (Chi and Rudnicky,

2022) which uses RoBERTa-base model (Liu et al.,
2019) as backbone and employs 3-dimension at-
tention to encode links and relations jointly. SJ
includes a dummy root in each document for train-
ing, but the link between this node and the first
EDU is counted in the evaluation which artificially
inflates the scores. We replicate SJ with 947 and 50
training data and evaluate with and without dummy
root, the latter matching our own fairer evaluation
setting. Table 4 shows our replicated scores without
dummy root (detailed comparison in Appendix D).
We also compare with a simpler dependency parser
Arc-Factored (AF) (McDonald et al., 2005). AF
parser finds the globally optimal dependency struc-
ture using dynamic programming which can be de-
coded using Maximum Spanning Tree algorithms
such as Eisner (Eisner, 1996). Lastly, we report the
performance of unsupervised LLM ChatGPT-3.5.

Parsing Results: Our pipeline consists of an
EDU segmenter (Gessler et al., 2021), a link attach-
ment module (Li et al., 2023) which we replicate
the experiments and obtain predicted links, and a
pre-trained relation prediction module outlined in
Section 3.2. We sample 50 annotated documents
for supervision along the pipeline. As expected, the
supervised SJ model with 947 training examples
gives the best scores. However, when the training
size drops to 50, our pipeline exhibits better perfor-
mance compared to SJ and AF in both link attach-
ment (59.3% vs. 55.1%) and relation prediction
(62.0% vs. 61.1%) tasks, bringing noteworthy im-
provement of resp. 5 and 14 points in full parsing,
coupled with greater stability. As for GPT-3.5, both
zero-shot and few-shot in-context learning perform
abysmally, suggesting that ChatGPT still suffers
from poor understanding of discourse structures
and that we can not simply depend on powerful
LLMs for this task (Chan et al., 2023a). Using pre-
dicted EDUs, our full parsing score drops nearly 6
points. A similar loss is also observed for end-to-
end RST-style parsing in Nguyen et al. (2021).

Pipeline Error Analysis: We examine the re-
lation composition in each task module: correct
(orange) and wrong relation prediction (blue), and
missing relations due to lack of link attachment
(green) and false EDU segmentation (gray), as dis-
played in Figure 3. The results show that errors
in link attachment account for 40.8%. Among the
correctly attached pairs, 61% are assigned proper
relations. Notably, relations such as QA pair, Elab-
oration, and Acknowledgement are accurately pre-
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Train / Test Train STAC/STAC STAC/Molweni-clean STAC/Molweni

#Doc EDU Link Rel Full Link Rel Full Link Rel Full

SJ 947 - 70.70.5 77.31.2 54.60.7 61.53.4 59.54.3 36.63.8 49.83.6 57.52.9 28.92.8
SJ 50 - 55.13.5 61.12.1 33.62.2 51.16.4 33.69.5 17.25.3 42.95.6 35.210.1 15.35.3
AF 50 - 42.72.8 56.42.5 24.01.0 53.72.1 38.82.9 20.91.1 45.91.5 41.41.0 19.00.7
GPT3.5few shot 3 - 20.7 24.1 7.3 - - - - - -
GPT3.5zero shot - - 20.0 22.8 4.4 - - - - - -

Ours (gold EDU) 50 - 59.30.7 62.01.1 38.60.7 75.60.7 41.33.8 31.22.9 61.50.7 42.82.9 26.31.7
Ours (pred EDU) 50 94.8 52.20.4 61.21.6 32.80.9 ∼ ∼ ∼ ∼ ∼ ∼

Table 4: Left: in-domain parsing results (STAC/STAC) with supervised parsers Structured Joint (SJ) (2022) and
Arc-Factored (AF) (2022), unsupervised model ChatGPT (GPT-3.5) with few-shot (n = 3) in-context learning and
zero-shot (2023a), and our semi-supervised pipeline (with gold and predicted EDU). Right: cross-domain parsing
results on Molweni-clean (STAC/Molweni-clean) and original Molweni (STAC/Molweni). Scores are average
micro-F1 over 10 runs. In 50 train setup, best scores are in bold. “-” not applicable. “∼” same as previous row.

Figure 3: Full parsing result decomposition in relation
prediction (orange and blue), link attachment (green),
and EDU segmentation (grey). Numbers in Appendix E.

dicted, while less frequent relations such as Result,
Explanation, and Correction require further im-
provements. We notice that the missing links often
involve relation types that are accurately predicted
(QA pair and Acknowledgement). This suggests
that there is a high likelihood of accurately deter-
mining the discourse relations of connected pairs -
a potential avenue for future improvement.

7.2 Cross-Domain Evaluation and Analysis

Cross-domain parsing is evaluated on the origi-
nal Molweni test set and Molweni-clean, with SJ
model and our pipeline trained on 50 STAC docu-
ments. Results are shown in Table 4 (right part).

Parsing Results: Our pipeline exhibits excel-
lent performance on all tasks, outperforming the
SJ model in terms of link (+24%), relation (+8%),
and full parsing (+14%) on Molweni-clean dataset.
Our pipeline for link attachment is particularly

remarkable, surpassing even the fully trained SJ
model (75.6 vs. 61.5). On relation prediction,
SJ considers the tree structure and relation jointly,
while our approach focuses on individual relation
pairs. As texts across various genres demonstrate
various structures, our approach, although more lo-
calized, is less influenced by the pre-existing struc-
tures, making it more suitable for general applica-
tion. Furthermore, our model shows greater stabil-
ity, whereas the SJ model is highly influenced by
a particular domain. We notice similar behaviour
on the original Molweni test set. Curiously, both
SJ model and our pipeline exhibit improved perfor-
mances on Molweni-clean, revealing the problem
of inconsistencies in the initial annotation.

Molweni Cross-domain Annotation: We ac-
knowledge that semi-supervised learning has an
affinity for domain transfer. Taking one step further,
we investigate automatic annotation on Molweni
using STAC-trained model. The inconsistency of
annotations in the original Molweni benefits this
setup. We first de-duplicate repetitive documents
in Molweni training and validation sets by taking
one document per cluster (Sec. 4.1), which results
in resp. 1865 and 107 documents. Trained on
50 STAC examples, our pipeline produces 1972
pseudo-labeled Molweni documents. These docu-
ments are used to train SJ in a supervised manner
with the proposed hyper-parameters. In compar-
ison, we also train the SJ model with Molweni’s
original annotation. Both models are evaluated on
Molweni-clean, with results given in Table 6.

SJ model trained on pseudo-labeled Molweni
gives better results on structure attachment (+9%)
but under-performs its counterpart on relation pre-
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Train / Test Aug STAC/STAC STAC/Molweni-clean STAC/Molweni

#Doc Link Rel Full Link Rel Full Link Rel Full

SJ - 55.13.5 61.12.1 33.62.2 51.16.4 33.69.5 17.25.3 42.95.6 35.210.1 15.35.3
SJ +self-train 50 57.52.2 63.31.4 36.41.5 51.65.5 34.37.1 17.64.1 42.94.7 34.58.1 14.83.9
SJ +self-train 120 57.23.2 62.73.3 35.92.3 54.37.8 40.37.7 21.95.3 45.76.5 39.26.3 18.04.5
SJ +self-train 200 57.42.9 63.12.6 36.21.7 56.48.2 38.49.2 21.86.7 46.66.3 38.78.9 18.15.3

Ours 120 59.30.7 62.01.1 38.60.7 75.60.7 41.33.8 31.22.9 61.50.7 42.82.9 26.31.7

Table 5: Comparison between augmented SJ model (2022) (SJ +self-train) and ours in self-training setup across
in-domain and cross-domain scenarios. SJ model is re-trained with the combination of 50 gold-standard data and
{50, 120, 200} pseudo-labeled documents (Aug #doc). We show the best scores (average micro-F1) in 3 loops.

Train on #Doc Link Rel Full

Molweni-pseudo 1865 54.10.6 56.32.0 30.61.2
Molweni 1865 45.71.6 82.71.9 37.81.1

Table 6: SJ parsing results on Molweni-clean, trained on
auto-annotated and original Molweni (resp. Molweni-
pseudo, Molweni). Scores are average micro-F1.

diction (-26%). Although the overall parsing score
is inferior, the naked discourse structures in auto-
annotated Molweni (Molweni-pseudo) are of better
quality. This is encouraging, especially in the diffi-
cult cross-domain setup. As previous studies have
shown, discourse structures alone are valuable fea-
tures and can be employed in some downstream
applications (Louis et al., 2010; Jia et al., 2020).

7.3 Self-Training the SJ Model

To understand the effectiveness of our relation pre-
diction module, we conduct ablation studies by
comparing our pipeline and SJ model with similar
data volume, namely, we augment SJ model with
self-training. Results are given in Table 5.

For the data augmentation, we select the pseudo-
labeled documents with the highest average confi-
dence scores, i.e., the average of predictive prob-
abilities over all link and relation decisions in a
document. Previous analysis (Sec. 6.2) shows that
iterative training is beneficial, so we re-train SJ in
a total of 3 loops. We test different sizes of aug-
mentation data: {50, 120, 200} documents which
correspond to resp. {800, 1800, 2800} relation
pairs in our case. Over 3 loops, the largest aug-
mentation attains 600 documents (≈ 8000 relation
pairs). It is important to note that although the SJ
model jointly predicts structure and relation, our
augmentation technique only focuses on relation
prediction. Therefore, the augmentation would pro-

vide the SJ model with more structured supervision.
Furthermore, our approach operates on a narrower
scope, concentrating on relation pairs rather than
entire conversations. In contrast, the SJ model’s
data augmentation is done at the document level.
Hence, the comparison between our augmented
model and the augmented SJ model would only be
similar in terms of data volume, but not necessarily
in terms of identical examples.

Given extra training data, SJ surpasses its base
version in both in-domain (full +3%) and cross-
domain (full +4%) contexts, with similar improve-
ment in link attachment and relation prediction.
This emphasizes the advantages of our self-training
approach, apt for both basic and complex models.
However, with the same augmented data size, the
SJ model lags behind our pipeline, showcasing a 3
points difference in-domain and a sizable 10 points
gap cross-domain, further attesting to the effective-
ness of our simple approach.

8 Conclusion

In this study, we introduce a substantial extension
to semi-supervised discourse parsing in dialogues
by incorporating relation predictions into the estab-
lished naked structures. We define simple yet ef-
fective sample selection strategies in self-training,
achieving SOTA results with a minimal training
set. Importantly, the efficacy of our discourse
parsing pipeline is fully demonstrated across in-
domain and cross-domain settings. We also con-
tribute a small expert-annotated discourse dataset,
along with semi-supervised benchmarks for sub-
sequent comparisons. Future work should explore
the use of more out-of-domain raw data and investi-
gate bootstrapping methods for relation prediction,
while also improving on structure prediction, pos-
sibly with the same strategies.
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Limitations

Following DISRPT shared task, we focused on in-
dividual EDU pair relation prediction for general
application. This setting captures local coherence
in dialogues and has shown great generalizability in
cross-domain experiments. We based our work on
a semi-supervised link attachment module and pre-
dicted relations only for linked EDU pairs. Show-
ing effective, there is potential for further improve-
ment in attachment performance by considering
(high confident) predicted relations for unattached
EDU pairs. By extending the self-training strat-
egy to include link attachment, we could enhance
the overall parsing performance and achieve better
results in full parsing.

Facing the data sparsity issue, we utilized all
relation pairs in STAC for self-training. However,
we only tested small sizes of k in the iterative train-
ing due to the limited size of STAC. With more
data, we should explore the re-training outcomes
with larger values of k. It is thus intriguing to
expand the set of un-annotated relations by con-
sidering out-of-domain data, obtained for instance
from weak supervision (Sileo et al., 2019), or from
monologues such as PDTB (Prasad et al., 2008).

Ethics Statement

We carefully selected the corpora to work with to
mitigate any potential hateful and biased language.
Before the re-annotation process, we provided in-
structions to the annotators, emphasizing the impor-
tance of being vigilant for any biased or insulting
language in the data. In the event of encountering
such language, they were instructed to immediately
cease annotation and report the issue. Throughout
the re-annotation of all 77 dialogues, no instances
of inappropriate language were found. We have
confidence that these dialogues are free from harm-
ful content that may insult the annotators.

All the annotators are PhD students. They did
not receive any specific compensation for their
work on annotation. We recorded the time taken
for the re-annotation process, which consisted of
an initial training period of 3 hours followed by an
average of 1.5 hour for every 10 dialogues. All an-
notation work was conducted during regular work-
ing hours. The annotators are free to utilize the
annotations and any discourse-related content in
this project for their studies.
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A Class Distribution in STAC Corpus

See Table 7 for the relation distribution in train,
development, and test sets in STAC.

Labeled train Validation Test

Relation # % # % # %

QA pair 175 25.0 152 22.89 305 27.04
Comment 108 15.43 110 16.57 165 14.63
Ack 86 12.29 87 13.1 148 13.12
Continuation 65 9.29 69 10.39 113 10.02
Elaboration 64 9.14 52 7.83 101 8.95
Q-elab 36 5.14 30 4.52 72 6.38
Result 26 3.71 29 4.37 29 2.57
Contrast 32 4.57 29 4.37 44 3.9
Explanation 34 4.86 31 4.67 31 2.75
Clarif-Q 23 3.29 20 3.01 33 2.93
Parallel 10 1.43 14 2.11 15 1.33
Correction 12 1.71 11 1.66 21 1.86
Alternation 5 0.71 8 1.2 19 1.68
Narration 8 1.14 7 1.05 13 1.15
Conditional 12 1.71 10 1.51 18 1.6
Background 4 0.57 5 0.75 1 0.09

Total 700 100.0 664 100.0 1, 128 100.0

Table 7: Rhetorical relations and frequencies in train
subset, validation subset, and test sets in STAC. QA pair:
question answer pair; Ack: acknowledgement; Q-elab:
question elaboration; clarif-Q: clarification question.

B Molweni-clean Case Study

B.1 Inter-Annotator Agreement Detail
We calculate inter-annotator agreement scores on
the 10 common documents using Cohen’s Kappa
metric from Scikit-learn library (Pedregosa et al.,
2011). The results are given in Table 8. Our final
subset contains 50 documents. Annotator 1 and
3 (R1 and R3) have the highest agreement scores,
so we include their individual annotations (a total
of 39 documents). We also take the 8 training
examples where all the annotators have aligned
annotations and 3 documents from annotator 2.

Link Link&Rel

R1-R2 79.3 51.8
R1-R3 80.6 57.0
R2-R3 76.6 54.3

Table 8: Cohen’s Kappa inter-annotator agreement
scores. R1, R2, R3 represent resp. annotator 1, 2, and 3.

B.2 Relation Distribution Comparison
See Table 9 for relation distribution in original Mol-
weni subset and Molweni-clean. We show the same

50 documents for a fair comparison. More pre-
cisely, we decompose each relation into intra- and
inter- speaker categories to refer the relation within
the same and different speakers, respectively. Note
that the difference in the total number of relations
(370 vs 373) is due to the incomplete annotation in
the original annotation of documents 7048, 8018,
and 9042 where one document contains multiple
roots, i.e., some nodes miss an incoming edge.

Molweni test Molweni-clean

Relation # %intra %inter # % intra %inter

Comment 99 2.0 98.0 104 2.9 97.1
Clarif-Q 89 0 100 84 2.4 97.6
QA pair 86 0 100 91 1.1 98.9
Continuation 28 17.9 82.1 27 92.6 7.4
Q-elab 11 9.1 90.9 18 22.2 77.8
Result 11 0 100 10 20.0 80.0
Explanation 9 11.1 88.9 5 40.0 60.0
Ack 7 0 100 6 0 100
Elaboration 7 42.9 57.1 14 85.7 14.3
Narration 7 0 100 1 100 0
Conditional 5 20.0 80.0 2 0 100
Contrast 3 0 100 2 50.0 50.0
Correction 3 0 100 6 16.7 83.3
Background 3 0 100 2 0 100
Parallel 2 50.0 50.0 0 0 0
Alternation 0 0 0 1 100 0

Total 370 3.8 96.2 373 14.7 85.3

Table 9: Relations distribution in original Molweni test
subset and Molweni-clean.

B.3 Case Study

We present a comparison of the original annota-
tion and our revised version for document #1035,
as shown in Figure 4 and 5, respectively. This di-
alogue happens between two speakers: cr1mson
(short in C) and APT-GET_INSTALL_ (short in
A). C is asking A about the “apt” command. We
show the number of speech turn after the speaker
marker. Speech turns start from 0:

C0: apt-get i doubt my apt thing is bad though , i
just installed ubuntu today

A1: wait ! i found a much easier way

A2: well , i want you to read all of that

A3: before you start mucking around in system
files

C4: there was only a couple lines in it

C5: most of it was rem ’d out
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A6: you are going to learn what all of them all
from the url i just pasted

C7: i can always use more than one terminal

C8: okay , so i have to add or change a ‘reposi-
tory’

The main difference is in the annotation of
Complex Discourse Units (CDUs) – several EDUs
group together to form a common rhetorical func-
tion (Asher et al., 2016). In this example, the first
CDU consists of three speech turns (A1, A2, A3)
where A2 and A3 elaborate A1 by presenting a
“much easier way”. Between A2 and A3 it is a
continuation. We can write as Elaboration(A1,
Continuation(A2, A3)). This is a similar case with
the example (58) in STAC annotation manual6. The
original annotation, on the other hand, does not cap-
ture the accurate inner-CDU relations and roughly
attaches every EDU inside the CDU with the first
utterance C0.

Another CDU contains the speech turns C4 and
C5. C5 continues C4 and together they provide a
comment to A. Furthermore, we believe that CDU
(C4, C5) should be linked to A2 instead of A3 since
A2 and A3 are attached with a subordinating con-
junction marker “before”, which makes A3 head of
this CDU. Semantically, “only a couple lines” also
echos with “all of that”. However, the original an-
notation does not capture the relationship between
C4 and C5 and only link them individually to the
previous utterance A3.

For each training document, annotators went
through a similar discussion in order to reach con-
sensus on difficult or ambiguous cases. We believe
that this stage contributes to our improved under-
standing of dialogue content and the SDRT frame-
work, and facilitate the production of more reliable
annotations.

C Class-wise Correlation Between
Confidence and Accuracy

C.1 Correlation with Base Model

We investigate the correlation between class-wise
confidence scores and prediction accuracy. For bet-
ter readability, we divide 16 relations into 3 groups
based on their frequency in the STAC corpus, as
shown from top to bottom in the Figure 6. Recall

6https://www.irit.fr/STAC/
stac-annotation-manual.pdf.

Figure 4: Original annotation of document 1035.

Figure 5: Re-annotated structure of document 1035.

174

https://www.irit.fr/STAC/stac-annotation-manual.pdf
https://www.irit.fr/STAC/stac-annotation-manual.pdf


Figure 6: Relation class-wise accuracy and confidence
score correlation in the base BERT-ft model. From top
to bottom: the 5 most frequent, 5 medium-frequent, and
6 infrequent classes. The gray line is the aggregated
score of all 16 relations.

that we translate confidence score with model’s
prediction probability.

The top plot in Figure 6 shows the first 5 rela-
tions: QAP, Comment, Acknowledgement, Continu-
ation, and Elaboration. They are the most frequent
relations. They show good positive correlation be-
tween the confidence and accuracy.

The middle plot in Figure 6 shows 5 medium-
frequent relations: Question elaboration, Result,
Contrast, Explanation, and Clarification. These
relations have a frequency less than 10% and higher
than 2% in STAC. The density of the bars moves
towards the center compared to that with frequent
relations, suggesting that the model is less confident
to give predictions for these relations.

Finally, the last group contains six infrequent
relations, as shown in bottom in Figure 6. They
are the least present and the most difficult to pre-
dict. From this plot, we see that Parallel, Narration,
Conditional, and Background are completely miss-
ing, while Alternative and Correction are correctly
predicted with rather low confidence (∈ [0.2, 0.3]).

Figure 7: Accuracy and confidence score of the five
medium-frequent relations in loop {1, 2, 3}.

C.2 Iterative Self-training Enhance
Correlation for Infrequent Classes

Figure 7 and Figure 8 shows the changes of corre-
lation during three loops. During iterative training,
we observe that medium and the least frequent la-
bels typically gain better correlation between ac-
curacy and confidence scores, demonstrating that
iterative training is good reinforcement for infre-
quent classes.

This observation is further proved in the confu-
sion matrices, as displayed in Figure 9. A clear ob-
servation is that the infrequent classes has some re-
call improvement along self-training, typically for
Correction and Alternation. For medium-frequent
classes, Result, Contrast, and Explanation also ob-
tain higher recall.

D SJ Model Reproduction Experiments

Table 10 shows the reproduction results on SJ
model. Tellingly, removing the dummy roots leads
to a noticeable drop, from around 59 to 54.6 in
full parsing, which is even larger (−8 points) in
cross-domain setting.

E Full Parsing Result Decomposition

Table 11 reports scores per class in each step of
discourse parsing.
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Train / Test STAC/STAC STAC/Molweni-clean STAC/Molweni

#Train Link Rel Link&Rel Link Rel Link&Rel Link Rel Link&Rel

(1) SJ reported scores 947 74.4 - 59.6 - - - 64.5 - 38.0
(2) SJ w dummy 947 73.40.4 80.11.1 58.80.7 66.03.0 66.83.5 44.13.3 55.23.1 66.22.7 36.92.4
(3) SJ w/o dummy 947 70.70.5 77.31.2 54.60.7 61.53.4 59.54.3 36.63.8 49.83.6 57.52.9 28.92.8
(4) SJ w dummy 50 58.62.7 66.81.8 38.91.9 56.85.6 47.67.5 27.04.7 49.35.0 50.27.1 24.94.7
(5) SJ w/o dummy 50 55.13.5 61.12.1 33.62.2 51.16.4 33.69.5 17.25.3 42.95.6 35.210.1 15.35.3

Table 10: SJ model reproduction (row 2-5) in different setups: in-domain and cross-domain, with different train
sizes, and with or without dummy root. Scores are average F1 over 10 runs. First row from the paper (2022).

Figure 8: Infrequent relation accuracy and confidence
scores, loop {1, 2, 3}.

#(%) #(%) False #(%) False #(%) False
Relation correct relation link EDU

qap 143 (46.9) 22 (7.2) 127 (41.6) 13 (4.3)
commt 42 (25.5) 45 (27.3) 63 (38.2) 15 (9.1)
ackno 60 (40.5) 13 (8.8) 71 (48.0) 4 (2.7)
conti 20 (17.7) 30 (26.5) 55 (48.7) 8 (7.1)
elab 46 (45.5) 25 (24.8) 24 (23.8) 6 (5.9)
q_ela 20 (27.8) 9 (12.5) 41 (57.0) 2 (2.8)
resul 5 (17.2) 9 (31.0) 14 (48.3) 1 (3.5)
contr 10 (22.7) 12 (27.3) 17 (38.6) 5 (11.4)
expla 4 (12.9) 11 (35.5) 16 (51.6) 0 (0)
clari 6 (18.2) 10 (30.3) 13 (39.4) 4 (12.1)
paral 1 (6.7) 4 (26.7) 8 (53.3) 2 (13.3)
corre 2 (9.5) 10 (47.6) 7 (33.3) 2 (9.5)
alter 8 (42.1) 0 (0) 7 (36.8) 4 (21.1)
narra 0 (0) 3 (23.1) 10 (76.9) 0 (0)
condi 3 (16.7) 2 (11.1) 2 (11.1) 11 (61.1)
backg 0 (0) 0 (0) 1 (100) 0 (0)

Total 370 (32.8) 205 (18.2) 476 (42.2) 77 (6.8)

Table 11: Class-wise performance on relation prediction,
link attachment, and EDU segmentation modules.

Figure 9: Confusion matrices in the base model and
self-trained model with multiple loops. Relations (top
to bottom, left to right): QA pair, comment, acknowl-
edgement, continuation, elaboration, question elabora-
tion, result, contrast, explanation, clarification question,
parallel, correction, alternation, narration, conditional,
background.
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Abstract

Topics play an important role in the global or-
ganisation of a conversation as what is currently
discussed constrains the possible contributions
of the participant. Understanding the way top-
ics are organised in interaction would provide
insight on the structure of dialogue beyond the
sequence of utterances. However, studying this
high-level structure is a complex task that we
try to approach by first segmenting dialogues
into smaller topically coherent sets of utter-
ances. Understanding the interactions between
these segments would then enable us to propose
a model of topic organisation at a dialogue level.
In this paper we work with open-domain con-
versations and try to reach a comparable level
of accuracy as recent machine learning based
topic segmentation models but with a formal
approach. The features we identify as meaning-
ful for this task help us understand better the
topical structure of a conversation.

1 Introduction

Topics play a crucial role in understanding and in-
terpreting conversations. When participants have
a wrong understanding of the current topic, their
contributions can become irrelevant (Grice, 1975)
or even incoherent, leading to confusion among the
addressees. Similarly, misinterpreting the topic can
hinder a participant’s ability to understand others’
interventions accurately. While topics are more
constrained and easily identifiable in controlled set-
tings, such as formal work meetings, open-domain
casual conversations have a greater flexibility, al-
lowing participants to switch topics with minimal
indication and still be followed by others in the con-
versation. The larger the number of participants,
the more challenging it becomes to maintain con-
trol, as everyone contributes to the context.

Understanding how topics interact in dialogue is
thus essential when it comes to modelling dialogue
structure beyond the sequence of utterances. How-
ever, analysing this structure requires insight on

the topics themselves. Being able to segment a dia-
logue into topically coherent segments seems to be
a first step towards modelling high level dialogue
structure. The segments could later be linked inside
a structure that describes the interactions between
them. This task, called dialogue topic segmenta-
tion (DTS), finds utility in dialogue generation (Xu
et al., 2021a) and summarising (Chen and Yang,
2020), among other applications.

DTS has received less attention compared to
monologue or written text topic segmentation, pri-
marily due to the scarcity of annotated data but
some DTS approaches get good results on task-
oriented dialogues (Takanobu et al., 2018) or con-
versations with a restricted set of possible top-
ics such as meeting minutes (Hsueh et al., 2006;
Georgescul et al., 2008). Xing and Carenini (2021)
suggest another method to tackle more varied dia-
logues. They use the TextTiling algorithm (Hearst,
1997), that relies on a similarity metric between
subsequent blocks of text to identify topic bound-
aries, and enhance it with a learned utterance-pair
coherence scoring model based on BERT (Devlin
et al., 2019) as similarity metric. They obtain
good results in English and Chinese when eval-
uating their model on three datasets: DialSeg_711
(Xu et al., 2021b), Doc2Dial (Feng et al., 2020),
and ZYS (Xu et al., 2021b). Even though these
datasets cover different domains, they all contain
task-oriented conversations. Evaluating this model
on more open-domain dialogues would provide in-
sight on the limits of its generalisation capability.

In this paper we present an improved version
of the original TextTiling algorithm1, where we
use linguistics properties of dialogue to identify
the topic shifts. Our aim is to reach a comparable
level of accuracy as the model proposed by Xing
and Carenini (2021) but with a formal approach.
Since we are interested in the structure of topical

1Our code is available at https://gitlab.inria.fr/
adecker/topicsegmentationtexttiling.git.
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interactions, an explainable model would help us
better understand what features play a role in per-
ceiving topic shifts. A rule-based approach also
has the advantage of minimising the amount of
computation required by our model, which is more
sustainable. Following our goal to build a general
model of interaction, we work with multi-party
casual conversations, characterised by their more
chaotic nature.

To summarise our contributions in this work: we
(1) reproduced Xing and Carenini (2021)’s model;
(2) trained a Bert-based model to improve the Text-
Tiling algorithm; (3) improved the TextTiling algo-
rithm based on linguistic properties; (4) evaluated
topic segmentation in multiparty casual conversa-
tions using the Friends corpus.

2 Related work

2.1 Topic segmentation

As explained by Purver (2011), while defining a
topic may seem straightforward in well-defined
tasks such as news broadcasts (each news item),
business meetings (agenda items), or court tran-
scripts (arguments), trying to get a finer segmenta-
tion can make the task quite complex. Annotators
often exhibit disagreement, and finer-grained seg-
mentation leads to even poorer agreement.

DTS presents additional challenges compared
to monologue topic segmentation. In dialogue set-
tings, interactions create more complex exchanges
where the points that are central to the topic under
discussion are not necessarily explicit. As a re-
sult, producing topic segmentation annotations of
great quality is even more complicated and apply-
ing technical approaches developed for monologue
topic segmentation to DTS is not always success-
ful, these methods are not yet able to tackle open
domain conversations (Xing and Carenini, 2021).

Existing methods can be broadly categorised
into unsupervised techniques (i.e. feature-based
approaches) that rely on lexical co-occurrence
(Hearst, 1997; Galley et al., 2003a; Eisenstein and
Barzilay, 2008) or latent topical distribution (Eisen-
stein and Barzilay, 2008; Riedl and Biemann, 2012;
Du et al., 2013) with the assumption that a signifi-
cant change in vocabulary corresponds to a change
in topic (Halliday and Hasan, 1976), and super-
vised methods(Arguello and Rosé, 2006; Takanobu
et al., 2018). However, the lack of annotated di-
alogue data hinders the progress in neural-based
approaches for DTS (Hearst, 1997).

One prominent technique used in dialogue topic
segmentation is the TextTiling algorithm and its
extensions. TextTiling was originally introduced
by Hearst (1997) and relies on a similarity metric
between subsequent blocks of text to identify the
topic boundaries. It has been widely employed
for topic segmentation in various domains as it
is unsupervised. It relies on a similarity metric
between subsequent blocks of text to identify the
topic boundaries. This method, described in more
details in Section 2.2, has been improved in differ-
ent ways. Galley et al. (2003b) introduce lexical
chains. Song et al. (2016) use word embeddings
to measure the similarity of successive sentences,
which is more adapted to dialogue than lexical sim-
ilarity at a block level. Xu et al. (2021b); Xing and
Carenini (2021) use BERT (Devlin et al., 2019) to
capture deeper semantic relations at the utterance
level.

However, these approaches may not be as reli-
able when applied to casual and open-domain con-
versations. Multi-party dialogues and long-term
conversations add additional complexities to the
topic segmentation task. Such conversations can
involve multiple simultaneous discussions, refer-
ences to past conversations that shape the current
topic without clear indications, and a shared history
among participants that influences the language and
references used, potentially deviating from stan-
dard usage (Yule, 2013). Additionally, external
interruptions by other characters can further dis-
rupt the ongoing topic.

In summary, DTS presents a complex task,
due to the inherent chaos introduced by interac-
tions and the scarcity of annotated data. Techni-
cal approaches for DTS include feature-based ap-
proaches, and neural-based techniques. The adap-
tations of TextTiling to dialogue and the extensions
proposed these past years have shown promising
results in the field of dialogue topic segmentation.

However, further advancements are needed to ad-
dress the unique challenges posed by open-domain
casual conversations and achieve topically coherent
segmentation.

2.2 TextTiling Approach

TextTiling (Hearst, 1997) is a topic segmentation
algorithm that predicts topic boundaries for a given
text. It relies on lexical distribution information and
its execution follows three main steps: (1) tokeniza-
tion, (2) lexical score determination, (3) boundary
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Figure 1: Segmentation in spans of w tokens and compu-
tation of the lexical scores in the TextTiling algorithm.

identification. The text is first split in spans of w to-
kens, then a lexical score is computed at the bound-
ary between each span. For instance as represented
on Figure 1, for a text of n spans {s1, s2, ..., sn},
there are n− 1 boundaries and thus n− 1 lexical
scores to compute.

Two approaches are suggested in the original
paper to measure this score. One is based on
the lexical similarity between the two blocks of
k spans on each side of the boundary. As Figure 1
shows, the lexical score score(i) (corresponding
to the boundary i) would correspond to the portion
of tokens present in both blocks, i.e, both in the
set of spans {si−k+1, ..., si−1, si} and in the set
{si+1, si+2, ..., si+k}. The other approach focuses
on new words in a segment of text. The lexical
score score(i) would be the ratio of never-yet-seen
words in an interval of 2k spans centred around the
boundary i divided by the total number of tokens
in this interval. Stemming and Lemmatisation are
suggested to improve the lexical similarity scores.

The maximal changes in the lexical scores are
then computed thanks to “depth scores” by look-
ing at the depth of the “valley” in which a given
lexical score falls. A deeper valley means that the
observed lexical score is more different from pre-
vious and later scores, which indicates a higher
chance of topic shift. Formally, given a boundary
i, we measure the depth of this valley by retriev-
ing the first lexical score on the left that forms a
pic, i.e. hl(i) such that it is greater than the score
directly on its left. We retrieve hr(i) similarly on
the right. The depth score of the boundary i is
then computing by adding the depths on both sides:
dp(i) = (hl(i)−score(i))+(hr(i)+score(i))

2 . A smooth-
ing of the lexical scores prevents small perturba-
tions to impact the depth computation. Figure 2
shows two cases of depth score computation. The
first one (i) is classical, where hl(i) and hr(i) are
the first pics on the left and right of the considered
score. The second case (j) illustrates the role of
smoothing, as their is a very small pic between
score(j) and the hr(j) we actually consider. With-
out smoothing, score(j+1) would have been used

Figure 2: Examples of lexical scores used in the depth
scores computation.

to compute the depth score while it would not be
representative of the real lexical similarity at this
point.

The local maxima of the depth scores are then
chosen as topic boundaries. In practice these
boundaries are shifted to the closest gap between
two paragraphs because the first split into tokens
of length w erases this structure.

3 Methodology

3.1 Models

We compare two enhancements of the original
TextTiling algorithm, one developed by Xing and
Carenini (2021) based on BERT and one based on
linguistic properties. Our goal is to see if a feature-
based approach can compete with one based on
a language model on complex data such as our
Friends dataset.

We use Xing and Carenini (2021)’s original
dataset for training but also compare the results
when adaptating their approach to our dataset. The
adaptations and results are detailed in Section 4.

Our main contribution is the feature-based ap-
proach where we adapt the original TextTiling algo-
rithm to dialogue and use more linguistic properties
to identify the topic shifts.

3.2 Baselines

As baselines, we use the original TextTiling algo-
rithm that exists in the Python library Nltk2 as well
as the random baseline used by Xing and Carenini
(2021) which assigns boundaries with a probabil-
ity b

k where k is the number of utterances and
b ∈ [[0, k − 1]] is a randomly chosen number of
segment boundaries. We ran ten iterations of this
random baseline where only the Fk1 and Fk2 had
significant differences from one iteration to the

2https://www.nltk.org/_modules/nltk/tokenize/
texttiling.html
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other. We thus chose the iteration with the best
result on these scores for the final comparisons.

3.3 Evaluation Metrics

We use three evaluation metrics for each exper-
iment: Pk error score (Beeferman et al., 1999),
which is calculated by comparing the model’s pre-
diction within a certain sliding window to the
ground-truth segments, the standard F1 measure,
and a relaxed version of it that we call Fk. This
adapted F-measure considers that a boundary is
correctly identified by the model if there is a
ground-truth one at most k utterances before or
after the predicted one, the corresponding ground-
truth boundary cannot count a second time. In other
words, we shift the predicted boundaries that are
close to a ground-truth one so that they are consid-
ered accurate. We also give twice as much weight
to precision compared to recall as we consider that
finding right boundaries is more important than
finding all of them, which decreases the perfor-
mance of a model that would suggest boundaries
between most utterances.

3.4 Dataset

For these experiments we use transcriptions in En-
glish of the episodes of the TV show Friends. Tran-
scripts for all ten seasons (236 episodes), anno-
tated in scenes and with additional notes, were
used for the Character Mining project (Chen and
Choi, 2016) and their dataset is available online3

(Apache License, Version 2.0).
Casual conversations are central to human inter-

actions but finding suitable data to analyse them,
in particular at the topical level, remains compli-
cated (Gilmartin and Campbell, 2016). For this rea-
son, using transcriptions from a TV show seemed
like a good idea for a first approach of our prob-
lem as it enabled us to have a sufficient amount
of data to work with ML tools, while remaining
close enough to real-life dialogues. Studies have in-
deed shown that spoken language in fiction is quite
similar to spontaneous speech (Forchini, 2009).

The Friends dataset is not annotated in topics but
we chose to rely on its segmentation in scenes to
create the annotations. Additionally, we consider
that the notes in the transcripts indicate an impor-
tant enough change to create a topic shifts. As a
result, our assumption is that the topic boundaries
coincide with the notes and change in scene. This

3https://github.com/emorynlp/character-mining

annotation method is far from perfect but it has the
advantage of being objective.

The example below is an extract of our dataset.
We can see that five different characters appear in
this short extract, as well as what we consider as
two different topics as there is a note between the
second and third intervention of this extract. The
note explains that a new character enters the room,
which is a sufficient disruption to create a topic
shift. However in practice, the first speech turn
after the note remains on the previous topic and
the shift happens right after. This is quite common
in the dataset and not unexpected based on real
life dialogues, especially when they involve many
people. Moreover, the format of the transcriptions
is such that concurrent events and/or speech turns
are written down in a given order and overlapping
are not represented. For this reason, evaluating a
topic segmentation solely based on the exact place
boundaries should have been placed does not neces-
sarily reflect the quality of a model as we discussed
earlier in Section 3.3.

Joey Tribbiani: Strip joint! C’mon, you’re
single! Have some hormones!
Ross Geller: I don’t want to be single, okay?
I just... I just- I just wanna be married again!
(Rachel enters in a wet wedding dress and
starts to search the room.)
Chandler Bing: And I just want a million
dollars!
Monica Geller: Rachel?!
Rachel Green: Oh God Monica hi! Thank
God! I just went to your building and you
weren’t there and then this guy with a big
hammer said you might be here and you are,
you are!

4 Adapting Xing and Carenini (2021)’s
BERT-based model to our Dataset

Xing and Carenini (2021) enhanced the original
TextTiling algorithm by replacing the similarity
metric by a trained utterance-pair coherence scor-
ing model based on BERT. They use the Next Sen-
tence Prediction BERT and fine-tune it with a pair-
wise ranking loss so that the model learns what
pairs of sentences are more or less coherent. They
use DailyDialog conversations4 to train their model

4Xing and Carenini (2021) also trained a model for Chi-
nese on NaturalConv but our own work being done with En-
glish dialogues we will not discuss this further.
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by feeding it pairs of utterances that they indicate
as relatively more or less coherent: Two adjacent
utterances (based on Conversation Analysis, Sche-
gloff and Sacks (1973)) are more coherent than
two utterances randomly taken from a given con-
versation (and thus not necessarily adjacent or even
subsequent), which in turn are more coherent than
two utterances belonging to different conversations.
Figure 3 in Appendix is a representation of these
different levels of coherence.

This model replaces the original lexical simi-
larity and thus outputs the lexical scores used to
compute depth scores and then topic boundaries. It
is important to note that the model itself is trained
on a pairwise coherence ranking task, which means
that it learns to judge how likely two utterances
are to follow each other based on the coherence of
the pair. The final goal is however to segment a
dialogue into topics, the model is thus used with
the TextTiling method and evaluated on its ability
to produce the valid topic segmentation.

We applied these enhancements on our own
dataset and ran different experiments to assess the
performance of the model on multi-party casual
conversation such as the ones in the Friends dataset.

We compare the results when Xing and Carenini
(2021)’s and our data is used for training. We ex-
pect better results with our own training data as it
would be more similar to the texts we try to seg-
ment.

For our first experiments, we used all seasons
except for one as training data and evaluate on the
remaining season. However, for a fairest compar-
ison with the feature-based model, which can be
evaluated on all seasons, we later worked with mod-
els trained on three seasons and evaluated on the
seven remaining ones.

4.1 Learning Curve

Since we evaluate the model on a different task as
the one it is trained on, i.e., we evaluate it on the
topic segmentation task while it was trained for ut-
terance pair coherence scoring, we wanted to know
how much training was needed for the model to
show consistent results. We thus trained different
models for 10 epochs to see how the results evolved
with the training. Even though the loss decreases
along training, the results on the actual topic seg-
mentation task do not improve consistently. Table 1
shows the results for one model and we can see that
the evolution in the scores is not consistent but also

that the best epoch is not the same for all the mea-
sures. Moreover, while for model c-3 (Table 1) the
best results can be found among the last epochs,
other models found in Appendix give better results
in their first epochs (Tables 5 and 6).

Experience F1 ↑ Fk1 ↑ Fk2 ↑ Pk ↓
Epoch 1 19.25 44.05 51.36 50.26
Epoch 2 19.39 45.98 52.53 51.55
Epoch 3 19.53 46.14 53.49 50.44
Epoch 4 17.83 41.04 49.53 48.97
Epoch 5 20.18 46.10 53.58 51.47
Epoch 6 20.47 46.10 52.60 50.84
Epoch 7 19.66 43.91 51.64 51.94
Epoch 8 20.50 46.76 54.09 51.01
Epoch 9 20.53 45.34 51.87 51.51
Epoch 10 20.73 45.90 52.93 51.71

Table 1: Average results of 10 epochs for the model c-3.

4.2 Coherence Layers

Regarding the coherence layers, our dataset is not
annotated in dialogue acts nor topics, which makes
it impossible to use adjacency pairs or utterances
from different topics as Xing and Carenini (2021)
suggest. However, we believe that the annotation
in scenes, episodes and seasons, as well as the ad-
ditional notes in the transcripts, provide sufficient
information to build utterance pairs of different co-
herence. As mentioned earlier, we consider that a
note usually indicates an important enough change
to create a topic shift, for this reason they are an-
other type of boundary we consider when building
our pairs and we subdivide each scene in smaller
spans of utterances based on the note boundaries.
As a consequence, we consider the following types
of boundaries in decreasing order of coherence:
note, scene, episode, season. In practice, it means
that we have six levels of coherence ranked in de-
creasing order:

a subsequent utterances within the same note
span;

n randomly picked utterances within the same
note span;

c randomly picked utterances within the same
scene;

e randomly picked utterances within the same
episode;

s randomly picked utterances within the same
season;
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d randomly picked utterances within different
seasons.

As Xing and Carenini (2021) only had three levels
of coherence, we try several settings with our own
data. We include the subsequent utterances [a] and
the randomly picked utterances within the same
note span [n] in all our settings to reproduce the ‘ad-
jacent’ and ‘same dialogue’ coherence levels from
Xing and Carenini (2021). We try different layers
for the third coherence level (within the same scene
[c], within the same episode [e] and within differ-
ent seasons [s]), and we also train one model with
more layers: [c], [e], [s], and [d]. Table 2 shows
the results of different models after one epoch of
training. The models named X-1 were trained on a
dataset containing utterances from all the seasons
except the first one (and thus evaluated on season
1), while the models named X-3 were trained on all
the seasons except the third one. We can see that
in both cases, the model [d] shows the best results.
However, if we have a look at the results for the
second epoch, model [c]-1 gets better results.

We see again that the results are not consistent
throughout the epochs and choosing the best setting
in terms of layers of comparisons is complicated.

However, we can see that having more layers
does not seem to provide better results so we de-
cided to work with three layers like Xing and
Carenini (2021). We worked with subsequent ut-
terances within the same note span [a], randomly
picked utterances within the same note span [n]
and randomly picked utterances within the same
episode [e]. [a] and [n] to reproduce the first two
layers of Xing and Carenini (2021) as said before,
and [e] because it is the middle coherence layer
that we have.

Another problem of the models we have dis-
cussed so far was that they were trained on nine
out of the ten seasons of the dataset, which leaves
only one season for the evaluation while the feature-
based model can be evaluated on all of them. We
thus trained some models for two epochs on one,
three and four seasons and saw that using only one
season produced significantly worse results. We
eventually decided to work with three seasons for
our comparisons with the feature-based model.

4.3 Model Stability

To assess the stability of our model we trained
different versions of it on different training subsets
based on the same coherence layers. We built three

Experience F1 ↑ Fk1 ↑ Fk2 ↑ Pk ↓
ML [c]-1 25.96 57.49 62.74 51.97
ML [d]-1 27.18 58.69 63.61 50.20
ML [cd]-1 21.94 51.06 62.33 53.37
ML [cesd]-1 25.95 56.34 61.89 50.54

ML [c]-3 19.25 44.05 51.36 50.26
ML [d]-3 20.42 48.22 54.15 54.22
ML [cd]-3 20.37 45.06 53.03 47.32

Table 2: Average results for different models trained on
Friends with different coherence layers (Epoch 1).

subsets (based on seasons 2, 3 and 4, and with
the coherence layers a, n and e as stated above)
and trained three models per subset for two epochs.
The results can be seen in Appendix in Table 7.
When compared with a t-test, about half of the
models gave significantly different results whether
the comparison was done between epochs, between
models trained on the same training subset or on
different subsets. Some models performed well in
terms of F-measure (the classical one as well as our
adapted version) but worse than the others in terms
of Pk.

To do the fairest comparison with our feature-
based model, we chose to work with the best ver-
sion of this model. Since none of the models was
performing the best on all of the measures we con-
sidered, we chose the best one in terms of Pk among
the ones with best F-measures (d2 m2 e2 in Sec-
tion 6.1). While the results seem lower than those
of other models we presented in this section (see Ta-
ble 2 for example), this model was trained on three
seasons (instead of nine for the previous models)
and can thus be evaluated on seven seasons (instead
of one), which can explain the lower results.

5 Improving the original TextTiling
algorithm with Linguistic Features

In parallel to the experiments with the BERT-
based model, we worked on enhancing the original
TextTiling algorithm with more linguistic features.
Such a model has the advantage of being explain-
able, as opposed the BERT-based one.

Two basic ideas are discussed in the literature
when it comes to identifying changes in topics
(Purver, 2011). The first one is that a change in
topic implies an important change in terms of con-
tent. For example, it corresponds to the introduc-
tion of a new vocabulary (Youmans, 1991) which

182



is more or less constant inside a topic (Morris and
Hirst, 1991). Additionally in a dialogue, the most
active participants can change based on the topic.
The second insight is that there exist distinctive
topic boundary features such as discourse mark-
ers or aspects of the prosody. Questions can also
indicate a continuity of the current topic.

We decided to include both approaches in our
version of TextTiling. Our idea was to complexify
the similarity metric by taking more features of the
text into account.

5.1 Adaptations of the Original TextTiling
Algorithm

The original TextTiling algorithm proposes two
approaches to segment a text. In the Block Com-
parison approach, the lexical scores represent the
similarity between two blocks in terms of tokens.
Two blocks with numerous tokens in common will
have a higher score than a block that has unique to-
kens compared to the other block. The Vocabulary
Introduction method focuses on the amount of new
tokens in two consecutive blocks compared to the
number of non stop-word tokens in the blocks. In-
stead of considering only never-yet-seen words we
use a memory parameter m: a word is considered
new if it did not appear in the m last sentences of
the text. We set this parameter to 20. This adapta-
tion accounts for the fact that in a long dialogue, a
topic can be resumed after talking about something
else.

Moreover, the original TextTiling algorithm
splits the text in spans of w tokens which we sup-
posed was not the most relevant for dialogue. For
this reason, our adaptation splits the text in se-
quences of utterances such that the number of to-
kens is the closest possible to w (with w = 12 as it
seems to be a reasonable length for an informative
utterance). In practice, most of the spans contain
only one utterance, they can contain more when
the utterances are very short and are thus less likely
to be informative.

5.2 New Feature-Based Additions
We also wanted to consider other features of dia-
logue when computing the similarity scores. We
considered the changes in speakers throughout the
conversation (Nguyen et al., 2012). We tried two
different ways to modify the depth scores obtained
after the block comparison or vocabulary introduc-
tion. In one case we increased the depth scores
following each utterance that introduced a new

speaker. The other modification we tried was in-
spired from the Block Comparison method. We
computed a depth score for each speaker of the
conversation based on their proportion of interven-
tions in a block. It means that on top of considering
great changes in the lexicon (original Block Com-
parison method), we also consider changes in terms
of speaker distribution (speaker depth scores). The
mean of all these scores was then averaged with
the original depth scores, where the original scores
weight twice as much as the speaker scores.

We took questions into considerations with the
assumption that a topic shift would not directly
follow a question. This hypothesis is rather naive
but we decided to see what results a very basic
implementation could produce.

And lastly we used the coreferee Python library
to take coreference chains (Schnedecker, 1997) into
account in the computation of our depth scores.
Our assumption was that a topic shift is less likely
to exist inside a coreference chain. For this reason,
we smoothed the gap scores between the first and
last mention of a given reference.

5.3 Comparison of the Features
We tried these features separately and combined
them in different ways to see which combinations
would give us the best results. The experiments are
summarised in Table 3.

Experience F1 ↑ Fk1 ↑ Fk2 ↑ Pk ↓
BC 10.78 30.57 45.60 49.58
VI 9.78 27.55 43.29 52.40
BC+VI 11.00 30.50 45.85 49.51
BC+SI 10.89 29.95 46.14 48.57
BC+SD 14.94 39.55 52.38 46.70
BC+SD+Q 14.94 39.55 52.38 46.70
BC+SD+S 14.94 39.55 52.38 46.70
BC+VI+Co+SD 15.45 40.32 53.63 47.43

Table 3: Results of different feature based models.
Block Comparison (BC), vocabulary introduction (VI),
coreference chains (Co), speaker introduction (SI),
speaker depth (SD), questions (Q), stemming (S)

The best results are obtained with the Block
Comparison method augmented by the Speaker
Depth feature. The results are equivalent to the
model that combined Block Comparison, Vocabu-
lary Introduction, Coreference chains and Speaker
Depth. However, coreference chains are compu-
tationally expensive to retrieve, which makes the
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model BC + SD more interesting.
We can also see that stemming the text does not

improve the results. Lemmatisation gave the same
result. This could be due to the data being artificial
in the sense that scenarists may avoid repetitions
when it is not for the sake of humour.

In the following, we will hence use BC + SD for
comparisons with other models.

6 Final Comparisons and Conclusion

6.1 Comparison of All the Models

Table 4 summarises the results for the best feature-
based model, the best ML-based model trained on
Friends and the best ML-based model trained on
the original data from Xing and Carenini (2021),
as well as the two baseline models discussed above
(random baseline and original TextTiling algo-
rithm). These results are based on the evaluation
on season one and five to ten only as the ML-based
model was trained on the seasons two to four.

Experience F1 ↑ Fk1 ↑ Fk2 ↑ Pk ↓
BC + SD 15.06 40.36 52.94 46.44
ML Friends 18.98 42.71 48.45 48.43
ML OG data 15.07 38.33 47.79 56.41
OG TextTiling 10.90 32.43 46.90 52.45
Random 13.95 37.74 42.28 55.74

Table 4: Comparison of the different models (Evalua-
tion: Seasons 1, 5, 6, 7, 8, 9, 10 only).

As we expected, using the Friends dataset for
training gives significantly better results than a less
relevant dataset, as the one used originally by Xing
and Carenini (2021). Nevertheless, we can note
that in terms of F1-score, our feature-based model
and the ML-based model trained on the original
data are equivalent. As we have explained earlier,
the F1-score is not the most meaningful measure-
ment for the topic segmentation task but this result
still shows a certain generalisation capacity from
Xing and Carenini (2021)’s model.

We also see a clear improvement between the
original TextTiling algorithm and our enhanced
version, especially for the Pk, which shows that the
linguistic properties we considered and described
in Section 5.2 are relevant for our task.

The best model is the ML-based model trained
on Friends when we look at the F1 and the Fk1.
However, our feature-based model is better in terms

of Pk and Fk2. This shows that for the Topic Seg-
mentation task a feature-based model can compete
with language models on certain types of dialogues.
Moreover, the BERT-based model is not very sta-
ble on our dataset, which we believe is due to the
complexity of multi-party casual conversations as
opposed to the more controlled dialogues usually
used in Topic Segmentation. Our approach based
on linguistic features provides an explainable base-
line.

6.2 Conclusion and Future Work

In this paper we investigated the task of linear topic
segmentation on multi-party casual conversations.
Since this kind of data is complicated to obtain,
we chose to work on transcriptions of the TV-show
Friends as this dataset is available online. The num-
ber of speakers and the context of the dialogues cre-
ates the possibility for various types of topic shifts
which can be challenging for a model. We used the
TextTiling approach which uses a similarity metric
between subsequent parts of a text to identify the
topic shifts. We enhanced it with more linguistic
properties that could play a role in identifying topic
shifts, and compared it to the same approach but
enhanced with a trained utterance-pair coherence
scoring model based on BERT.

As BERT has been trained on the next sentence
prediction task, it seems like a relevant model for
topic segmentation and in particular to improve the
TextTiling approach. Other similar models such
as BART (Lewis et al., 2020) or T5 (Raffel et al.,
2020) did not seem as suitable for our work as
they have not been explicitly trained for the next-
sentence prediction task. The generalisation ca-
pabilities of T5 would probably make it able to
produce similar results to BERT, or even better
ones, but it would be more complicated to under-
stand the dialogue features used to identify topic
shifts. These reasons explain why we chose to use
BERT, as Xing and Carenini (2021) had done.

While the BERT-based improved model showed
good results, it did not significantly outperform
the enhanced feature-based approach with all the
measures we considered. It would be interesting
in a future work to see if T5 or newer models pro-
duce better results. Our concern on explainability
was however central in this first set of experiments.
For this reason, working on improving even more
our feature-based approach by investigating the
different types of topic shifts and their linguistic
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specificities could be very insightful. It would pro-
vide us more clues on the structure of interaction
and help us create a model of it at the topic level.

Limitations

In this study, we used the model BERT for one as-
pect of our experiments. We acknowledge that this
model is not the most recent one but we considered
it suitable for our task thanks to its specific training
for next-sentence prediction. Working with more
recent models would imply a higher energy cost
while we believe these models would lack the ex-
plainability we are looking for in terms of structure.

We also chose to work on transcriptions from
fictional dialogues, which creates two limitations.
We discussed one of them in the paper when we
explained that the fictional aspect of these conversa-
tions was likely not the source of huge differences
with natural casual conversations. The second limi-
tation however concerns the lack of multi-modality
of our work. Transcriptions cannot contain all
the information (visual, prosodic, etc.) required
to capture fully a conversation. In particular, our
dataset did not contain any prosodic information
and lacked most of the visual context one may need
to understand topic shifts that rely on a change in
the context. While the notes could have brought
some additional information, we chose to focus
on linguistic information in this study. But future
work on topic identification should include more
modalities to be complete.

Ethical Statement

For this experiment, we did not employ any people
and we used tools that were free to use.

We have taken care to ensure that the data used
is representative of a certain diversity. For example,
the corpus is the corpus is balanced in terms of
gender. However, we acknowledge that working
with the TV show Friends covers little cultural
diversity.
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A Appendix

A.1 Computational Resources Used
We tried to limit our use of heavy computational
powers. Our feature-based model was run on a lo-
cal machine and except for the experiments that in-
volved co-reference chains identification, creating
the topic segmentation of one episode of Friends
takes less than a few seconds.

As for the experiments using Machine Learning,
we did our best to optimise the batch sizes and the
number of experiments we could run in parallel
to reduce the training time as much as possible.
We ran our experiments on the Lark servers from
CLASP (Gothenburg University) where we used
one Nvidia Titan RTX GPU. Our model is based on
the Next Sentence Prediction BERT model (Devlin
et al., 2019), each epoch took about one hour of
training.

A.2 Different Coherence Levels Considered
by Xing and Carenini (2021)

Figure 3 illustrates the three levels of coherence
Xing and Carenini (2021) used in their experiment.
As explained above, we had the possibility to use
more different layers thanks to the segmentation in
notes of our dataset.

Figure 3: Levels of coherence considered by Xing and
Carenini (2021)

A.3 Additional results of the
Machine-learning-based Approach

Learning Curve Tables 5 and 6 show the results
when training one model on nine out of the ten
available seasons of Friends for ten epochs. We
can see that the results do not consistently improve
from one epoch to another and the differences be-
tween each epochs are not very big. A t-test indi-
cates that the results are significantly different from
one epoch to another, however the evaluation set is
small due to the fact that these models were trained
on nine seasons. Hence, we decided to stop train-
ing our models for such a long time and trained
them for only two epochs in our later experiments.

Experience F1 ↑ Fk1 ↑ Fk2 ↑ Pk ↓
Epoch 1 20.42 48.22 54.16 54.22
Epoch 2 19.92 44.50 51.38 53.09
Epoch 3 18.90 43.76 51.68 51.40
Epoch 4 19.91 46.13 52.11 52.54
Epoch 5 19.96 47.19 53.59 53.49
Epoch 6 19.81 46.08 51.69 52.67
Epoch 7 20.54 46.49 53.09 53.71
Epoch 8 20.75 47.23 52.47 53.39
Epoch 9 20.50 46.88 52.44 53.93
Epoch 10 20.14 47.00 52.44 54.18

Table 5: Resutls of 10 epochs for the model d-3.

Experience F1 ↑ Fk1 ↑ Fk2 ↑ Pk ↓
Epoch 1 25.96 57.49 62.74 51.97
Epoch 2 27.48 59.19 63.84 50.71
Epoch 3 26.31 58.50 62.81 52.44
Epoch 4 27.18 58.03 63.03 51.90
Epoch 5 27.42 58.01 62.71 51.37
Epoch 6 27.09 58.50 63.89 51.12
Epoch 7 26.53 57.24 62.44 50.56
Epoch 8 26.51 57.72 62.50 52.04
Epoch 9 26.72 57.71 62.83 51.51
Epoch 10 26.81 57.54 62.96 51.61

Table 6: Results of 10 epochs for the model c-1.
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Model Stability To assess the stability of our
model we trained different versions of it on differ-
ent training subsets based on the same coherence
layers. We built three subsets (seasons 2, 3 and
4, coherence layers a, n and e) and trained three
models per subset for two epochs. Table 7 shows
that about half of the models gave significantly dif-
ferent results when compared with a t-test whether
the comparison was done between epochs, between
models trained on the same training subset or on
different subsets. Some models performed well in
terms of F-measure but worse than the others in
terms of Pk.

Experience F1 ↑ Fk1 ↑ Fk2 ↑ Pk ↓
d1 m1 e1 17.66 44.82 48.66 54.22
d1 m1 e2 17.91 44.97 49.04 54.00
d1 m2 e1 12.26 31.69 42.09 56.93
d1 m2 e2 12.76 33.48 43.20 56.95
d1 m3 e1 15.35 38.27 47.30 53.10
d1 m3 e2 14.78 38.16 47.52 53.35

d2 m1 e1 16.92 39.59 45.94 50.78
d2 m1 e2 16.20 35.42 42.78 50.21
d2 m2 e1 18.94 42.93 48.57 49.21
d2 m2 e2 18.98 42.73 48.47 48.43
d2 m3 e1 18.36 41.99 47.58 49.55
d2 m3 e2 18.67 41.37 47.44 48.54

d3 m1 e1 17.43 36.53 43.79 46.88
d3 m1 e2 18.74 38.15 44.52 45.63
d3 m2 e1 14.61 34.03 42.33 50.58
d3 m2 e2 10.70 28.29 42.97 54.82
d3 m3 e1 17.94 43.75 48.87 52.44
d3 m3 e2 18.10 42.70 48.11 51.23

Table 7: Results of different models trained on three
training subsets (d1, d2, d3) for two epochs each.
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