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Abstract

Language models (LMs) are a meeting point
for cognitive modeling and computational lin-
guistics. How should they be designed to serve
as adequate cognitive models? To address this
question, this study contrasts two Transformer-
based LMs that share the same architecture.
Only one of them analyzes sentences in terms
of explicit hierarchical structure. Evaluating
the two LMs against fMRI time series via the
surprisal complexity metric, the results impli-
cate the superior temporal gyrus. and This
underlines the need for hierarchical sentence
structure in word-by-word models of human
language comprehension.

1 Introduction

Interest in language models (LMs) has exploded
due to their recent success on language-related
tasks (Min et al., 2021), with many commentators
speculating about their implications as models of
human language processing (see Millière, 2024,
§IV.ii, for a review). The methodological utility
of natural language processing tools for isolating
language-processing functions in the brain is by
now well-established (Brennan et al., 2012; We-
hbe et al., 2014; Henderson et al., 2016; Shain
et al., 2020; Stanojević et al., 2023); however, con-
troversy persists regarding the role of hierarchical
structure as useful or not in characterizing human
language comprehension (e.g., Frank et al., 2012;
Christiansen and Chater, 2015), yielding two re-
lated questions.

1. Is hierarchical structure part of the best de-
scription of human language comprehension?

2. If so, what brain regions subserve this aspect
of processing?

This study investigates these questions by compar-
ing two language models with the same underlying

architecture. One is constrained via a special at-
tention mask that captures hierarchical structure in
the form of syntactic constituency, while the other
lacks this attention mask, capturing only word-
level information. The hierarchy-biased model is a
Transformer Grammar (TG; Sartran et al., 2022),
which differs only from the unconstrained model,
Transformer-XL (TXL; Dai et al., 2019), in the
presence of this attention mask.

We pair these language models with surprisal,
a word-by-word information-theoretic complexity
metric (see Hale, 2016, for a review) to derive
predictions about neuroimaging data. Surprisal
from the hierarchy-biased TG compares against
surprisal from the unconstrained TXL in the task
of predicting fMRI data (Li et al., 2022). This
sets up a clean contrast between hierarchical and
non-hierarchical conceptions of language compre-
hension.

The results, reported in section 6, support the
role of hierarchical structure in language compre-
hension. Surprisal values derived from a Trans-
former Grammar predict fMRI timecourses in bi-
lateral superior temporal gyrus (STG) better than
those from TXL. This supports the view that the
STG is sensitive to hierarchical sentence structure
(Friederici and Gierhan, 2013; Friederici, 2017).

2 Phrase Structure

The Penn Treebank operationalizes one notion
of hierarchical structure (Marcus et al., 1993).
The present study uses these trees, exemplified
in Figure 1. The syntactic analyses that they
express date back to Chomsky’s Standard The-
ory (1965) and can be motivated by considerations
such as substitution, compositionality and structure-
dependence of transformational rules which are re-
viewed in introductory linguistics textbooks (e.g.
Akmajian et al., 2010). For a broad, comparative
discussion of hierarchical structure in language, see
Coopmans et al. (2023).
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Figure 1: An example sentence attested in the stimulus
text (The Little Prince) used in the fMRI study, see
section 5.3.

3 Transformer Grammar

Transformer Grammars (Sartran et al., 2022) model
the joint-probability of a surface string x and its cor-
responding phrase structure tree y, p(x, y). They
incorporate an inductive bias toward hierarchical
syntax via special attention masks. These attention
masks mark the only difference between TG and a
general Transformer-XL (Dai et al., 2019).

TGs apply the idea of parsing as language mod-
eling (Vinyals et al., 2015; Dyer et al., 2016; Choe
and Charniak, 2016) by assigning probability to
labelled, bracketed strings. They innovate on that
idea by restricting — via the additional attention
mask – the information used in label assignment.
This information is restricted to prior composed
phrases and the direct subconstituents of the cur-
rent phrase being composed. These restrictions
result in stack representations that correspond to
levels of a syntactic derivation (for more details on
TG’s recursive syntactic composition see Sartran
et al., 2022, §2.1).

4 Previous Work Investigating Hierarchy
using Computational Modeling and
Neuroimaging Data

This work builds on research that compares word-
by-word difficulty predictions against neuroimag-

Figure 2: An example of a string x and tree y, which
are modeled by a labelled bracketed sequence of (x,y)
(Adapted from Sartran et al., 2022, Figure 1).

ing data. Previous work of this type has found sup-
port for hierarchical structure (Brennan et al., 2012,
2016; Henderson et al., 2016; Li and Hale, 2019;
Shain et al., 2020; Reddy and Wehbe, 2021; Stano-
jević et al., 2023; Sugimoto et al., 2023; Oota et al.,
2023). Hale et al. (2022) and Uddén et al. (2020,
§2) review this interdisciplinary line of work from
computational and neuroscientific perspectives, re-
spectively.

Others, following in the tradition of Elman (e.g.,
1990, see also Frank et al., 2012, Christiansen and
Chater, 2015), have questioned the need for hier-
archical structure. Proponents of this view point
to the successes of LMs that rely just on overt
word sequences in encoding (or decoding) human
brain responses to language (e.g., Caucheteux et al.,
2021a; Caucheteux and King, 2022; Toneva et al.,
2022; see Karamolegkou et al., 2023 for a review).
The most extreme form of this view holds that
word-prediction alone suffices to explain human
language processing (Schrimpf et al., 2021; Gold-
stein et al., 2022a).

The present study addresses this debate regard-
ing the role of hierarchy in language comprehen-
sion by comparing two language models with
the same underlying architecture, the only differ-
ence being that hierarchical structure is explicitly
present (vis-a-vis the additional attention mask) in
one (the TG) and not in the other (the TXL).

5 Methodology

5.1 Language Modeling

A 252M parameter, 16-layer, 8-attention-head TG
was used as the hierarchy-biased model.1 A 252M
parameter, 16-layer, 8-attention-head TXL (Dai
et al., 2019) was used as the unconstrained lan-

1https://github.com/google-deepmind/
transformer_grammars
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Figure 3: Glass brain z-map showing significant clusters of r2 increase for hierarchy-biased TG surprisal (red) or
unconstrained TXL surprisal (blue), thresholded with an expected false discovery rate (FDR) < 0.05 and a cluster
threshold of 50 voxels.

guage model.2 Both models were trained on the
BLLIP-LG dataset (Charniak et al., 2000), as split
by Hu et al. (2020). The training set is comprised of
1.8M sentences (≈40M words). Tokenization was
performed with SentencePiece (Kudo and Richard-
son, 2018) using a subword algorithm (Kudo, 2018)
with a 32K word-piece vocabulary.

The only difference between the TXL and TG in
this study is the additional attention mask. Their
number of parameters, layers, attention heads, and
training/evaluation data (excluding the annotations
used for TG) are identical. Indeed, as reported
in Table A.3, the trained models arrive at highly
similar test set perplexities.

5.2 Linking assumptions

To link brain data to language models, we use
the surprisal complexity metric (Hale, 2001; Levy,
2008). Surprisal is the negative logarithm of the
conditional probability of the next token, given
previous tokens, on a particular LM (for a review,
see Hale, 2016). These per-token numerical values
serve as theoretical predictions that may explain
time-dependent neural signals from people hear-
ing those words. In this case, the neural signal is
the blood oxygen level dependent (BOLD) signal
measured with fMRI at each voxel in the brain (see
§5.3 below).

Whereas surprisal values from the string-
oriented TXL are exact, surprisals from the tree-
oriented TG are approximated using the top
300 trees sampled from a Recurrent Neural Net-
work Grammar (Noji and Oseki, 2021).

5.3 fMRI
5.3.1 Data
The fMRI data analyzed was the the English sec-
tion of the Little Prince Datasets (Li et al., 2022,
N = 49). Participants were scanned while they
engaged in the naturalistic task of listening to an
audiobook recording of David Wilkinson’s English
translation of Le Petit Prince (The Little Prince),
read by Karen Savage. Data collection protocols
and preprocessing steps are reported in the cited
paper.

5.3.2 Statistical Analysis
To assess both LMs with respect to human
neuroimaging data, we pursue an r2 analysis,
following Crabbé et al. (2019, §5).

Single-Subject Statistics For each subject,
we calculate how much the inclusion of the vari-
ables of interest—TG surprisal and TXL surprisal—
increases cross-validated BOLD r2 with respect to
a base model with only predictors of non-interest.
Here, r2 values indicate the voxel-wise variance
explained. Thus, at the first level, two brain maps
are calculated for each participant: one indicating
the increase in cross-validated brain activity r2 as-
sociated with adding TG surprisal to a baseline
model; and one indicating the increase in cross-
validated brain activity r2 associated with adding
TXL surprisal to a baseline model. The baseline
model included: spoken word rate, word frequency,
5 principal components derived from fastText word
vectors (Bojanowski et al., 2016), and the pitch and
acoustic intensity of the narrator’s voice.

BOLD signal is modeled, at each voxel, for
each participant, via generalized linear model.
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MNI Coordinates
Region Cluster size (mm3) X Y Z Peak Stat (z)

Left Superior Temporal Gyrus (STG) 11208 -38.0 -32.0 10.0 5.57
-46.0 -14.0 4.0 5.26

Right STG 10680 48.0 -18.0 6.0 5.36
60.0 -10.0 0.0 5.09

Left Fusiform Gyrus 2224 -46.0 -48.0 -14.0 -4.48
-52.0 -58.0 -18.0 -4.15

Left Pre-Motor Cortex 1552 -44.0 4.0 38.0 -4.16

Table 1: Results of paired T-test between hierarchy-biased and unconstrained cross-validated r2 increase, thresholded
with an expected false discovery rate < 0.05 and a cluster threshold of 50 voxels.

The word-level metrics are temporally annotated
at the offset of each word in the audiobook,
while the speech-related metrics are annotated
every 10ms. All regressors, described in Table
A.1, were convolved with the SPM canonical
hemodynamic response function (Poldrack et al.,
2011). Regressors of non-interest are included to
ensure that any effects found are not due to other
facets of linguistic processing (Lund et al., 2006).

Group-Level Statistics The single-subject r2

increase brain maps (one TG map, one TXL map,
per subject) were entered into a paired t-test to com-
pare the impact of the additions of TG surprisal and
TXL surprisal to base model of the BOLD signal.
The results indicate where the addition of one vari-
able to the base model (either TG surprisal or TXL
surprisal) contributes to explaining the BOLD sig-
nal significantly better than the other.

6 Results

The addition of surprisal derived from the
hierarchy-biased TG model performed above-and-
beyond the addition of surprisal derived from the
unconstrained TXL model in goodness-of-fit (r2)
to the measured BOLD signal in bilateral STG (Fig.
3; Table 1). The unconstrained model performed
above-and-beyond the hierarchy-biased model in
the left fusiform gyrus and pre-motor cortex. The
significant clusters found were thresholded using
an expected false discovery rate < 0.05 and a cluster
threshold of 50 voxels.

7 Discussion

The findings support the role of STG in
hierarchically-sensitive sentence processing
(Friederici and Gierhan, 2013; Friederici, 2017).

Notably, the results for surprisal in STG are
largely localized to auditory cortex (see also
Willems et al., 2016). These results suggest, in
line with the sensory hypothesis (Dikker et al.,
2009), that hierarchical structure from earlier
in the sentence can impact low-level sensory
processing. Prior investigation into early (<
150 ms) processing using MEG has found that
auditory cortex is sensitive to phrase structure
(Herrmann et al., 2009). This early sensitivity to
hierarchical structure indicates that previously
encountered structure may modulate sensory
processing of subsequent words in a top-down
manner. Employing a precise regression analysis
and holding the architecture of LMs constant, the
current study offers novel evidence in support of
the sensory hypothesis and the early influence of
hierarchical structure in language comprehension.

One region that has been largely implicated in
predictive processing such as the type modeled here
(e.g., Henderson et al., 2016; Brennan et al., 2020;
Shain et al., 2020) is the left inferior frontal gyrus
(LIFG). The present study does not implicate LIFG.
It is possible that this null result could be due to the
fact that the level of prediction and prediction vio-
lation here is too modest to invoke the LIFG, which
seems more associated with processing particularly
complex stimuli.

The success of modern LMs in natural language
processing tasks has revived hope (see §4) that hi-
erarchical structure could be left out of an adequate
cognitive model. The results reported here sug-
gest contrariwise. This echos Huang et al. (2024),
who find that LMs strongly under-predict human
reading time on syntactically challenging construc-
tions, Antonello and Huth (2024) who differentiate
LM layers that better-predict successor words from
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layers that better-predict fMRI data, and Yedetore
et al. (2023), who find that unbiased LMs fail to
generalize structurally-dependent constructions in
a human-like way. With Antonello and Huth, we
acknowledge that unconstrained LMs learn some-
thing about syntax. But it is not enough; in the
context of cognitive modeling, additional bias to-
wards hierarchical structure seems to be needed
(Coopmans et al., 2022).

8 Conclusion

Hierarchical structure remains a key part of the
best characterization of human language compre-
hension. This conclusion rests upon the increase
in BOLD r2 from the addition of TG-derived sur-
prisal compared to the addition of TXL-derived
surprisal. This obtains in a well-known temporal
node of the language network and shores up the
view of the language-processing brain as a system
that performs hierarchical combinatorics. The re-
sults here also support recent arguments against
unbiased LMs as cognitive models of human lan-
guage.

Limitations

The TG (Sartran et al., 2022) and TXL (Dai et al.,
2019) models used in this study are 16-layer mod-
els. A recent study from Mueller and Linzen (2023)
found that depth (number of layers) is a more im-
portant factor in a language model’s generalization
performance than width (embedding and hidden
dimensions, feed-forward layer size). Applying
these findings to the present study by increasing
the depth of the TG and TXL models could yield
interesting results. It is possible that adding more
layers to both models could affect the magnitude
and presence of correlations to brain regions by
influencing the generalization patterns of both TG
and TXL. Given that the procedure here is theo-
retically motivated and the results align with both
these theoretical considerations and previous neu-
roimaging work (e.g., the large scale brain model
of Friederici, 2017), we do not expect the pattern
of results to change. Nonetheless, further investiga-
tion is warranted.

This study only considers English. Follow-up
studies could be performed in additional languages
to solidify and expand the conclusions drawn here.

Finally, as previously mentioned, it has been
found (e.g., Toneva and Wehbe, 2019; Caucheteux
et al., 2021a; Caucheteux and King, 2022) that

intermediate layers of LMs are best at encoding
neural data. An interesting follow-up to the current
study could probe the representations learned by
TXL in its earlier layers and compare how well
they encode neural data against a TG.

Ethics Statement

Language models pose risks when used outside of
their intended scope. The language models used
here are available under a CC-BY 4.0 license, al-
lowing free public use. The training data used here
(Charniak et al., 2000) is semi-controlled in that it
comes from the Wall Street Journal; however, it is
generally important to investigate training data for
harmful human bias, which could find its way into
language models.
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A Appendix

Predictor Description Model-Inclusion

TG Surprisal Surprisal derived from TG at a word hierarchy-biased
TXL Surprisal Suprisal derived from TXL at a word unconstrained
Word Rate Annotation indicating the existence of a spoken word base, hierarchy-biased, unconstrained
Word Frequency Log lexical frequency of a word base, hierarchy-biased, unconstrained
F0 Pitch (fundamental frequency) of the voice of the narrator base, hierarchy-biased, unconstrained
RMS Amplitude Root Mean Square Amplitude of the voice of the narrator (reflecting intensity) base, hierarchy-biased, unconstrained
Word Vector5 5 regressors corresponding to values derived from a word’s pretrained fastText vector base, hierarchy-biased, unconstrained

Table A.1: Generalized linear model predictors

Language Model Perplexity on Test Set

Transformer Grammar (Sartran et al., 2022) 32.82
Transformer-XL (Dai et al., 2019) 34.07

Table A.3: Perplexity values for the TG and TXL language models on the BLLIP-LG test set, as split by (Hu et al.,
2020).
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