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Abstract

In this study, we explore the proficiency of large
language models (LLMs) in understanding two
key lexical aspects: duration (durative/stative)
and telicity (telic/atelic). Through experiments
on datasets featuring sentences, verbs, and verb
positions, we prompt the LLMs to identify as-
pectual features of verbs in sentences. Our
findings reveal that certain LLMs, particularly
those closed-source ones, are able to capture
information on duration and telicity, albeit with
some performance variations and weaker re-
sults compared to the baseline. By employing
prompts at three levels (sentence-only, sentence
with verb, and sentence with verb and its po-
sition), we demonstrate that integrating verb
information generally enhances performance in
aspectual feature recognition, though it intro-
duces instability. We call for future research to
look deeper into methods aimed at optimizing
LLMs for aspectual feature comprehension.

1 Introduction

Aspect is a verbal category that is closely linked
to concepts such as tense, temporality, verbal se-
mantics, and quantification. In linguistics, as-
pect refers to different perspectives on the inter-
nal temporal constitution of a situation (Comrie,
1976; Leiss, 1992; Klein, 1994; Xiao and McEnery,
2004). There is two main sub groups of aspect,
the grammatical aspect which refers to the verbal
flexion in languages such as Slavic Languages, and
the lexical aspect which contains the semantics of
the event or state of a verb phrase situated in time.

In this paper, we focus on the lexical aspect with
two important aspect features: duration and telicity.
Duration (durative/stative) is the property of a verb
or verb phrase that presents a state or an action,
regardless of their endpoints. Durative aspect de-
notes the reading of an action, while stative aspect
denotes the reading of a state. Telicity (telic/atelic)
distinguishes between verbs that describe an action

Label | Sentence

durative | The boxer is hitting his opponent.
stative Bread consists of flour, water and yeast.
telic I ate a fish for lunch.

atelic Cork floats on water.

Table 1: Examples of the two aspect features: duration
(durative/stative) and telicity (telic/atelic) (Metheniti
et al., 2022).

or event as having a specific endpoint. Telic aspect
denotes the reading of the endpoint of an action or
event, while atelic aspect denotes the reading of no
endpoint. Table 1 shows examples for each feature
in English.

The identification of the aspectual features of
the verbs in the sentence could be difficult as other
verb categories or sentence elements such as tense,
temporal adverbials, and context could affect the
reading of the aspect (Zhang, 1995). Using com-
putational models to identify the aspectual features
could be therefore more challenging. There are var-
ious existing works on building datasets for lexical
aspect and training models to classify the sentences
in terms of their aspectual features (Friedrich and
Palmer, 2014; Friedrich and Pinkal, 2015; Friedrich
et al., 2016; Friedrich and Gateva, 2017; Kober
et al., 2020; Metheniti et al., 2022). Nowadays, the
vast expanse of LLMs has also opened the chance
to study linguistics using LLMs (Opitz et al., 2024).
Therefore, it is interesting to probe the proficiency
of LLMs on aspectual features.

In this paper, based on a dataset on duration and
telicity (Metheniti et al., 2022), we evaluate the
ability of 6 different LLMs to identify the two as-
pectual features of sentences by zero-shot prompt-
ing the LLMs in three different levels: sentence-
only, sentence with verb, and sentence with verb
and its position. Our experimental results show
that some LLMs are capable of capturing aspectual
information, while there are some variations and
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weaker performance compared to the fine-tuning
baseline. In addition, adding verb information
generally improves the prediction performance of
LLMs. Overall, our study provides valuable in-
sights into the challenges and opportunities in lever-
aging LLMs for evaluating lexical aspect.

2 Related Work

The evaluation and classification of aspectual fea-
tures of verbs using NLP have been explored exten-
sively in previous research. Siegel and McKeown
(2000) are the first to employ supervised machine
learning methods for aspectual classification.
Friedrich and Palmer (2014) introduced a semi-
supervised approach that combined linguistic and
distributional features to predict a verb’s stativ-
ity/duration, also providing two annotated datasets
for stativity. Furthermore, Friedrich and Pinkal
(2015) focused on classifying clauses based on
their aspectual properties, and expanded the scope
to include situation entity types in Friedrich et al.
(2016). Friedrich and Gateva (2017) contributed
two English datasets with gold and silver anno-
tations of telicity and duration, utilizing an L1-
regularized multi-class logistic regression model.
Hermes et al. (2015) computationally modeled
Vendler classes (Vendler, 1957) for 95 German
verbs, combining distributional vectors with su-
pervised classification. Additionally, Ramm et al.
(2017) developed the first open-source tool for an-
notating morphosyntactic tense, mood, and voice
for verbal complexes in multiple languages. Kober
et al. (2020) introduced a dataset for tense and
aspect concepts using natural language inference
and proposed modeling aspect of English verbs in
context using compositional distributional models.
In a more recent study by using a bunch of
transformer-based models, Metheniti et al. (2022)
conducted experiments on transformer models to
identify aspectual features, revealing biases to-
wards verb tense and word order. However, in
the current era of the advances of LLMs, it is still
unexplored whether the LLMs are able to capture
the aspectual features.
A more detailed introduction to aspect concepts
and their computational approaches can be found
in this survey (Friedrich et al., 2023).

3 Experiments

Dataset. We use the dataset with telicity and
duration-annotated sentences created by Metheniti

et al. (2022). The dataset was built upon two pre-
vious datasets from Friedrich and Gateva (2017)
and Alikhani and Stone (2019). It has two main
subsets, one for duration and the other for telicity.
Each subset contains sentences with the main verbs
and their positions in sentences, as well as binary
labels for durative (‘1) or stative aspect (‘0’) in the
duration subset, and telic (‘1”) or atelic (‘0’) aspect
in the telicity subset. The label distribution in the
test sets is presented in §A.1.

Prompt. Each question consists of a general in-
struction with a choice of answers (e.g. durative
or stative) and the example sentence. We include
the sentence, verb and verb information into the
prompt. In addition, to test the robustness of the
models as well as the ability of the models to com-
prehend the aspectual features both in the sentence
level (without explicitly mentioning the verb) and
the verb level (with explicitly mentioning the verb),
we conduct the experiments in three different levels
with different prompt formats. Table 2 shows the
prompt formats of the three levels in the examples
of duration subset with durative and stative aspects.
In level 1, we only provide the sentence and ask
for the aspect features. In level 2, we include the
verb into the prompt. In level 3, we include the
verb along with its position in the sentence into the
prompt. The prompts are outlined in Table 2.

Models. We evaluate the aspect tasks with the
following close- and open-source instruction-tuned
LLMs: GPT-3.5 (Brown et al., 2020) and GPT-4
(OpenAl et al., 2024), Llama-2-13b-chat-hf
and Meta-Llama-3-8B-Instruct (Touvron et al.,
2023), Gemma-7b-it (Team et al., 2024), and
Mixtral-8x7B-Instruct-v@.1 (Jiang et al,
2024).

Baseline. We compare our zero-shot prompting
of LLMs with the baselines of fine-tuning BERT-
based models (Devlin et al., 2019) on the training
data with and without adding information on the
verb position as in Metheniti et al. (2022). We se-
lect the best performing model bert-large-cased
in their work for fine-tuning as baseline.

LLM Output Extraction. Although we prompt
the LLMs to give answers with single tokens of
telic/atelic and durative/stative, in most cases, the
LLMs respond with more tokens in different for-
mats, and sometimes with explanation of their
choices. We use a string matching method us-
ing RegEx to map the responses to the categories,
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Level Prompt

Level 1 | Does this sentence have durative aspect or stative aspect? Answer with durative or
stative.\n Sentence:\n {sentence}

Level 2 | Does the verb {verb} in this sentence have durative aspect or stative aspect? Answer
with durative or stative.\n Sentence:\n {sentence}

Level 3 | Does the verb {verb} in position {position} of this sentence have durative aspect or
stative aspect? Answer with durative or stative.\n Sentence:\n {sentence}

Table 2: Instruction prompt in three different constraint levels for the durative and stative aspects. Level 1 only
shows the sentence, level 2 shows the sentence and the main verb of the sentence, level 3 shows the sentence, the

main verb and its position of the sentence.

which is commonly used in extracting LLM out-
puts (Argyle et al., 2023). Afterwards, we manually
evaluate the coded outputs and in case of uncertain
responses, we note them accordingly.

4 Results
4.1 Main Results

We summarize the main results of the six LLMs
in Table 3 on the duration test set and the Telicity
test set, as well as the performance of the fine-
tuned model bert-large-cased as the baseline
for comparison.

On the duration test set, GPT-4 achieves the high-
est performance among the LLMs with an accuracy
of 0.74 and an F1 score of 0.76. This is followed by
GPT-3.5 and Llama-2, which both show compara-
ble results in the 0.67 to 0.69 range for both metrics.
The Llama-3 and Mixtral models also perform simi-
larly with slightly lower scores. The Gemma model
demonstrates the lowest performance among the
LLMs with an accuracy of 0.54 and an F1 score
of 0.42. Notably, the baseline large bert model
significantly outperforms all LLMs, achieving an
accuracy and F1 score of 0.96.

On the telicity test set, GPT-4 again leads among
the LLMs with an accuracy of 0.71 and an F1 score
of 0.72. GPT-3.5 and Llama-3 also show strong
performances with scores around the 0.65 to 0.67
range for both metrics. The Mixtral model has
slightly lower scores, and Llama-2 and Gemma ex-
hibit the lowest performance. The fine-tuning bert-
large-cased baseline still outperforms all LLMs.

We show that prompting LLMs to recognize the
two aspectual features in verbs results in lower
performance compared to the fine-tuning baseline,
which exhibits high performance. This suggests
that LLMs might lack the capability to probe the
deep linguistic features of given words and may re-

quire adaptation (i.e., fine-tuning) to effectively per-
form the task. When comparing the two aspectual
features, we observe that the performance of most
models is slightly lower on the telicity test set than
on the duration test set, indicating that recognizing
a/telic aspects is more challenging. Additionally,
among the LLMs, the closed-source models (GPT-
3.5 and GPT-4) demonstrate better performance
than the open-source models.

Duration Telicity
Model Acc | FI | Acc | FI
Gemma 054 | 042 | 052 | 041
GPT-3.5 0.68 | 0.69 | 0.67 | 0.65
GPT-4 0.74 | 0.76 | 0.71 | 0.72
Llama-2 0.67 | 0.67 | 053 | 0.42
Llama-3 0.64 | 0.63 | 0.65 | 0.65
Mixtral 0.62 | 0.63 | 059 | 0.60

bert-large-cased | 0.96 | 0.96 | 0.88 | 0.87

Table 3: Accuracy and F1 scores for various zero-shot
prompted LLMs vs. the fine-tuned baseline model
bert-large-cased on duration and telicity test sets.

4.2 Verb and Verb Position Can Influence the
Evaluation

In this section, we analyze the impact of including
the verb and its position in the sentence on the
evaluation of aspectual features by LLMs in the
duration and telicity test sets. we present F1 scores
across three levels of prompting (sentence-only,
sentence with verb, and sentence with verb and its
position) in the bar plots in Figure 1 and they reveal
significant insights partially.

In the duration set, Gemma’s performance re-
mains consistent across different levels of context,
while GPT-3.5 and GPT-4 show substantial im-
provements with additional contextual information,
although GPT-3.5 experiences a slight drop at the
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Figure 2: Count of prediction differences in three different levels. The dark bars represent the count of correct
predictions in level 1 which are falsely predicted in level 2&3. The light bars represent the count of false predictions

in level 1 which are correctly predicted in level 2&3.

highest level. Llama-2 and Llama-3 generally ben-
efit from more context, but Llama-3’s performance
slightly decreases at the highest level. Mistral
demonstrates modest but consistent improvements.
In the telicity set, Gemma again shows minimal
variation, and GPT-3.5 and GPT-4 improve with
more context, although GPT-4 has a slight decline
at the highest level. Llama-2 struggles with ad-
ditional context, while Llama-3 shows significant
improvement. Mistral exhibits stable performance
with slight gains.

We further examine the count of prediction dif-
ferences across the three levels for both the dura-
tion and telicity sets in Figure 2. For the duration
set, models like GPT-4 and GPT-3.5 showed sub-
stantial improvements with more corrections than
regressions when additional context was provided,
indicating a positive impact from including the verb
and its position. For instance, GPT-4 had 106 cor-
rections at both Levels 2 and 3, compared to 25 and
24 regressions. Llama-2 and Llama-3 also bene-
fited from the additional context, though to a lesser

extent., with Llama-2 showing 94 and 107 correc-
tions versus 66 and 62 regressions. Mistral saw
steady but modest improvements, while Gemma
displayed minimal changes, suggesting limited sen-
sitivity to the added information. On the telicity set,
GPT-4 and GPT-3.5 again demonstrated significant
improvements with more corrections (151 and 129)
than regressions (55 and 95). However, Llama-2
struggled with additional context, showing more
regressions than corrections, indicating potential
confusion. Llama-3 and Mistral exhibited notable
but smaller benefits from the detailed prompts.

Overall, our analysis underscores that while ad-
ditional context including the verbs and verb posi-
tions generally enhances performance, the degree
of improvement varies across models.

4.3 Error Analysis

In this section, we conduct a brief analysis of cer-
tain specific error predictions we observed during
inference, which are outlined in Table 4.

Case 1 illustrates instances at prompt level 1,
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Case, Input, Output

Case 1, Mistral on duration set, in levell
Sentence: Should be alright then .
Label: durative

Output: This sentence is stative in nature. It expresses a state of being or a condition, rather than an ongoing action. The

word ""then

suggests a conclusion or a result, which is also indicative of a stative aspect.

Case 2, Llama-2 on duration set, in level3

Sentence: Bake at 180 degrees of 40 - 50 minutes . Do n’t think highly too that cheese was n’t overroasted .

Label: durative

Output: The verb "think" in position 12 of the sentence does not have a durative or stative aspect. It is a stative aspect.

Case 3, Gemma on telicity set

Sentence: I was born here , and I was lucky enough not to get attached to any particular river .

Label: telic
Output (levell): The sentence is telic because the verb

nn

was born

nn nn

is telic and the verb ""get attached"" is also telic.

Output (level2): The verb ""attach"" in this sentence has telic aspect because the verb is completed with a specific object,

nn nn

which is ""river"".

Output (level3): The verb attached in position 13 is ""attach"". The answer is atelic.

Case 4, GPT-4 on telicity set, level3

Sentence: A TV mounted above a fireplace in a nicely furnished living room .

Label: telic

Output: The verb ""mounted"" in position 2 in the sentence ""A TV mounted above a fireplace in a nicely furnished

n

living room
a tense that would allow us to determine aspect.

does not by itself convey a clear aspect because the sentence is a noun phrase, not a complete sentence with

Table 4: Example error cases.

where the absence of verb (“be alright™) or verb
position information leads the model to predict the
aspect for the entire sentence, resulting in inaccu-
rate predictions.

Case 2 highlights instances of model hallucina-
tions, where initially, the model denies the presence
of probed aspects in the verb but subsequently pro-
vides an aspect in the following sentence.

Case 3 demonstrates the prediction disparity
across the three prompt levels. While the predic-
tions are accurate and nuanced in the first two lev-
els, they become nonsensical and incorrect in level
3, underscoring the model’s tendency towards hal-
lucinations and instability.

Case 4 presents a scenario where the model fails
to provide an aspectual feature, incorrectly con-
cluding that the verb lacks an aspect.

These error cases underscore that employing
LLMs may introduce unexpected errors due to
model complexity and hallucinations. Addition-
ally, the inconsistency of model output remains a
pertinent question for further investigation.

5 Discussion & Conclusion

This preliminary study evaluates the performance
of various LLMs in recognizing lexical aspects,
specifically duration and telicity, in zero-shot sce-
narios. We notice while LLMs, especially the
closed-source ones (GPT-3.5 and GPT-4), are ca-

pable of recognizing the lexical aspects of verbs in
sentences, they lie behind the fine-tuned baselines,
indicating the potential need for further adaptation
to effectively probe deep linguistic features. We
conduct experiments across three levels of prompt-
ing to assess the impact of including the verb and
its position in the sentence. Our results reveal that
LLMs, particularly the closed-source ones, bene-
fit from the additional context of verbs. However,
this added complexity sometimes introduced re-
gressions, indicating that while context aids com-
prehension, it can also pose challenges. The case
analysis also introduces concerns about the com-
plexity of hallucinations within the models.

Future research could explore methods to opti-
mize LLMs for aspectual feature recognition, such
as fine-tuning LL.Ms or incorporating additional lin-
guistic knowledge into model training. Currently,
we only conduct the prompt in zero-shot settings,
i.e. without context information. Previous work
showed that prompt-based methods may underes-
timate the linguistic knowledge of LLMs (Hu and
Levy, 2023). Therefore, we call for future explo-
ration in different settings, such as few-shot prompt-
ing and Chain-of-Thought (CoT, Wei et al., 2023)
prompting.

Overall, our study offers valuable insights into
the challenges and opportunities of utilizing LLMs
for linguistic feature recognition.
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Limitations

The primary limitation of our preliminary work
lies in the complexity and instability of LLMs,
as detailed in §4.3. The models exhibit sensitiv-
ity to prompts and parameter settings. Our study
tested only three curated prompts with varying in-
formation levels and observed significant variations
across these conditions. Future research should
delve deeper into these variations to provide expla-
nations for these changes.

Additionally, as noted in previous work (e.g.,
Zhang, 1995), aspectual readings are sensitive to
the context surrounding the verb. Our current study
tested aspectual features using a single curated
dataset with individual sentences and labels. Future
research should explore data with longer texts con-
taining more verbs and possibly provide sequential
predictions on verbs within context. This would
help to better understand the deeper linguistic com-
prehension capabilities of LLMs.
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A Appendix
A.1 Label Distribution in Test Sets

We present the label distributions from the original
test sets (Metheniti et al., 2022) in Table 5.

Test Set Label ‘0’ Label ‘1’ Total
Duration 186 223 409
Telicity 315 292 607

Table 5: Test set statistics for duration and telicity. In
the duration subset, ‘O’ and ‘1’ stand for stative and
durative aspects, respectively. In the telicity subset, ‘0’
and ‘1’ stand for atelic and telic aspects, respectively.

A.2 Label Distribution in Predictions

Table 6 shows the label distribution from the model
predictions. We notice some imbalanced label dis-
tribution especially in model Gemma on both du-
ration and telicity sets across three prompt levels.
This great imbalance also results in low prediction
accuracies, as shown in §4.1. This indicates that
the Gemma model might not be adequate to probe
the aspectual features. The same imbalance can be
found in Llama-2 in level3 on the telicity set.
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Model Level ‘0’ ‘2 Y 99 Model Level <0’ ‘2 ‘3 99
levell 27 382 O 0 0 levell 558 49 0 0 0
Gemma  level2 14 395 0 0 0 Gemma level2 575 32 0 0 0
level3 20 389 0 0 0 level3 566 40 0 1 0
levell 211 195 1 0 2 levell 252 348 0 0 7
GPT-3.5 level2 194 214 O 0 1 GPT-3.5 level2 454 147 0 0 6
level3 193 215 0 0 1 level3 450 153 0 0 4
levell 150 196 36 21 6 levell 213 295 71 16 12
GPT-4 level2 208 189 11 0 1 GPT-4 level2 344 243 14 0 6
level3 213 177 18 0 1 level3 353 227 22 1 4
levell 265 144 O 0 0 levell 350 255 0 2 0
Llama2 level2 176 230 0 3 0 Llama2 level2 586 19 0 2 0
level3 180 229 O 0 0 level3 565 41 0 0 1
levell 202 190 13 4 0 levell 73 523 8 3 0
Llama3 level2 238 171 0 0 0 Llama3 level2 194 412 1 0 0
level3 259 149 1 0 0 level3 260 346 1 0 0
levell 141 252 10 4 2 levell 280 314 4 8 1
Mistral level2 122 267 17 2 1 Mistral level2 401 193 3 5 5
level3 150 237 15 1 6 level3 334 263 1 4 5
(a) Duration (b) Telicity

Table 6: Label distribution from the model predictions on duration and telicity set. ‘0’ and ‘1’ are the original binary
labels of the dataset. ‘2° means model cannot find an aspect or thinks the verb doesn’t have an aspect. ‘3’ means
nonsense output. ‘-99° means model refusal.
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