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Abstract

Motivated by human cognitive processes, atten-
tion mechanism within transformer architecture
has been developed to assist neural networks
in allocating focus to specific aspects within
input data. Despite claims regarding the inter-
pretability achieved by attention mechanisms,
the extent of correlation and similarity between
machine and human attention remains a subject
requiring further investigation. In this paper,
we conduct a quantitative analysis of human
attention compared to neural attention mecha-
nisms in the context of the anaphora resolution
task. We collect an eye-tracking dataset based
on the Winograd schema challenge task for the
Russian language. Leveraging this dataset, we
conduct an extensive analysis of the correla-
tions between human and machine attention
maps across various transformer architectures,
network layers of pre-trained and fine-tuned
models. Our aim is to investigate whether in-
sights from human attention mechanisms can
be used to enhance the performance of neural
networks in tasks such as anaphora resolution.
The results reveal distinctions in anaphora reso-
lution processing, offering promising prospects
for improving the performance of neural net-
works and understanding the cognitive nuances
of human perception.

1 Introduction

The term attention describes both human cognitive
processes, crucial for tasks like reading and com-
prehension, and the attention mechanism in neural
networks (Bahdanau et al., 2016), which dynami-
cally adjusts focus to specific input data. Despite
their apparent differences, this paper aims to ana-
lyze the correlations between transformer attention
and human attention during anaphora resolution
task.

Successful language comprehension requires un-
derstanding the discursive connections in the sen-
tences and the logical relationships between dis-

course structures in the text. Coreference resolu-
tion, a standard NLP task, determines which men-
tions in a text refer to the same entity. Two men-
tions (i.e., textual phrases) are called coreferent if
they refer to the same real-world objects or events.
Anaphora, one of the types of coreference reso-
lution, highlights this challenge by requiring the
matching of an anaphor (typically a pronoun) in a
sentence with its antecedent (noun) in the preceding
sentence. The Winograd Schema (Levesque et al.,
2012) is a well-established method for evaluating
language model performance in anaphora resolu-
tion tasks, assessing the model’s logical reasoning
and real-world knowledge in resolving coreference
ambiguities. It is an evaluation dataset within the
SuperGLUE (Wang et al., 2019) suite across vari-
ous languages.

Video oculography, known as eye-tracking, is
a prevalent psycholinguistic method for study-
ing reading processes. It involves recording the
reader’s eye movements via video and subsequent
interpolation of their gaze onto a display screen.
This method breaks down the reading process into
fixations (periods of steady gaze) and saccades
(rapid eye movements) between them with preci-
sion up to milliseconds. This approach enables a de-
tailed examination of reading acquisition. We used
eye-tracking techniques to gather information on
human fixations and focuses during the anaphora
resolution and create the eye-tracking Winograd
schema dataset.

Leveraging the dataset, we investigate the corre-
lation between machine and human attention across
various transformer architectures and network lay-
ers. The research aims to confirm whether inte-
grating insights from human attention patterns can
significantly improve the language model’s ability
to resolve anaphoras effectively.

The contributions of the current study are the
following:
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• we collect and propose the new dataset 1

based on the data from human eye-tracking
for anaphora resolution;

• we conduct a set of experiments on different
models fine-tuned on the data to explore the
attention mechanisms;

• we provide a detailed comparative analysis of
human and neural attention mechanisms;

• we integrate the human gaze into the trans-
former’s attention mechanisms.

2 Related Work

In the subsequent sections, we outline related
works encompassing attention mechanisms in trans-
formers, human attention datasets of eye-tracking
data, methods of correlation analysis between hu-
man and machine attention, and the incorporation
of eye-gaze data into models during training.

2.1 Attention Mechanisms in Transformers
The machine attention determines the degree of
attention allocated to other segments of the input
sentence during the encoding process of a word
at a particular position. The attention mechanism
in transformers is initially described in Vaswani
et al. (2017) as a process of mapping input vectors
– a query and a set of key-value pairs, to yield an
output. The attention function for each word of the
input sentence against a single word is computed
as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The input consists of the query and the key vec-
tors, each with a dimension of dk, and the values
vectors of dimension dv. The output is computed
as a weighted sum of the values, where the weights
(attention score) are calculated as a softmax of dot
products of the query with the corresponding keys,
scaled by 1√

dk
. The attention function is computed

over a set of input vectors, enabling their aggrega-
tion into a matrix structure for queries Q, keys K,
and values V .

In performing multi-head attention, the singular
attention function is computed h times (a number of
attention layers, or heads) in parallel with different
linear projections of the queries, keys, and values.

headi = Attention(QWQ
i ,KWK

i , V W V
i ) (2)

1https://huggingface.co/datasets/RussianNLP/EyeWino

where the projections are parameter matrices
WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , W V

i ∈
Rdmodel×dv . Subsequently, the concatenated out-
puts, each possessing a dimension of dv, undergo
further projection with parameter matrices WO ∈
Rhdv×dmodel .

This mechanism enables the model to jointly at-
tend to information across various representation
subspaces at different positions. The transformer
uses multi-head attention in three ways based on its
architectural design. In the first configuration, de-
noted as the "encoder-decoder" layers, the queries
come from the previous decoder layer, and the
memory keys and values come from the output of
the encoder. In the second configuration, referred to
as the encoder self-attention layer, all of the keys,
values, and queries come from the output of the
previous layer in the encoder. Analogously, self-
attention layers in the decoder enable each position
to attend to all positions in the decoder, encom-
passing those up to and including the respective
position.

2.2 Human Attention
Eye-tracking datasets have emerged as invalu-
able resources for investigating various aspects
of human cognition and behavior. These datasets
provide researchers with fine-grained information
about eye movements. The PROVO corpus (Luke
and Christianson, 2017) includes eye-tracking data
of passages taken from online news articles, maga-
zines, and works of fiction. This dataset offers de-
tailed information on participants’ eye movements,
fixations, and regressions, allowing researchers to
explore phenomena such as syntactic ambiguity
resolution and semantic processing during read-
ing. Another widely utilized monolingual dataset
is the ZuCo corpus (Hollenstein et al., 2018), which
contains eye-tracking data of full sentences from
movie reviews and Wikipedia articles in English.
It includes features like a total number of gaze
fixations and different fixation duration data col-
lected from native English speakers during the exe-
cution of reading tasks. As for the Russian mono-
lingual dataset, the Russian Sentence Corpus (Lau-
rinavichyute et al., 2019) introduces a corpus of
eye movements of silent reading by skilled Russian
readers.

In addition to these established datasets, recent
efforts have focused on collecting eye-tracking
data from diverse populations and linguistic back-
grounds to facilitate cross-cultural and multilingual
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research, for example, the corpus GECO (Cop et al.,
2016). In particular, it includes five word-level
reading time measures from English and Dutch
monolinguals reading an entire novel. Further-
more, the MECO corpora (Siegelman et al., 2022;
Kuperman et al., 2022) provides comparable cross-
linguistic eye-tracking data and includes 13 differ-
ent languages. Furthermore, numerous studies have
utilized eye-tracking to investigate anaphora res-
olution across various languages and populations
during reading (Wolna et al., 2024; Naido and Jaa-
far, 2022; Costa et al., 2011; Duffy and Rayner,
1990).

Additionally, datasets are utilized to enhance
model performance by incorporating eye-gaze in-
formation to solve NLP tasks. For example, the eye-
tracking dataset MQA-RC (Sood et al., 2020a), in
which participants read movie plots taken from the
MovieQA (Tapaswi et al., 2015) and answered pre-
defined questions. In addition, the eye-gaze dataset
from Mishra et al. (2016), where eye-movement
parameters enhance the quality of models to solve
a sarcasm detection task.

2.3 Eye-Tracking and Transformers
Recent research has focused on the correlation be-
tween attention mechanisms in transformer models
and human eye-gaze patterns. The notable stream
of the studies is to investigate the correlation be-
tween eye-gaze features and attention layers dur-
ing reading tasks (Bensemann et al., 2022; Morger
et al., 2022; Toneva and Wehbe, 2019). The results
show a high correlation, primarily in the first atten-
tion layer. The paper (Sood et al., 2020b) evaluated
correlations on the reading comprehension task for
fine-tuned XLNet. They compared attention from
the last encoder layer with eye-gaze features and
reported a non-significant correlation. Moreover,
the studies conduct experiments to explore whether
task-specific fine-tuning influences the correlation
with human reading attention (Eberle et al., 2022).

Another notable stream of research is a cross-
lingual comparison of correlations. For example,
due to results from Brandl and Hollenstein (2022),
the correlation analysis across languages shows
that considerable differences between languages,
individual reading behavior, and vocabulary knowl-
edge (LexTALE) influence the alignment between
humans and models. In addition, the papers (Sen
et al., 2020; Morger et al., 2022) provide methods
to analyze word importance correlations between
machines and humans. The paper (Morger et al.,

2022) compares human and model relative word
importance to investigate whether models focus on
the same words as humans cross-lingually.

Furthermore, a promising area of research has
explored the integration of eye-gaze data into the
models to enhance task performance (i.e., sarcasm
detection, question answering) and to deepen the
understanding of language processing and human
cognition (Sood et al., 2020b; Mishra et al., 2016;
Zhang and Hollenstein, 2024).

3 Eye-tracking Data

Objective The anaphora resolution task was cho-
sen to investigate the distinction between attention
mechanisms in neural networks and humans. This
study explores the potential benefits of integrating
human-inspired attention mechanisms into trans-
former architectures. The research question seeks
to confirm whether the language model’s incorpo-
ration of information regarding human attention
distribution during text reading improves its perfor-
mance in the anaphora resolution task.

Experimental Setup For the experiment, we em-
ployed eye-tracking via video oculography, utiliz-
ing the EyeLink 1000 Plus device. Participants’
gaze was calibrated until validation error values
reached less than 1 (maximum) and 0.5 (average).
The indication 0.5 is the maximum average devi-
ation. When calibrating at 9 points, the error of
each point is calculated. If the average is not more
than 0.5 and the total error is not more than 1,
then the calibration is considered successful, and
incentives are presented to the participants. The
EyeLink 1000 Plus device is one of the most ac-
curate systems, with a validation error of about
0.2-0.5, within the standard protocol according to
the system manual (Holmqvist et al., 2011).

The Russian Winograd Schema Challenge
dataset from TAPE (Taktasheva et al., 2022) was
utilized for the anaphora resolution task to gather
information on participants’ eye movements. The
experiment comprised 150 complex or compound-
complex sentences extracted from the Winograd
schema challenge dataset, each containing an
anaphoric pronoun and its antecedent.

Each participant was shown a sentence with an
anaphoric pronoun highlighted in red on the screen,
followed by a question about the presumed an-
tecedent of the anaphora. The question was the
following: “Does the highlighted pronoun refer to
<antecedent> ?”. An example of the participants’
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screen is presented in App. A. For each sentence,
two presumed antecedents (one correct, one incor-
rect) were identified for each sentence. Thus, each
screen was read by fifty participants. The sentences
were randomized for each participant to ensure bal-
anced conditions.

One hundred people (81 women, average age
– 22.68, standard deviation – 4.27) who are na-
tive speakers of Russian participated in the ex-
periment. They were instructed to read the pro-
vided sentences carefully and answer the question
using the keyboard (key 1 for agreement, key 0
for disagreement). Participants completed three
training sentences to ensure task comprehension
before proceeding to three blocks of 50 sentences
each, with breaks provided between blocks. To
enhance recording quality, each trial began with a
calibration check, requiring participants to focus
precisely on the point where the first word of the
text would appear. Upon successful calibration, the
text was displayed; otherwise, recalibration com-
menced. After responding to each question, partici-
pants automatically advanced to the next trial. The
experiment duration averaged 45 minutes.

Dataset statistics Observations with missing val-
ues and parsing errors were excluded from the
dataset. The final dataset consists of 296 sentence-
question pairs, which contain 9319 words and 148
unique sentences. The average number of partic-
ipants per word is 48. The total number of obser-
vations for each variable is 448047. The resulting
fields of the dataset are presented in the App. B.

4 Comparative analysis of attention
mechanisms

In order to investigate the potential advantages of
incorporating attention mechanisms similar to hu-
man processes into transformer architecture, we
first need to examine and compare different atten-
tion mechanisms. We carried out a set of exper-
iments on various architectures, fine-tuned using
the data, and compared them with data on human
attention. Our aim was to provide a detailed com-
parative analysis of human and neural attention
mechanisms on the Winograd schema challenge.

4.1 Human Attention

We use the three word-level gaze measures ex-
tracted from the eye-tracking dataset (see Sec. 3)
to quantify human attention:

• Total reading time, TRT, the sum of all fixa-
tion durations on the current word, ms;

• Gaze duration, GD, the sum of all fixation
durations on the current word in the first-pass
reading, ms;

• Fixations, F, the number of all fixations on
the current word.

We use TRT because it highly correlates with
model attention in similar works (Eberle et al.,
2022; Bensemann et al., 2022; Morger et al., 2022).
GD and F reflect which words attracted the most
attention. We use these measures to determine the
relative importance of words in a sentence. Each
word is assigned a value between 0 and 1, which
is normalized for each participant. The sum of the
values of all words in a sentence is 1. These values
are averaged across all participants to obtain the hu-
man relative importance of the word in a sentence
(wi):

wi =
1

N

N∑

j=1

mij∑T
i=1mij

(3)

where mij is the gaze observation of the j-th par-
ticipant for the i-th word, N – a number of partici-
pants, T – a number of words in a sentence.

For each example, we aggregate participants’
responses using majority voting. The percentage
of correct answers is 97.97%.

4.2 Transformer Attention

We use attention scores from the encoder layers
of pre-trained and fine-tuned models across var-
ious transformer architectures to describe model
attention.

4.2.1 Models
Multilingual models represent multiple languages
within a shared space, aiming for a more universal
understanding of language. The Russian language
is well-represented in the pre-training corpus of
various multilingual language models. To evaluate
the impact of multilingual data in the training set
on the model’s attention distribution, we compare
the performance of monolingual and multilingual
models that have the same architecture and similar
size. We use six publicly available language models
from 3 model families:

BERT-based models include ruBERT-
base (Zmitrovich et al., 2023) and mBERT-
base (Devlin et al., 2019)
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RoBERTa-based models include ruRoberta-
large (Zmitrovich et al., 2023) and XLM-R-
large (Conneau et al., 2020).

T5-based models include ruT5-base (Zmitro-
vich et al., 2023) and mT5-base (Xue et al., 2021).

Refer to Tab. 1 for the statistical details.

4.2.2 Datasets
Fine-tuning datasets The fine-tuning data rep-
resents a collection of Winograd schemas from
various data sources.

For the Russian-language models, we used data
from the RWSD task from the MERA bench-
mark (Fenogenova et al., 2024) and the Winograd
task from the TAPE benchmark (Taktasheva et al.,
2022). From the TAPE dataset, we exclude dupli-
cates that were included in the eye-tracking dataset.

For the multilingual models, we com-
bined Russian-language data and the XWINO
dataset (Tikhonov and Ryabinin, 2021) without
Russian to avoid duplication. Japanese and
Chinese languages were excluded due to the
special preprocessing required for this task.

For the comparative experiments of models on
the anaphora task, we use the eye-tracking dataset
for evaluation and the RWSD test set from the
MERA benchmark.

Preprocessing Since we conducted an evaluation
process for both the model and humans under the
same conditions, all datasets were preprocessed
to replicate the human experiment. For each sen-
tence, an antecedent and an anaphoric pronoun
were identified. The corresponding pronoun was
highlighted in the text using uppercase. We formu-
lated the question about the presumed antecedent
of the anaphora using the human experiment design
described in Sec. 3 and the answer for this ques-
tion (“Yes” or “No”). The question and the answer
were formulated in the language of the text. Each
example also contains information about whether
the question is about the correct or incorrect an-
tecedent, with labels equal to 1 and 0, respectively.

• text: “Bob collapsed on the sidewalk. Soon
he saw Carl coming to help. HE was very
concerned.”

• question: “Does the highlighted pronoun re-
fer to Carl ?”

• antecedent: “Carl”

• reference: “He”

• answer: “Yes”

• label: 1

The datasets were filtered so that the reference
attribute was a pronoun and contained no more than
one word. For example, “there” and “he does/did”
were excluded from the dataset.

Finally, the training dataset was balanced with
respect to the labels and filtered from duplicates.
Tab. 2 provides the number of examples by lan-
guage in the final datasets.

4.2.3 Fine-tuning
We fine-tune pre-trained models using train sets
presented in Sec. 4.2.2. The original case of the
input text is preserved during tokenization.

The encoder-only models are fine-tuned using
a sequence classification head on top. We add a
[SEP] token between the text and the question to
get the input text for the models during the training
process.

The encoder-decoder models are fine-tuned us-
ing a language modeling head on top. The text was
concatenated with the question about antecedent to
get the input text for the models.

Implementation The models are fine-tuned us-
ing AdamW optimizer (Loshchilov and Hutter,
2017) and a linear learning rate scheduler.

For the encoder-only models, we use a context
window of 256, learning rate of 1e−5, batch size of
8, and 12 epochs.

For the encoder-decoder-based models, we use a
context window of 200 and a batch size of 8. We
also use a learning rate of 1e−5 and 35 epochs for
ruT5-base, a learning rate of 1e−4 and 25 epochs
for mT5-base. We use the generation hyperpa-
rameters: max_length = 20, temperature = 1,
top_k = 50, top_p = 1.

Metrics Models’ performance is evaluated using
the Accuracy score. Accuracy measures the per-
centage of correct predictions. This metric was
chosen due to the balance of classes.

Results We take the checkpoints with the best
performance on the validation set to evaluate
them on the eye data test, and RWSD test set
from Sec. 4.2.2. The results are presented in Tab. 3.
The models demonstrate higher accuracy after fine-
tuning, especially ruBERT-base, ruRoberta-large,
ruT5-base and mT5-base. The encoder-decoder
model mT5-base appears to outperform other mod-
els in solving the question-answering task.
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Model Architecture Language Parameters Layers Heads Hugging Face Hub
ruBERT-base Encoder-only Russian 178M 12 12 ai-forever/ruBert-base
mBERT-base Encoder-only Multi 178M 12 12 google-bert/bert-base-multilingual-cased
ruRoberta-large Encoder-only Russian 355M 24 16 ai-forever/ruRoberta-large
XLM-R-large Encoder-only Multi 560M 24 16 FacebookAI/xlm-roberta-large
ruT5-base Encoder-decoder Russian 222M 12 12 ai-forever/ruT5-base
mT5-base Encoder-decoder Multi 580M 12 12 google/mt5-base

Table 1: Summary of the model architecture configurations.

Language Train Val Test
English 2846 1216 -
French 108 56 -
Portuguese 358 116 -
Russian 872 326 260*
Total 4184 1714 260

Table 2: The sets statistics. The sizes of the set in the
number of examples. * – the RWSD test set.

Model Checkpoint Eye data RWSD

ruBERT-base pre-trained 49.7 51.2
fine-tuned 63.2 58.5

mBERT-base pre-trained 49.0 52.3
fine-tuned 50.0 50.0

ruRoberta-large pre-trained 50.3 49.6
fine-tuned 61.5 51.5

XLM-R-large pre-trained 50.0 50.0
fine-tuned 50.0 50.0

ruT5-base pre-trained 50.0 50.0
fine-tuned 57.4 55.8

mT5-base pre-trained 50.0 50.0
fine-tuned 71.3 56.2

Table 3: The models’ performance (Accuracy) on the
Winograd schema challenge task for the Russian lan-
guage. The best score is in bold, and the second score
is underlined.

4.2.4 Word-level attention
We use attention weights from the encoder layers
to obtain the importance of a word in a sentence for
the model. The decoder attention layers are only
allowed to process earlier positions in the sequence,
so we exclude them from the analysis.

We convert the texts into the format presented
in Sec. 4.2.3 and tokenize them, preserving the
original case of the words. The tokenized data is
fed into the model. We extract the attention weights
for each layer and average them across all attention
heads.

A′ = Average(A1, . . . ,Ah)

Ai = softmax(
QKT

√
dk

)
(4)

where Ai is an attention score of the i-th head with

a dimension of n × n, n – a length of the input
sequence, h – a number of attention heads.

Each row a(t) of matrix A
′

is an attention vector
for token t. We use the following matrix aggrega-
tions to obtain a vector of token importance:

• mean – the average of all the rows in each
column.

• row – the average of pronoun tokens in each
column: we extract only the rows correspond-
ing to pronoun tokens from matrix A

′
and

average these rows.

The special tokens are used for the attention cal-
culations but are excluded from the final vector.
During tokenization, some words are encoded as
multiple tokens. The weights of the tokens that
make up each word are summed to obtain word-
level attention weights. The final vector is inter-
preted as a relative word importance for the model.

4.3 Correlation Analysis
We matched human and model attention scores so
that each word had a normalized attention score
from both sources.

Since we assume a monotonic relationship be-
tween variables but do not assume that the vari-
ables are normally distributed, we calculate the
Spearman’s rank correlation coefficient ρ (Hollan-
der et al., 2013) to analyze the correlation between
human attention and model attention. The correla-
tion coefficient quantifies the strength and direction
of the relationship between two variables. It ranges
from −1 to +1, where 0 indicates no correlation.

The p-value is used to determine the statistical
significance of the correlation coefficient. It indi-
cates the probability of observing the calculated
correlation coefficient under the assumption that
the variables are actually uncorrelated in the pop-
ulation. If the p-value is less than the significance
level, the hypothesis of no correlation is rejected.
This suggests that there is a statistically significant
correlation between the variables. We use a signifi-
cance level of 0.05.
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5 Results

Correlations of human attention with model atten-
tion are reported in Tab. 4. We found significant cor-
relations (p > 0.05) for all experiments. There are
moderate correlations for T5-based and RoBERTa-
based models and strong correlations for BERT-
based models on the first layer.

The comparison of different aggregation setups
for T5-based architectures underscores the preva-
lence of the mean aggregation with high correla-
tions. Conversely, for other architectures, we noted
a contrasting trend where row aggregation predom-
inates.

The first layers have high correlations in com-
parison to the last layer in most setups. For ex-
ample, there are extremely small correlations for
ruRoberta-large on the last layer; meanwhile, the
maximum correlation is almost even with other
values. For several models, the highest correla-
tion is noted on a particular layer. Moreover, the
layer demonstrating the highest correlation varies
notably across different architectures.

For most of the models, there is no difference be-
tween pre-trained and fine-tuned versions, except
for a slight correlation decrease for multilingual
mT5-base after tuning on the Winograd schemas.
Furthermore, we can compare the outcomes across
different eye-gaze metrics and observe minimal dis-
crepancies among them in terms of correlation anal-
yses. Finally, we highlight the model mBERT-base,
which demonstrates the highest correlation with
human attention. We conclude that task-specific
fine-tuning did not enhance the correlation between
human attention and machine attention.

The analysis suggests that encoder-only models
provide more significant insights for evaluating
attention correlation. A detailed visualization of the
correlation between human attention and models’
attention on different layers is presented in App. C.
Additionally, App. D provides a visualization of
the important words for the human and the models
for one example from the eye-tracking dataset.

6 Integrating Human Gaze into
Transformers

Based on the results obtained in Sec. 5, there
are significant correlations between human atten-
tion and the models’ attention during the task of
anaphora resolution. It can be assumed that using
eye movement data when training models for this
task will increase their performance. We conducted

experiments to integrate eye movement data into
the model training process by using an additional
term in the loss function to bring the model’s atten-
tion closer to human attention.

6.1 Experimental setup
Data for human gaze integration For the ex-
periments with human gaze integration during
model training, we use the eye-tracking dataset
as a training set. We use the Russian language sets
from Sec. 4.2.2 as validation and test sets.

Method We use the procedure proposed
by Bensemann et al. (2022) to investigate the effect
of injecting human eye-gaze bias during training
as the baseline. We introduce an additional loss
function to align the distribution of model attention
on a given layer with the distribution of human
attention. The final loss function is calculated
according to the following formula:

L = H(y, ŷ) + αH(p, p̂) (5)

Where H(y, ŷ) is the cross-entropy loss that
measures the model’s performance on the anaphora
resolution task. H(p, p̂) is the cross-entropy loss
that measures the difference between two proba-
bility distributions: the distribution of the model’s
attention values on a particular layer (p) and the
distribution of the human relative word importance
(p̂). The hyperparameter α controls the weight of
the second term in the loss function. We use the
hyperparameter α of 0.05. The remaining hyper-
parameters for fine-tuning models are contained
in Sec. 4.2.3.

We use the average of all the rows in each col-
umn (mean) and the average of all pronoun tokens
in each column (row) to obtain the models’ atten-
tion values. We conduct experiments with different
layers: the first, the last, and the layers where the
highest correlation values between model attention
and human attention are observed.

6.2 Results
The findings on incorporating human gaze data
into models are presented in Tab. 5. Based on
the results, we can conclude that using an addi-
tional loss does not usually improve the model’s
performance. However, a significant increase in
Accuracy is observed for the tuned mT5-base and
tuned ruRoberta-large models with row aggrega-
tion when using human attention on layers 1 and
14, respectively. It can be concluded that, in most
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Model Agg. Checkpoint Layer Fixations Gaze duration Total reading time
(max) first max last first max last first max last

ruBERT-base
mean pre-trained 1 0.601 ← 0.382 0.606 ← 0.394 0.592 ← 0.376

tuned 1 0.603 ← 0.364 0.608 ← 0.373 0.595 ← 0.355

row pre-trained 1 0.722 ← 0.578 0.71 ← 0.568 0.719 ← 0.581
tuned 1 0.723 ← 0.487 0.711 ← 0.472 0.719 ← 0.485

mBERT-base
mean pre-trained 1 0.684 ← 0.581 0.683 ← 0.585 0.674 ← 0.575

tuned 1 0.684 ← 0.59 0.683 ← 0.592 0.673 ← 0.582

row pre-trained 1 0.771 ← 0.54 0.758 ← 0.536 0.764 ← 0.54
tuned 1 0.771 ← 0.601 0.758 ← 0.597 0.765 ← 0.598

ruRoberta-large
mean pre-trained 16 0.485 0.543 0.076 0.495 0.551 0.088 0.475 0.538 0.067

tuned 16 0.487 0.542 0.154 0.496 0.555 0.166 0.477 0.542 0.146

row pre-trained 16 0.452 0.653 0.064 0.453 0.641 0.067 0.445 0.652 0.058
tuned 14 0.453 0.608 0.115 0.454 0.602 0.116 0.446 0.611 0.11

XLM-R-large
mean pre-trained 14 0.498 0.592 0.394 0.506 0.605 0.404 0.491 0.593 0.385

tuned 17 0.497 0.588 0.427 0.505 0.595 0.44 0.489 0.582 0.421

row pre-trained 11 0.556 0.703 0.424 0.554 0.688 0.414 0.551 0.701 0.418
tuned 11 0.553 0.717 0.45 0.551 0.706 0.449 0.548 0.713 0.446

ruT5-base
mean pre-trained 1 0.593 ← 0.31 0.605 ← 0.32 0.587 ← 0.308

tuned 1 0.594 ← 0.323 0.606 ← 0.333 0.588 ← 0.321

row pre-trained 8 0.552 0.562 0.407 0.544 0.548 0.4 0.549 0.56 0.411
tuned 8 0.552 0.577 0.442 0.544 0.563 0.434 0.549 0.576 0.445

mT5-base
mean pre-trained 9 0.575 0.619 0.522 0.583 0.63 0.538 0.563 0.611 0.516

tuned 1 0.573 ← 0.471 0.58 ← 0.484 0.561 ← 0.468

row pre-trained 8 0.543 0.621 0.5 0.527 0.615 0.491 0.534 0.619 0.495
tuned 7 0.535 0.569 0.437 0.518 0.561 0.436 0.526 0.569 0.436

Table 4: Spearman’s rank correlations between human attention and models’ attention on the first, last, and the
layer with the highest correlation values. Model – the model’s architecture. Agg. – the attention scores aggregation:
the average of all the rows in each column (mean) and the average of all pronoun tokens in each column (row).
Checkpoint – the configuration of the Model before (pre-trained) and after (tuned) tuning on the Winograd schema
task. Layer (max) – the model’s layer with the highest correlation value. Fixations, Gaze duration, Total reading
time – the human attention characteristics. first, max, last – the model’s layers. ← means that the first layer has the
highest correlation value (see column first). The highest correlation values for each architecture are in bold.

cases, the Accuracy of the pre-trained model is
lower than that of fine-tuned models. There are
several exceptions for ruRoberta-large, ruT5-base,
and XLM-R-large models with incorporated total
reading time. The findings from comparing Ac-
curacy between various eye-gaze measurements
(Fixations, Gaze duration, Reading time) do not
reveal a consistent trend, making it challenging to
identify the optimal human signal for incorporating
into loss functions.

7 Conclusion

In summary, this paper examines the transformer
and human attention mechanisms in the anaphora
resolution task. We collected a dataset for the
anaphora resolution task using video oculography
and released it under the MIT license 2. We used
this dataset to analyze the correlation between ma-
chine and human attention across various trans-
former architectures and network layers. The re-
sults show a strong correlation between human
and machine attention, but fine-tuning did not en-

2https://huggingface.co/datasets/RussianNLP/EyeWino

hance this correlation. Therefore, we conducted
experiments integrating eye movement data into
the model training process. This was done by
adding an extra term to the loss function to align the
model’s attention more closely with human atten-
tion. However, the results did not show a consistent
trend in the proposed setup, indicating that further
research is needed for incorporation approaches.

Limitations

Data Specificity The study relies on an eye-
tracking dataset limited to one specific coreference
type with a relatively small number of instances.
We investigate the results based on data specifi-
cally tailored to the Russian language. Therefore,
the findings may not be generalizable to other lan-
guages or datasets with different linguistic struc-
tures and nuances.

We take the privacy and confidentiality of partic-
ipants seriously when collecting eye-tracking data.
All participants provided informed consent, fully
understanding the nature of the study and how their
data would be utilized. However, we acknowledge
that such data may introduce linguistic biases that
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Model Agg. Checkpoint Layer Without Fixations Gaze duration Total reading time
(max) integration first max last first max last first max last

ruBERT-base
mean pre-trained 1 55.77 55.77 ← 59.23 56.15 ← 58.08 55.77 ← 58.46

tuned 1 58.08 58.08 ← 58.08 58.08 ← 58.08 58.08 ← 58.08

row pre-trained 1 55.77 55.77 ← 57.69 55.77 ← 55.77 55.77 ← 56.92
tuned 1 58.08 58.08 ← 58.08 58.08 ← 58.46 58.08 ← 58.08

mBERT-base
mean pre-trained 1 54.62 56.15 ← 56.92 53.08 ← 50.00 56.15 ← 53.08

tuned 1 56.15 56.92 ← 55.38 55.38 ← 56.54 55.00 ← 56.54

row pre-trained 1 54.62 53.85 ← 53.85 55.00 ← 54.62 54.62 ← 52.69
tuned 1 56.15 55.38 ← 57.31 55.38 ← 56.92 55.38 ← 55.77

ruRoberta-large
mean pre-trained 16 56.92 58.08 59.23 55.38 53.85 57.31 57.69 56.92 59.23 58.46

tuned 16 55.38 55.38 54.23 53.85 55.38 58.08 54.23 55.77 56.92 60.77

row pre-trained 16 56.92 58.08 59.62 59.62 55.00 59.23 59.23 56.54 60.0 56.54
tuned 14 55.38 53.08 59.62 56.54 58.46 59.23 55.77 54.23 56.54 56.54

XLM-R-large
mean pre-trained 14 55.00 55.38 48.85 55.00 50.38 52.69 50.00 54.23 56.92 54.23

tuned 17 54.62 52.31 55.77 56.54 53.46 56.54 55.00 56.92 51.54 56.92

row pre-trained 11 55.00 51.15 55.38 54.23 51.15 56.15 54.62 54.23 54.23 51.15
tuned 11 54.62 53.46 56.54 56.15 54.23 59.62 58.85 55.00 55.0 56.92

ruT5-base
mean pre-trained 1 52.69 61.15 ← 53.46 56.54 ← 58.46 57.31 ← 63.46

tuned 1 55.77 54.62 ← 57.31 54.62 ← 51.92 52.31 ← 50.77

row pre-trained 8 52.69 57.69 58.46 51.92 56.54 60.0 53.08 58.08 56.15 49.23
tuned 8 55.77 53.08 48.08 54.23 53.46 53.46 53.85 51.92 53.85 48.08

mT5-base
mean pre-trained 9 53.08 53.08 54.23 54.62 54.23 51.54 54.62 54.62 52.69 54.62

tuned 1 58.46 58.85 ← 59.62 58.08 ← 57.31 59.23 ← 58.46

row pre-trained 8 53.08 54.62 54.62 52.69 57.31 51.15 53.46 55.38 52.69 53.08
tuned 7 58.46 64.23 56.54 58.85 59.23 60.0 58.08 62.31 62.31 61.54

Table 5: Accuracy of the experiments with human gaze integration during model training on the first, last, and the
layer with the highest correlation values. Model – the model’s architecture. Agg. – the attention scores aggregation:
the average of all the rows in each column (mean) and the average of all pronoun tokens in each column (row).
Checkpoint – the configuration of the Model before (pre-trained) and after (tuned) tuning on the Winograd schema
task. Layer (max) – the model’s layer with the highest correlation value. Without integration - the Accuracy of the
experiments without human gaze integration. Fixations, Gaze duration, Total reading time – the human attention
characteristics. first, max, last – the model’s layers. ← means that the first layer has the highest correlation value
(see column first). The best scores for each architecture are in bold.

can be further transmitted to the neural model by
incorporating the attention mechanisms.

Experimental setup The analysis was based on
various transformer architectures, but it is impor-
tant to note that we could not cover all possible
attention mechanisms and neural approaches. We
focused on the encoder attention layers in the paper,
as these layers capture context from the entire input
sequence. In contrast, the decoder attention layers
can only process earlier positions in the sequence.
Investigating the decoder’s attention is an issue
for future research. Additionally, the quantitative
comparison between human and machine attention
may be influenced by the intrinsic limitations of
the experimental setups, such as the weaknesses of
eye-tracking technology, the design of the Wino-
grad schema tasks and the collected dataset, and
the interpretability techniques applied to the neural
models.

Human attention complexity is a multifaceted
phenomenon influenced by numerous cognitive,
cultural, and situational factors that have not been

investigated. Thus, the current machine attention
mechanisms are artificial approximations that are
hard to compare. Our study, while comprehensive,
only captures a subset of these factors, particularly
those that are quantifiable through eye-tracking.

Acknowledgments

We would like to express our heartfelt gratitude
to Olga Dragoy and Nina Zdorova from HSE Uni-
versity, as well as Tatiana Shavrina, for their in-
valuable support in preparing the datasets for our
experiments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2016. Neural machine translation by
jointly learning to align and translate. Preprint,
arXiv:1409.0473.

Joshua Bensemann, Alex Peng, Diana Benavides-Prado,
Yang Chen, Neset Tan, Paul Michael Corballis, Patri-
cia Riddle, and Michael Witbrock. 2022. Eye gaze
and self-attention: How humans and transformers
attend words in sentences. In Proceedings of the

117



Workshop on Cognitive Modeling and Computational
Linguistics, pages 75–87, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Stephanie Brandl and Nora Hollenstein. 2022. Every
word counts: A multilingual analysis of individual
human alignment with model attention. In Proceed-
ings of the 2nd Conference of the Asia-Pacific Chap-
ter of the Association for Computational Linguistics
and the 12th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 72–77, Online only. Association for Computa-
tional Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Uschi Cop, Nicolas Dirix, Denis Drieghe, and Wouter
Duyck. 2016. Presenting geco: An eyetracking cor-
pus of monolingual and bilingual sentence reading.
Behavior Research Methods, 49.

Armanda Costa, Gabriela Matos, and Paula Luegi. 2011.
Using eye-tracking to study anaphoric relations pro-
cessing in european portuguese.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Susan A Duffy and Keith Rayner. 1990. Eye move-
ments and anaphor resolution: Effects of antecedent
typicality and distance.

Oliver Eberle, Stephanie Brandl, Jonas Pilot, and An-
ders Søgaard. 2022. Do transformer models show
similar attention patterns to task-specific human
gaze? pages 4295–4309.

Alena Fenogenova, Artem Chervyakov, Nikita Mar-
tynov, Anastasia Kozlova, Maria Tikhonova, Albina
Akhmetgareeva, Anton Emelyanov, Denis Shevelev,
Pavel Lebedev, Leonid Sinev, et al. 2024. Mera:
A comprehensive llm evaluation in russian. arXiv
preprint arXiv:2401.04531.

Myles Hollander, Douglas A Wolfe, and Eric Chicken.
2013. Nonparametric statistical methods. John Wi-
ley & Sons.

Nora Hollenstein, Jonathan Rotsztejn, Marius Tröndle,
Andreas Pedroni, Ce Zhang, and Nicolas Langer.

2018. Zuco, a simultaneous eeg and eye-tracking re-
source for natural sentence reading. Scientific Data,
5:180291.

K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst,
H. Jarodzka, and J. van de Weijer. 2011. Eye Track-
ing: A comprehensive guide to methods and mea-
sures. OUP Oxford.

Victor Kuperman, Noam Siegelman, Sascha Schroeder,
Cengiz Acarturk, Svetlana Alexeeva, Simona
Amenta, Raymond Bertram, Rolando Bonandrini,
Marc Brysbaert, Daria Chernova, Sara Fonseca, Nico-
las Dirix, Wouter Duyck, Argyro Fella, Ram Frost,
Carolina Gattei, Areti Kalaitzi, Kaidi Lõo, Marco
Marelli, and Kerem Usal. 2022. Text reading in en-
glish as a second language: Evidence from the mul-
tilingual eye-movements corpus. Studies in Second
Language Acquisition, 45:1–35.

Anna Laurinavichyute, Irina Sekerina, Svetlana Alex-
eeva, Kristina Bagdasaryan, and Reinhold Kliegl.
2019. (2019). article russian sentence corpus: Bench-
mark measures of eye movements in reading in rus-
sian. Behavior Research Methods, 51:1161–1178.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Proceedings of the Thirteenth International Confer-
ence on Principles of Knowledge Representation and
Reasoning, KR’12, page 552–561. AAAI Press.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Steven Luke and Kiel Christianson. 2017. The provo
corpus: A large eye-tracking corpus with predictabil-
ity norms. Behavior research methods, 50.

Abhijit Mishra, Diptesh Kanojia, and Pushpak Bhat-
tacharyya. 2016. Predicting readers’ sarcasm under-
standability by modeling gaze behavior. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 30.

Felix Morger, Stephanie Brandl, Lisa Beinborn, and
Nora Hollenstein. 2022. A cross-lingual compari-
son of human and model relative word importance.
In Proceedings of the 2022 CLASP Conference on
(Dis)embodiment, pages 11–23, Gothenburg, Sweden.
Association for Computational Linguistics.

Shamita Chantherasarathy Naido and Nurjanah Mohd
Jaafar. 2022. Anaphora resolution in reading among
malaysian l2 english speakers: An eye-tracking in-
vestigation. Jurnal Wacana Sarjana, 6(4):1–13.

Cansu Sen, Thomas Hartvigsen, Biao Yin, Xiangnan
Kong, and Elke Rundensteiner. 2020. Human at-
tention maps for text classification: Do humans and
neural networks focus on the same words? pages
4596–4608.

118



Noam Siegelman, Sascha Schroeder, Cengiz Acarturk,
Hee-Don Ahn, Svetlana Alexeeva, Simona Amenta,
Raymond Bertram, Rolando Bonandrini, Marc Brys-
baert, Daria Chernova, Sara Fonseca, Nicolas Dirix,
Wouter Duyck, Argyro Fella, Ram Frost, Carolina
Gattei, Areti Kalaitzi, Nayoung Kwon, Kaidi Lõo,
and Victor Kuperman. 2022. Expanding horizons of
cross-linguistic research on reading: The multilingual
eye-movement corpus (meco). Behavior Research
Methods, 54:1–21.

Ekta Sood, Simon Tannert, Diego Frassinelli, Andreas
Bulling, and Ngoc Thang Vu. 2020a. Interpreting
attention models with human visual attention in ma-
chine reading comprehension. In Proceedings of
the 24th Conference on Computational Natural Lan-
guage Learning, pages 12–25, Online. Association
for Computational Linguistics.

Ekta Sood, Simon Tannert, Philipp Müller, and Andreas
Bulling. 2020b. Improving natural language process-
ing tasks with human gaze-guided neural attention.

Ekaterina Taktasheva, Tatiana Shavrina, Alena Fenogen-
ova, Denis Shevelev, Nadezhda Katricheva, Maria
Tikhonova, Albina Akhmetgareeva, Oleg Zinkevich,
Anastasiia Bashmakova, Svetlana Iordanskaia, Alena
Spiridonova, Valentina Kurenshchikova, Ekaterina
Artemova, and Vladislav Mikhailov. 2022. TAPE:
Assessing few-shot Russian language understanding.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 2472–2497, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.
2015. Movieqa: Understanding stories in movies
through question-answering. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 4631–4640.

Alexey Tikhonov and Max Ryabinin. 2021. It’s All in
the Heads: Using Attention Heads as a Baseline for
Cross-Lingual Transfer in Commonsense Reasoning.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 3534–3546,
Online. Association for Computational Linguistics.

Mariya Toneva and Leila Wehbe. 2019. Interpreting and
improving natural-language processing (in machines)
with natural language-processing (in the brain).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Agata Wolna, Joanna Durlik, and Zofia Wodniecka.
2024. Correction: Pronominal anaphora resolution
in polish: Investigating online sentence interpretation
using eye-tracking.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Leran Zhang and Nora Hollenstein. 2024. Eye-tracking
features masking transformer attention in question-
answering tasks. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 7057–7070, Torino, Italia.
ELRA and ICCL.

Dmitry Zmitrovich, Alexander Abramov, Andrey
Kalmykov, Maria Tikhonova, Ekaterina Taktasheva,
Danil Astafurov, Mark Baushenko, Artem Snegirev,
Tatiana Shavrina, Sergey Markov, et al. 2023. A
family of pretrained transformer language models for
russian. arXiv preprint arXiv:2309.10931.

Appendix

A Participant Instructions

Fig. 1 contains an example format of a task for
participants, consisting of the following parts: a
text, a question about the text, and an instruction
for the task.

Figure 1: The example of a task shown to participants
on the screen.

B Eye-movement Measures

The eye-tracking dataset contains the following
fields:

• word, a word in a sentence;

• example_id, id of the example in the dataset;
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• text_id, id of the unique text in the dataset;

• position_id, position of the word in the sen-
tence;

• annotator_id, experiment participant id;

• is_answer_correct, the correctness of the ex-
periment participant’s answer;

• reading_time, the sum of all fixation dura-
tions on the current word, ms;

• gaze_duration, the sum of all fixation du-
rations on the current word in the first-pass
reading, ms;

• fixations, the number of all fixations on the
current word;

• first_fixation_duration, the duration of the
first fixation on the word, ms;

• x_coordinate_first_fixation, the coordinate
of the first fixation on the word along the x
axis, where the screen is the coordinate plane;

• y_coordinate_first_fixation, the coordinate
of the first fixation on the word along the y
axis, where the screen is the coordinate plane;

• amplitude_first_saccade, the amplitude of
the first saccade, deg;

• correct_antecedent, the correct antecedent
for example_id;

• incorrect_antecedent, the incorrect an-
tecedent for example_id;

• pronoun, an anaphoric pronoun for exam-
ple_id;

• is_pronoun, an indicator of whether the word
is the anaphoric pronoun;

• label, an indicator of whether the question is
about the correct antecedent.

C Visualization of Correlations

Fig. 2 provides the correlations between the atten-
tion of different model architectures, aggregated
using the mean approach, and eye-tracking data.

D Visualization of Attention Maps

Fig. 3 provides a visualization of the important
words for the human and the models.

Human attention is characterized by the relative
importance of words based on Fixations. Check-
points, layers, and aggregations with the highest
correlations with the relative importance of words
for humans are used to describe the relative impor-
tance of words for the models.

The original examples and relative importance
of words are in Russian. Below the Russian texts
are the English translations of these texts and an
adapted visualization of the relative importance of
words.
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Figure 2: The correlations between models’ attention on different layers and eye-tracking data.
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Figure 3: Visualizations of human and models’ attentions. The words with high relative importance for Russian
texts are highlighted in green. The third quartile is used to determine a word’s importance.
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