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Abstract
This study explores the use of Large Language
Models (LLMs) to analyze text comments from
Reddit users, aiming to achieve two primary ob-
jectives: firstly, to pinpoint critical excerpts that
support a predefined psychological assessment
of suicidal risk; and secondly, to summarize the
material to substantiate the preassigned suicidal
risk level. The work is circumscribed to the use
of "open-source" LLMs that can be run locally,
thereby enhancing data privacy. Furthermore,
it prioritizes models with low computational
requirements, making it accessible to both in-
dividuals and institutions operating on limited
computing budgets. The implemented strat-
egy only relies on a carefully crafted prompt
and a grammar to guide the LLM’s text com-
pletion. Despite its simplicity, the evaluation
metrics show outstanding results, making it a
valuable privacy-focused and cost-effective ap-
proach. This work is part of the Computational
Linguistics and Clinical Psychology (CLPsych)
2024 shared task.

1 Introduction

Large Language Models (LLMs) like GPT (Genera-
tive Pre-trained Transformer; OpenAI et al., 2023),
Llama (Large Language Model Meta AI; Touvron
et al., 2023a,b), Mistral/Mixtral (Jiang et al., 2024,
2023), and others (based on the transformer archi-
tecture and its attention mechanism, made popu-
lar thanks to BERT and derivatives; Vaswani et al.,
2017; Devlin et al., 2018; Grezes et al., 2021, 2022)
represent a significant advancement in the field of
artificial intelligence, specifically within natural
language processing (NLP). These models have
transformed how machines understand, generate,
and interact with human language, enabling a wide
range of applications.

During the "pre-training" phase, LLMs learn
a wide range of language patterns and they en-
code knowledge from a vast corpora of text data.
In a posterior phase, they can be "fine-tuned" on

smaller/alternate datasets to become specialized on
specific tasks such as psychological assessments.
The fine-tuning can also be restricted to a smaller
number of parameters using techniques such as
LoRA (Hu et al., 2021) or QLoRA (Dettmers et al.,
2023) for quantized models (Kim et al., 2023).
However, fine-tuning can still be costly in terms
of computational resources and time investment,
requiring a high level of expertise.

Models with a higher number of parameters are
more sophisticated, encode more accurate knowl-
edge and are capable of performing more advanced
tasks with optimal results. This reduces the need
for fine-tuning, but it increases the requirements for
computational resources. There is also the option
of not running the models locally, but relying on ex-
ternal services such as OpenAI’s API and their chat-
GPT interface1. Regrettably, this approach may not
be viable due to the involvement of third parties,
which might not ensure adequate data protection
or adhere to the stringent privacy standards and
ethical codes mandated by healthcare and medical
institutions, along with other legal obligations.

Given this context, in this study I explore the use
of "open-source" LLMs that can be run locally in
current commodity hardware (thus, 4-bit quantized
models with a maximum 7 billion parameters), and
I do not fine-tune these models to specialize in any
specific task or to incorporate new knowledge rel-
evant to the domain of clinical psychology. This
evaluation is focused on the shared task proposed
by the Computational Linguistics and Clinical Psy-
chology (CLPsych) 2024 workshop (Chim et al.,
2024) at the 18th Conference of the European Chap-
ter of the Association for Computational Linguis-
tics (ACL).

1https://openai.com/
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2 Task and Data

The CLPsych 2024 shared task consisted on find-
ing evidence within Reddit comments that support
a preassigned suicide risk level. The organizers
provided access the University of Maryland Reddit
Suicidality Dataset (UMD version 2; Shing et al.,
2018; Zirikly et al., 2019), which includes posts to
the "r/SuicideWatch" subreddit plus crowdsourced
and expert risk level assessments. The risk levels
to be considered are low, moderate and high.

The evidence supporting the preassigned risk
level can take two different forms: 1) highlights
(i.e., snippets) from the user’s comments; 2) a sum-
mary that aggregates the evidence that justifies the
assigned risk level. In this study, both forms of evi-
dence were generated for a selection of 162 posts
(by 125 users) that the organizers used to evaluate
each submitted result.

3 Methods

This study considered six different LLMs, which
were selected based on their ranking on the Open
LLM Leaderboard2, and the LMSys Chatbot Arena
Leaderboard3 as of January 15th (2024). The mod-
els were obtained from Tom Jobbins’s huggingface
repository4 in GGUFv2 format ("Q4_K_M" quant
method). The inference code was run locally using
the NASA SciX Brain software (Blanco-Cuaresma
et al., 2023) on a MacBook Air with the Apple M1
chip (released on November 2020) and 16GB of
RAM. The concrete models were:

1. OpenHermes 2.55, based on Mistral 7B and
further trained on mainly GPT-4 generated
data, and other open datasets.

2. Orca 2 (Mitra et al., 2023), based on Llama
2, designed to excel in reasoning, trained on
a censored synthetic dataset. Human prefer-
ence alignment techniques such as Reinforce-
ment learning from human feedback (RLHF;
Ziegler et al., 2019) or Direct Preference Op-
timization (DPO; Rafailov et al., 2023) were
not used.

2https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

3https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

4https://huggingface.co/TheBloke
5https://huggingface.co/teknium/OpenHermes-2.

5-Mistral-7B

3. Starling 7B alpha (Zhu et al., 2023), based on
OpenChat 3.5 which is refinement of Mistral
7B using C(onditioned)-RLFT (Wang et al.,
2023), trained by Reinforcement Learning
from AI Feedback (RLAIF; Lee et al., 2023).

4. Dolphin 2.6, based on Mistral 7B, trained
following LASER (Sharma et al., 2023) and
aligned to human preferences using DPO.

5. Mistral 7B instruct 0.2 (Jiang et al., 2024),
based on Mistral 7B, trained with a variety of
publicly available conversation datasets.

6. Zephyr 7B beta (Tunstall et al., 2023), based
on Mistral 7B, trained on on a mix of publicly
available, synthetic datasets using DPO.

Each model is requested to either extract evi-
dences from user’s comments as text highlights or
to generate a comprehensive summary, both with
the goal of justifying a preassigned suicidal risk
level. The request is done with a crafted prompt
that sets the scene (e.g., act as a psychologist spe-
cializing in suicidal ideation), and includes a fake
interaction where the user has shared the reddit
comment and a preassigned risk level, and the
model (i.e., the assistant) has already provided an
answer. This is a one-shot prompt from where the
model can infer what we expect it to generate after
a user request. Subsequently, the real comment to
be analyzed is included, and the model’s response
is left empty for it to be completed.

My evaluation of various prompts was not ex-
haustive, but rather a manual and subjective process
based on a limited set of examples. The tests (in-
spired by a previous work; Blanco-Cuaresma et al.,
2023) suggested that a prompt in which a user out-
lines the entire task and includes an example gen-
erally yields slightly inferior results compared to a
prompt that simulates an initial round of interaction
between the user and the assistant, as if the assis-
tant had already responded to a previous request.
All the tested prompts directed the model to adopt
the role of an expert and incorporated a description
of what constitutes evidence for supporting a suici-
dal risk assessment, based on the assumption that
the LLM will rely more heavily on this provided
information than on the knowledge it has gained
through its training.

The structure of the final prompt used for extract-
ing text highlights can be found in Appendix A. For
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this particular subtask, I use a formal grammar (fea-
ture included in llama.cpp6) to constraint the possi-
ble tokens that can be sampled (i.e., discarding to-
kens that would break the rules defined by the gram-
mar). The grammar is in GBNF format, which is
an extension of BNF (Backus–Naur/Normal form,
a metasyntax notation for context-free grammars)
that primarily adds a few modern regex-like fea-
tures. The grammar imposes the generation of
a list (surrounded by square brackets) of strings
(surrounded by double quotes), and the string can
only contain words present in the user’s comment
in their original order (see a concrete example in
Appendix B).

Regarding the summarization subtask, the struc-
ture of the used prompt can be found in Appendix C.
In this case, there is no imposed grammar, the
model is free to complete the response but it is
primed by providing already the first sentence,
which states what the preassigned suicidal risk level
is.

For both subtasks, a top-p sampling (aka nu-
cleus sampling; Holtzman et al., 2019) approach is
followed (after the grammar constrains have been
applied in the case of the highlights subtask), where
only the top tokens will be considered (up to a cu-
mulative score of 0.95), and a temperature of 0.7 to
favor precision over creativity (low values makes
top tokens more likely) and a repeat penalty of 1.1
is used to prevent loops.

Thanks to the workshop organizers, the gener-
ated text highlights and summaries that support the
preassigned suicidal risk level were automatically
evaluated against a test set annotated by domain
experts (who manually generated gold highlights
and summaries). The computed metrics to evaluate
highlights are:

• Recall: For every gold highlight, find the gen-
erated highlight with the highest semantic sim-
ilarity (based on BERTScore; Zhang et al.,
2019) and compute the average across users.
It measures how relevant the highlights are as
supporting evidence.

• Precision: For every generated highlight, find
the gold highlight with the highest seman-
tic similarity and compute the average across
users. It measures the quality of the generated
highlights.

6https://github.com/ggerganov/llama.cpp

• Weighted Recall: Sum the gold and generated
highlights lengths (i.e., number of tokens) per
user. If the generated length is greater than the
gold one, correct the calculated recall value R
with the length ratio: Rweighted = R× Lgold

Lcandidate
.

It measures how relevant the highlights are as
supporting evidence and if lengths are similar
to human-highlighted ones.

• Harmonic Mean: Balances between precision
and recall (the unweighted version).

Regarding the evaluation of summaries, the com-
puted metrics are:

• Consistency: Using a natural language infer-
ence (NLI) model, obtain the probability p
of each generated sentence (hypothesis) con-
tradicting the gold sentence (premise). Then
average 1− p across all sentences and users.
It measures lack of contradiction.

• Contradiction: Similar to the previous one,
but directly takes the maximum contradic-
tion probability and averages all sentences
and users. Hence, it penalizes information
that contradicts the gold summary, and lower
scores are better.

4 Results

The CLPsych 2024 shared task only accepted three
submissions per team, but the organizers were kind
enough to evaluate additional submissions that are
not considered for the workshop ranking. For the
competition, I submitted the output from OpenHer-
mes, Orca 2, and Starling. Orca 2 was selected as
it is the sole model based on Llama 2, while the
other two were chosen for their standings in the
LLM leaderboards. In the final official ranking,
OpenHermes produced the best results. For high-
lights, based on recall and harmonic mean metrics,
it ended in the modest 10th position (out of 15).
However, if the weighted recall were considered in-
stead, it would have ended in the 3rd position. This
shows that OpenHermes’ length of its generated
highlights are closer to human-highlighted ones
compared to other systems. Regarding summaries,
based on the consistency metrics, OpenHermes
ended in an outstanding 2nd position (out of 14).
If the organizer would have considered the contra-
diction metrics, then it would have fallen to a (still
honorable) 3rd position.
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Highlights Summaries
Model Recall Precision Weighted Recall Harmonic Mean Consistency Contradiction
OpenHermes 0.907 0.912 0.738 0.909 0.976 0.079
Orca 2 0.904 0.914 0.777 0.909 0.971 0.104
Starling 0.907 0.913 0.766 0.910 0.977 0.083
Dolphin 0.910 0.913 0.736 0.911 0.971 0.093
Mistral 0.902 0.913 0.799 0.907 0.969 0.105
Zephyr 0.894 0.914 0.803 0.903 0.974 0.085

Table 1: Performance metrics for all the evaluated models. The last three models did not enter the CLPsych 2024
shared task competition. The best scores per metric are highlighted in bold.

Beyond the workshop competition, and in the in-
terest of better assessing all the considered LLMs,
the performance metrics for all the evaluated mod-
els can be found in Table 1. For the highlights, the
best performing models are Dolphin and Zephyr,
depending if we consider the weighted or un-
weighted recall metrics. Zephyr produces high-
lights of a length that is more similar to the human-
made highlights, but Dolphin generates highlights
that are more relevant. Regarding summaries,
OpenHermes and Starling are in the lead, depend-
ing if we give a higher importance to being con-
sistent or minimizing contradictions. OpenHermes
generates summaries with the lowest level of con-
tradiction, and its consistency level is only slightly
below Starling, hence it would be fair to claim that
it is the best model for this subtask.

It is also worth exploring the evaluation metrics
split by the preassigned suicidal risk level (see Ta-
ble 2 and Table 3). There is no single model that
excels at all risk levels, suggesting that a combined
strategy could lead to even better overall results.
Additionally, almost for all models and metrics, the
performance correlates with the suicidal risk level:
the higher the risk, the better the performance of
the model.

Finally, in terms of computation, the average
inference time was of 40 minutes to extract high-
lights from 162 posts (∼14.8 seconds per post),
and 30 minutes to generate summaries for 125
users (∼14.4 seconds per user). These are ex-
tremely competitive numbers for LLMs running
on a consumer-grade machine.

5 Discussion

The OpenHermes’ generated highlights and sum-
maries, when compared to other submitted sys-
tems to the CLPsych 2024 shared task competition,
ended up with remarkable comparative metrics for
an approach that has used cost-effective "open-
source" LLMs without any specific fine-tuning for

these specific tasks. The highlights subtask seems
to be the one with more margin of improvement, es-
pecially if we only consider the unweighted recall
(where matching highlight lengths are not taken
into account). It would have been interesting to
make a manual human-based evaluation, compar-
ing the generated highlights with the golden ones
(which has not been released publicly), to better un-
derstand the discrepancy between the unweighted
and weighted recall metrics (10th vs 3rd position in
the final ranking, respectively) and justify selecting
one over the other. In any case, these extraordi-
nary results seem to signal the potential that this
approach may have at other relatively similar tasks
such as Named Entity Recognition. Regarding the
generation of summaries, both evaluation metrics
placed this approach in the top 3 ranking, a stun-
ning result for a model that has not been trained
specifically for psychological assessments.

OpenHermes seems to be the best well-balance
model and one of the best for summarization, but if
we consider all the evaluated LLMs, Dolphin and
Zephyr perform better in the highlights subtask.
However, these results would likely change if other
prompt templates were used. For instance, the
crafted prompt includes only one example with
a high suicidal risk level, and we observed that
almost all models perform better for comments
from high risk users. Expanding the prompt to
include more examples of different risk levels could
potentially improve the overall performance.

6 Conclusion

Six different "open-source" Large Language Mod-
els were evaluated to accomplish the shared task
proposed by the CLPsych 2024 workshop. This
work demonstrated that following a relatively sim-
ple approach, mainly consisting on a well struc-
tured prompt with one single example, can be used
with cost-effective LLMs to extract highlights and
generate comprehensive and consistent summaries
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Recall Precision Weighted Recall Harmonic Mean
Model / Risk Low Mod. High Low Mod. High Low Mod. High Low Mod. High
OpenHermes 0.900 0.904 0.915 0.896 0.909 0.922 0.677 0.739 0.759 0.898 0.906 0.919
Orca 2 0.902 0.903 0.905 0.907 0.914 0.919 0.723 0.785 0.778 0.905 0.908 0.911
Starling 0.892 0.909 0.907 0.893 0.911 0.924 0.705 0.763 0.794 0.892 0.910 0.915
Dolphin 0.901 0.912 0.912 0.894 0.913 0.920 0.632 0.748 0.750 0.897 0.912 0.915
Mistral 0.905 0.898 0.909 0.898 0.910 0.925 0.658 0.816 0.813 0.901 0.904 0.917
Zephyr 0.890 0.893 0.896 0.900 0.914 0.917 0.792 0.811 0.791 0.895 0.903 0.906

Table 2: Performance metrics for the highlights subtask, split by users with different suicidal risk level (low,
moderate, or high). The best scores per metric and risk level are highlighted in bold.

Consistency Contradiction
Model / Risk Low Mod. High Low Mod. High
OpenHermes 0.937 0.977 0.986 0.178 0.078 0.045
Orca 2 0.958 0.975 0.970 0.125 0.092 0.119
Starling 0.962 0.978 0.979 0.113 0.079 0.079
Dolphin 0.948 0.973 0.975 0.165 0.084 0.087
Mistral 0.931 0.976 0.968 0.205 0.084 0.110
Zephyr 0.944 0.976 0.981 0.161 0.081 0.068

Table 3: Performance metrics for the summarization
subtask, split by users with different suicidal risk level
(low, moderate, or high). The best scores per metric and
risk level are highlighted in bold.

that justify a preassigned suicidal risk level of users
who participate in online text-based forums. This
approach does not rely on complex operations such
as further training or fine-tuning the models to
adapt them to the goal in hand. Hence, existing
"open-source" models with moderate hardware re-
quirements can successfully run locally to support
psychological assessments. This approach facili-
tates respecting privacy rules, best ethical practices
and other local, national, and international regula-
tions.

7 Limitations

This study has considered a selection of six models
based on two existing public rankings, but there are
many more "open-source" LLMs available. In par-
ticular, there are models with even larger number
of parameters that could still be run in advanced
commodity hardware such as gaming computers. It
would have been interesting to evaluate how differ-
ently these larger models perform compared to the
selected 7 billion parameter models. The presented
approach is also highly dependent on the prompt
template, this work has not explored and compared
other prompts with more embedded examples or
different prompt wording.

It is important to recognize that LLMs are trained
on datasets that are not necessarily representative
of the global population (e.g., many biases may be
present), and they may not always accurately inter-

pret the nuances of human psychology and emo-
tions, leading to potential misinterpretation with
severe implications. Hence, using LLMs for psy-
chological assessments has associated risks that
need to be properly handled and mitigated.

Finally, not having direct access to the golden
highlights and summaries makes understanding cer-
tain results a bit more difficult.
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vided with IRB approval under University of Mary-
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(ethical application reference BSREC 40/19-20).
The author7 signed a data use agreement that es-
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A Prompt for Highlights Extraction

The specific text included as an example in the fol-
lowing prompt has been altered and paraphrased to
safeguard user privacy (the actual prompt contained
a real example):

<|im_start|>system
As a psychologist specializing in suicidal ideation, you are adept
at identifying key evidences within brief online text comments
that assess an individual’s risk of suicide. These evidences
encompass various aspects: Emotions (the individual’s feelings),
Cognitions (thoughts and perceptions about suicide), Behavior and
Motivation (actions or behaviors linked to suicide), Interpersonal
and Social Support (availability of social support and stable
relationships), Mental Health-Related Issues (potential
psychiatric diagnoses), and Risk Factors (including socioeconomic
and demographic aspects). The risk levels are categorized as low
(indicating minimal perceived risk of suicide), moderate
(suggesting a tangible risk of a suicide attempt), and high
(implying a strong likelihood of a suicide attempt in the near
future). You will now analyze several texts to extract pertinent
excerpts as evidences that effectively evaluate the individual’s
risk of suicide.<|im_end|>
<|im_start|>user
Risk level: high
Text: Recently, I attempted suicide by consuming an unspecified
amount of prescription medications. After realizing that the pills
were not lethal, I desperately prayed for an end to my suffering,
wishing to escape the torment inflicted by those who profess their
love yet demonstrate indifference through their actions.<|im_end|>
<|im_start|>assistant
[ "Recently, I attempted suicide", "I desperately prayed for an
end", "those who profess their love yet demonstrate indifference
through their actions" ]
<|im_start|>user
Risk level: risk_level
Text: user_comment
<|im_start|>assistant

The prompt above follows the Chat Markup Lan-
guage (ChatML) format, which is used by Open-
Hermes, Orca 2, and Dolphin. The prompt format
was adapted to follow the appropriate one for the
rest of the models (e.g., Starling uses GPT4 User:,
GPT4 Assistant, and no tag for the system mes-
sage).

B Grammar for Highlights Extraction

Simplified example of a grammar used to extract
highlights from the following text: ’Recently, I
attempted suicide by consuming an unspecified
amount of prescription medications.’.

root ::= "[" h (", " h)* "]"
h ::= ""̈ (t0 | t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 | t9 | t10 |
t11) ""̈
t0 ::= "Recently," (" " t1)?
t1 ::= "I" (" " t2)?
t2 ::= "attempted" (" " t3)?
t3 ::= "suicide" (" " t4)?
t4 ::= "by" (" " t5)?
t5 ::= "consuming" (" " t6)?
t6 ::= "an" (" " t7)?
t7 ::= "unspecified" (" " t8)?
t8 ::= "amount" (" " t9)?
t9 ::= "of" (" " t10)?
t10 ::= "prescription" (" " t11)?
t11 ::= "medications." (" " t12)?
t12 ::= ""

A response that respects this grammar would
be: ’["I attempted suicide", "prescription medica-
tion"]’. However, the grammar does not prevent
the model from extracting repetitive strings or out
of order strings (e.g., ’["suicide", "I attempted sui-
cide", "medications.", "I attempted suicide"]’), but
this behavior was not observed (probably thanks to
the repeat penalty).

C Prompt for Summarization

As in Appendix A, the specific text included as an
example in the following prompt was altered and
paraphrased to safeguard user privacy:

<|im_start|>system
As a psychologist specializing in suicidal ideation, you excel in
crafting concise summaries that collate evidences supporting a
designated suicide risk level for online texts. These evidences
encompass various aspects: Emotions (the individual’s feelings),
Cognitions (thoughts and perceptions about suicide), Behavior and
Motivation (actions or behaviors linked to suicide), Interpersonal
and Social Support (availability of social support and stable
relationships), Mental Health-Related Issues (potential
psychiatric diagnoses), and Risk Factors (including socioeconomic
and demographic aspects). The risk levels are categorized as low
(indicating minimal perceived risk of suicide), moderate
(suggesting a tangible risk of a suicide attempt), and high
(implying a strong likelihood of a suicide attempt in the near
future). You will now analyze various texts and succinctly
summarize the evidence that substantiates the assigned risk level
for each case.<|im_end|>
<|im_start|>user
Risk level: high
Text: Recently, I attempted suicide by consuming an unspecified
amount of prescription medications. After realizing that the pills
were not lethal, I desperately prayed for an end to my suffering,
wishing to escape the torment inflicted by those who profess their
love yet demonstrate indifference through their actions. I am
prone to anxiety, and for the past two weeks, I’ve been coerced
into tolerating the intrusive presence of my housemate’s
girlfriend. Despite my patience, my attempt to diplomatically
express the need for boundaries was met with coercion,
exacerbating my sense of violation.<|im_end|>
<|im_start|>assistant
This person is at high risk because they describe a recent suicide
attempt. They express a wish to be dead, extreme hopelessness, and
a sense of feeling trapped. Their overall tone is aroused and
agitated. They feel disconnected from others, and bullied by
others. They experience extreme anxiety.<|im_end|>
<|im_start|>user
Risk level: risk_level
Text: user_comments<|im_end|>
<|im_start|>assistant
This person is at risk_level risk.
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