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Abstract

Adapting pretrained language models to novel
domains, such as clinical applications, tradi-
tionally involves retraining their entire set of
parameters. Parameter-Efficient Fine-Tuning
(PEFT) techniques for fine-tuning language
models significantly reduce computational re-
quirements by selectively fine-tuning small sub-
sets of parameters. In this study, we propose a
two-step PEFT framework and evaluate it in the
clinical domain. Our approach combines a spe-
cialised PEFT adapter layer designed for clini-
cal domain adaptation with another adapter spe-
cialised for downstream tasks. We evaluate the
framework on multiple clinical outcome predic-
tion datasets, comparing it to clinically trained
language models. Our framework achieves a
better AUROC score averaged across all clini-
cal downstream tasks compared to clinical lan-
guage models. In particular, we observe large
improvements of 4-5% AUROC in large-scale
multilabel classification tasks, such as diag-
noses and procedures classification. To our
knowledge, this study is the first to provide an
extensive empirical analysis of the interplay be-
tween PEFT techniques and domain adaptation
in an important real-world domain of clinical
applications.1

1 Introduction

Large Language Models (LLMs) have consistently
achieved state-of-the-art performance across vari-
ous NLP tasks. However, while these models ex-
hibit impressive generalisation abilities, they often
struggle to perform in specialised domains such as
clinical applications, primarily due to the absence
of domain-specific knowledge. The complexity of
medical terminology and the presence of incom-
plete sentences in clinical notes contribute to this
challenge (Lehman and Johnson, 2023). Unfor-
tunately, studies have indicated that even LLMs

1The code is accessible via https://github.com/
aryopg/clinical_peft.
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Figure 1: An illustration of the proposed two-step PEFT
framework. Clinical LLaMA-LoRA fine-tunes the pre-
trained LLaMA to the clinical domain. Downstream
LLaMA-LoRA further fine-tunes the domain-adapted
model to downstream clinical tasks.

pretrained with datasets comprising biomedical
publications still exhibit suboptimal performance
when applied to downstream clinical applications,
particularly when compared to LLMs pretrained
with clinical notes (Alsentzer et al., 2019; Li et al.,
2022; Yang et al., 2022). This observation suggests
that there are intrinsic nuances specific to the clini-
cal context that can only be effectively captured if
LLMs undergo pretraining using clinical datasets.

The current approach of adapting pretrained
LLMs to the clinical domain typically involves
fine-tuning the entire model parameters (Alsentzer
et al., 2019; Peng et al., 2019; van Aken et al., 2021;
Michalopoulos et al., 2021; Lehman and Johnson,
2023). However, due to the rapid increase in the
size of LLMs, such a practice demands extensive
computational resources, which may not be readily
accessible to all researchers. Consequently, this
challenge will further exacerbate the disparity be-
tween the resource-rich and resource-constrained
research institutions (Ruder et al., 2022).

To address the substantial computational de-
mands, studies have proposed various Parameter-
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Efficient Fine-Tuning (PEFT) techniques. These
techniques present a practical solution by fine-
tuning a small subset of additional parameters
while keeping the remaining pretrained parameters
fixed. As a result, this strategy significantly alle-
viates the computational burden while achieving
comparable performance to that of full fine-tuning.

In this study, we propose a two-step PEFT frame-
work (see Figure 1). Firstly, we introduce Clinical
LLaMA-LoRA, a Low-Rank Adaptation (LoRA,
Hu et al., 2022) PEFT adapter built upon the open-
source Large Language Model Meta AI (LLaMA)
(Touvron et al., 2023). Then, we introduce Down-
stream LLaMA-LoRA, which is trained on top
of the pretrained Clinical LLaMA-LoRA. Down-
stream LLaMA-LoRA is specifically designed for
clinical downstream tasks. The fusion of the
two adapters achieves better performance in clini-
cal NLP downstream tasks compared to clinically
trained LLMs while considerably reducing the com-
putational requirements. This study presents the
following contributions:

• We introduce Clinical LLaMA-LoRA, a PEFT-
adapted version of the LLaMA model tailored
specifically for the clinical domain.

• We provide comparisons of multiple PEFT tech-
niques in terms of language modelling perfor-
mance based on perplexity score, shedding light
on the optimal PEFT techniques for the clinical
domain-adaptive pretraining.

• We introduce Downstream LLaMA-LoRA, built
on top of Clinical LLaMA-LoRA and tailored
specifically for the clinical downstream tasks.

• We evaluate the proposed mixture of Clinical
LLaMA-LoRA and Downstream LLaMA-LoRA
on downstream clinical datasets and tasks. Our
proposed framework showcases improvements in
AUROC scores over the existing clinical LLMs.

2 Background

2.1 Biomedical Large Language Models
General-domain LLMs continue to face challenges
when confronted with domain-specific tasks. The
complexity associated with the requisite domain
knowledge is recognised as a significant fac-
tor (Ling et al., 2023), particularly within the
biomedical domain. Consequently, numerous stud-
ies have attempted to adapt LLMs specifically for
the biomedical domain.

An early example of such adaptation is
BioBERT (Lee et al., 2019), which was pretrained
using biomedical research articles from PubMed
and PubMed Central. This adaptation has shown
improved performance across various biomedi-
cal NLP tasks. Recognising the significance of
biomedical-specific vocabularies, Gu et al. (2022)
proposed PubMedBERT, which is pretrained on
biomedical data from scratch and initialised the
model vocabulary with the biomedical corpus. The
growing interest in biomedical NLP research has
led to the adaptation of even larger models to the
biomedical domain (Luo et al., 2022; Singhal et al.,
2022; Wu et al., 2023; Singhal et al., 2023)

While these biomedical LLMs have demon-
strated advancements in various biomedical NLP
benchmarking tasks, studies have revealed that
clinical LLMs still outperform their biomedical
counterparts in numerous clinical downstream
tasks (Alsentzer et al., 2019; Yang et al., 2022;
Li et al., 2022; Lehman and Johnson, 2023). This
suggests that domain-adaptive pretraining using
clinical data is still the de facto protocol in adapt-
ing LLMs to the clinical domain.

2.2 Clinical Large Language Models

Clinical LLMs are often fine-tuned with clinical
data from an LLM that is already pretrained with
datasets that encompass broader topics. For in-
stance, Bio+ClinicalBERT (Alsentzer et al., 2019)
is domain-adaptively pretrained using clinical notes
from the Medical Information Mart for Intensive
Care (MIMIC)-III database (Johnson et al., 2016),
starting from a pretrained BioBERT (Lee et al.,
2019), which itself is pretrained on biomedical ar-
ticles. BlueBERT (Peng et al., 2019) is domain-
adaptively pretrained using PubMed abstracts and
MIMIC-III clinical notes from a BERT model (De-
vlin et al., 2019), that is pretrained with general-
domain texts. Similarly, Clinical-T5 (Lehman and
Johnson, 2023) is domain-adaptively pretrained us-
ing the union of MIMIC-III and MIMIC-IV (John-
son et al., 2023) clinical notes from T5-base (Raffel
et al., 2020), another general-domain LLM.

All these studies share a common approach,
which is to fine-tune the entire model parameters.
With massive LLMs, this method has become cost-
prohibitive and inaccessible for many researchers.
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Figure 2: Frameworks of domain-adaptive and downstream fine-tuning to adapt a pretrained LLM from the general
domain to the clinical domain. As opposed to a full fine-tuning process which can be prohibitively expensive
(left), our approach leverages PEFT techniques to introduce a clinically-specialised adapter that is attached to a
pretrained general LLM (right). Our proposed framework also introduces another clinical PEFT adapter trained on
the downstream clinical tasks, such as clinical note classification.

2.3 Parameter-Efficient Fine-Tuning for
Large Language Models

Suppose that we have a pretrained LLM PΦ(y|x);
fine-tuning it can be effectively defined as find-
ing the most appropriate parameter changes ∆Φ
by optimising the fine-tuning objective. A con-
ventional, full fine-tuning process means that the
model needs to learn a ∆Φ whose dimension is
equal to the entire parameters of the pretrained
LLM |∆Φ| = |Φ0|, which is computationally ex-
pensive. PEFT techniques address this by tuning
the delta ∆Φ, which corresponds to a very small
fraction of additional trainable parameters during
the fine-tuning process.

Adapter tuning (Houlsby et al., 2019) is an early
PEFT method that involves adding small additional
parameters called adapters to each layer of the pre-
trained model and strictly fine-tuning this small
set of new parameters. LoRA (Hu et al., 2022) is
another PEFT approach that trains low-rank ma-
trices to represent the attention weights update of
transformer-based models.

Another group of PEFT approaches leverages
the concept of prompting. Prefix Tuning (Li and
Liang, 2021) optimises a sequence of continuous
task-specific vectors, called a prefix, which are
trainable parameters that do not correspond to real
tokens. P-Tuning (Liu et al., 2021b) uses a similar
strategy as Prefix tuning with a focus on text un-
derstanding tasks, as opposed to generative tasks.
Prompt tuning (Lester et al., 2021) simplifies Pre-
fix tuning by introducing trainable tokens, called
soft prompts, for each downstream task. Liu et al.

(2021a) introduced P-tuning v2 which uses deep
prompt tuning to address the lack of performance
gain in the previous prompt tuning techniques.

By fine-tuning a small fraction of additional pa-
rameters, all PEFT approaches alleviate the issue
of extensive computational resource requirements.

2.4 Multi-step Adaptation
Prior studies have explored the two-step adaptation
framework, although they have fundamental dif-
ferences from our proposed setup. For instance,
Zhang et al. (2021) introduced a multi-domain
unsupervised domain adaptation (UDA) with a
two-step strategy, involving domain-fusion train-
ing with Masked Language Model loss on a mixed
corpus, followed by task fine-tuning with a task-
specific loss on the domain corpus. More recently,
Malik et al. (2023) introduced UDApter which
utilises PEFT adapters to do efficient UDA. How-
ever, unsupervised domain matching techniques
such as UDApter rely on restrictive assumptions
about the underlying data distributions that are of-
ten unsatisfied in real-world scenarios (Li et al.,
2020). In our study, we experiment with the clin-
ical domain as the target domain that is not avail-
able in the LLM’s initial pretraining. Consequently,
significant discrepancies exist between the distribu-
tions of the source and target domains. Leveraging
the amount of available clinical notes, we adopt
a self-supervised learning paradigm by continu-
ally pretraining the LLMs within the target domain
rather than relying on the UDA paradigm.

Our approach shares theoretical similarities with
the multi-step continual pretraining approach, pro-
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posed by Gururangan et al. (2020), which proposes
domain- and task-adaptive pretraining. However,
the main difference between our proposed approach
and Gururangan et al. (2020) is in the discrepancy
between the source and the target domains. Gu-
rurangan et al. (2020) experimented with adapt-
ing general-domain LLMs to domains encountered
during their initial pretraining, such as news and
biomedical domains. On the other hand, we experi-
ment with the clinical domain which is entirely ab-
sent from the LLMs’ initial pretraining due to legal
constraints which restrict access to sensitive clin-
ical notes. On top of that, adapting to the clinical
domain poses a bigger challenge due to the com-
plexity of medical terminology and the presence of
incomplete sentences (Lehman et al., 2023).

3 Methodology

3.1 Problem Statement
Figure 2 shows the comparison between the current
and proposed problem definitions. The general
problem can be decomposed into two stages:

Domain-adaptive Pretraining. Given a pre-
trained general LLM PΦ(y|x) with its parameters
Φ and a training dataset Z = {(xi, yi)}i=1,...,N . To
adapt to the new domain, the model needs to update
its weight iteratively from its pretrained state Φ0

to Φ = Φ0 +∆Φ. This process of maximising the
objective function can be defined as:

argmax
Φ

∑

(x,y)∈Z

|y|∑

t=1

log (PΦ (yt | x, y<t))

In the current paradigm, a full fine-tuning process
means that the model needs to learn a ∆Φ whose di-
mension is equal to the entire pretrained parameters
|∆Φ| = |Φ0|, which is computationally expensive.

In the proposed paradigm, we tune only small
additional parameters θ such that Φ = Φ0+∆Φ(θ)
whose dimension is very small compared to the
original parameters |θ| ≪ |Φ0|. Thus, the training
objective can be redefined as:

argmax
θ

∑

(x,y)∈Z

|y|∑

t=1

log
(
PΦ0+∆Φ(θ) (yt | x, y<t)

)

In the current paradigm, the outcome of domain-
adaptive pretraining would be a clinically-adapted
LLM. While in the proposed paradigm, the out-
come would be the clinical PEFT component,
which can be combined with the untouched pre-
trained general LLM for downstream applications.

Downstream Fine-tuning. In the current
paradigm, the pretrained clinical LLM is fine-
tuned to the downstream tasks, such as document
classification tasks. Suppose that we have a
pretrained clinical LLM PΦ,Θ with its domain-
adapted parameters Φ and a newly initialised
classifier layer Θ, as well as a training dataset
Z = {(xi, yi)}i=1,...,N . We want to maximise a
specific loss function, such as a cross-entropy loss:

argmax
Φ,Θ

1

N

N∑

i=1

yi log (PΦ,Θ (xi))

In contrast, in the proposed paradigm, the fine-
tuning process only updates the small additional
parameters ∆Φ(θ) and the classifier head Θ:

argmax
θ,Θ

1

N

N∑

i=1

yi log
(
PΦ+∆Φ(θ),Θ (xi)

)

In fact, we can also decompose the fine-tuning into
an additional "delta-updating" process:

argmax
θ,ϕ,Θ

1

N

N∑

i=1

yi log
(
PΦ+∆Φ(θ)+∆Φ(ϕ),Θ (xi)

)

Similar to the Domain-adaptive Pretraining stage,
the dimensions of the additional parameters θ and ϕ
are very small compared to the original parameters.
By updating only the additional parameters and
the classifier head, the proposed paradigm reduces
the computational requirements, making it more
efficient and feasible, especially for clinical settings
that are often resource-constrained.

3.2 Two-step LLaMA-LoRA
In this study, we propose a two-step PEFT frame-
work (as shown on the right-hand side of Figure 2).
Firstly, we introduce Clinical LLaMA-LoRA, a
LoRA adapter built upon LLaMA (Touvron et al.,
2023) that is adapted to the clinical domain. Sec-
ondly, we introduce Downstream LLaMA-LoRA,
which is trained on top of the pretrained Clinical
LLaMA-LoRA and is specifically adapted to the
downstream tasks.

LLaMA models In this study, we evaluate two
LLaMA models; the 7 billion parameters version
of LLaMA (Touvron et al., 2023) and the 7 bil-
lion parameters version of PMC-LLaMA(Wu et al.,
2023). LLaMA was pretrained with an array of
texts from multiple sources, such as English Com-
monCrawl, Wikipedia, ArXiv, and C4 (Raffel et al.,
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Dataset # Class Multilabel # Train # Valid # Test

LOS 4 ✗ 30,421 4,391 8,797
MOR 2 ✗ 33,954 4,908 9,822
PMV 2 ✗ 5,666 707 706
DIAG 1,266 ✓ 33,994 4,918 9,829
PROC 711 ✓ 30,030 4,357 8,681

Table 1: Statistics and types of downstream clinical doc-
ument classification tasks: length of stay (LOS), mor-
tality (MOR), prolonged mechanical ventilation (PMV),
diagnoses (DIAG), and procedures (PROC).

2020). While, PMC-LLaMA is a domain-adapted
LLaMA model that was pretrained on 4.8 million
biomedical academic papers from PubMed Central.

Domain-adaptive Pretraining: Clinical LLaMA-
LoRA Clinical LLaMA-LoRA is trained using
a combination of MIMIC-IV de-identified dis-
charge summaries (331,794) and radiology reports
(2,321,355), resulting in a collection of 2,653,149
individual clinical notes. We evaluate five PEFT
techniques, which include LoRA (Hu et al., 2022),
Adaptation Prompt (Zhang et al., 2023), Prefix Tun-
ing (Li and Liang, 2021), Prompt Tuning (Lester
et al., 2021), and P-tuning (Liu et al., 2021b).

Our approach follows the autoregressive lan-
guage modelling pretraining objective employed in
the original LLaMA training. To ensure compatibil-
ity with available computational resources, we use
fixed model hyperparameters that allow us to fit the
LLM into a single NVIDIA A100-80GB GPU (see
Appendix A.1). We optimise the hyperparameters
specific to each PEFT method using Gaussian Pro-
cess regression for Bayesian Optimisation (Frazier,
2018) 2 with a maximum of 20 trials. The detailed
hyperparameters search space can be found in Ap-
pendix A.2. During this stage, we evaluate the
perplexity scores of the LLM variants.

Downstream Fine-tuning: Downstream
LLaMA-LoRA We fine-tune the Clinical
LLaMA-LoRA and Downstream LLaMA-LoRA
to clinical document classification tasks:

• Prolonged mechanical ventilation (PMV): a
binary classification task to predict whether a
patient will require mechanical ventilation for
more than seven days (Huang et al., 2020; Naik
et al., 2022).

• In-hospital mortality (MOR): a binary classifi-
cation task to predict whether a patient will sur-

2Specifically, we use the W&B Sweep APIs: https://
docs.wandb.ai/guides/sweeps

vive during their hospital stay (van Aken et al.,
2021; Naik et al., 2022).

• Length of stay (LOS): a multiclass classification
task to predict the length of a patient’s hospital
stay, categorised into four time-bins: less than
three days, three to seven days, one to two weeks,
and more than two weeks (van Aken et al., 2021;
Naik et al., 2022).

• Diagnoses (DIAG): a large-scale multilabel clas-
sification task to predict the differential diagnoses
of a patient, represented by simplified ICD-9 di-
agnosis codes (van Aken et al., 2021).

• Procedures (PROC): a large-scale multilabel
classification task to predict the treatments ad-
ministered to a patient, represented by simplified
ICD-9 procedure codes (van Aken et al., 2021).

The label and split statistics of each dataset can be
found in Table 1.

During this downstream fine-tuning process,
we use fixed model hyperparameters to ensure
compatibility with the available computational re-
sources, a single NVIDIA A100-80GB GPU (see
Appendix B.1). We optimise the hyperparameters
specific to each PEFT method using Gaussian Pro-
cess regression for Bayesian Optimisation with a
maximum of 20 trials. The detailed hyperparame-
ters search space of the PEFT method can be found
in Appendix B.2.

For evaluating the performance of the model on
these downstream tasks, we report the Area Under
the Receiver Operating Characteristic Curve (AU-
ROC) scores. Additionally, we report the macro-
averaged AUROC score across all clinical tasks as
commonly done in NLP benchmarking tasks (Wang
et al., 2019; Peng et al., 2019; Gu et al., 2022).

3.3 Baseline Models
We selected baseline models that have undergone
a domain-adaptive pretraining process on clinical
notes (MIMIC-III). Thus, these baseline models
have been designed to perform specifically on clin-
ical data, providing comparison points for evaluat-
ing our proposed approach of two-step adaptation
in downstream clinical NLP tasks. The baseline
models used in the evaluation are as follows:

• Bio+ClinicalBERT (Alsentzer et al., 2019):
Bio+ClinicalBERT is pretrained on MIMIC-III
clinical notes. It is initialised from a biomedi-
cal language model called BioBERT (Lee et al.,
2019), which is pretrained on biomedical re-
search articles.
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• BlueBERT (Peng et al., 2019): BlueBERT is pre-
trained on MIMIC-III clinical notes and PubMed
abstracts starting from the pretrained checkpoint
of BERT (Devlin et al., 2019), a general-domain
language model.

• CORe (van Aken et al., 2021): CORe is pre-
trained on MIMIC-III clinical notes and biomed-
ical articles starting from the pretrained check-
point of BioBERT (Lee et al., 2019).

• UmlsBERT (Michalopoulos et al., 2021):
UmlsBERT is pretrained on MIMIC-III clin-
ical notes using the pretrained weights of
Bio+ClinicalBERT with modified architecture
and pretraining objective that incorporates knowl-
edge from the Unified Medical Language System
(UMLS) Metathesaurus (Schuyler et al., 1993).

4 Results and Analysis

4.1 Domain-adaptive Pretraining
The pretraining results can be found in Table 2.
We employ PEFT techniques for domain-adaptive
pretraining, requiring a significantly smaller num-
ber of parameters ranging from just 0.001% to
0.24% of the original model parameters. This ap-
proach substantially reduces the required compu-
tational resources and training time. We perform
a full-parameter domain-adaptive pretraining of
LLaMA, referred to as Clinical LLaMA, using
four NVIDIA A100-80GB GPUs which took 49.5
hours. Instead, PEFT techniques require less than
24 hours per epoch on average with only a single
GPU with a comparable perplexity score.

LoRA emerges as the best-performing PEFT
method for both LLaMA and PMC-LLaMA in the
clinical domain-adaptive pretraining, achieving the
lowest perplexity scores of 2.244 and 2.404, respec-
tively, which are very similar to Clinical LLaMA’s
perplexity score of 2.210. This pretrained LoRA
is referred to as Clinical LLaMA-LoRA in the
subsequent sections. The following experiments in
downstream fine-tuning will utilise this pretrained
Clinical LLaMA-LoRA.

4.2 Downstream Fine-tuning
From the downstream fine-tuning results shown
in Table 3, we can decompose the analysis into
multiple research questions:

Can LoRA help fine-tune LLaMA from other
domains (general and biomedical) to achieve
higher AUROC scores in clinical tasks? We
compare the results obtained by LLaMA and

LLaMA + LoRA, as well as PMC-LLaMA and
PMC-LLaMA + LoRA, as presented in Table 3.
The obtained results consistently demonstrate im-
proved AUROC scores when utilising LoRA across
all tasks. The macro-averaged AUROC score of
LoRA-equipped LLaMA shows a notable 13.01%
increase when compared to the LLaMA-only base-
line. Similarly, LoRA-equipped PMC-LLaMA ex-
hibits a 12.19% improvement in macro-averaged
AUROC compared to the original PMC-LLaMA
Both LLaMA and PMC-LLaMA, when equipped
with LoRA, show significant AUROC score im-
provements in all tasks except the PMV prediction
task, which is challenging for all model variants.

Furthermore, the marginal difference in AUROC
scores between PMC-LLaMA and the general-
domain LLaMA may be attributed to two factors.
Firstly, the original LLaMA has been exposed to
biomedical concepts during its pretraining, reduc-
ing the need for domain-adaptive pretraining to the
biomedical domain. Secondly, clinical outcome
prediction requires an understanding of how to ap-
ply biomedical knowledge in an interconnected
manner to provide prognostic. We believe that
biomedical pretraining may not be sufficient in pro-
viding such practical knowledge.

Can LoRA-equipped LLaMA and PMC-
LLaMA perform comparably in comparison to
clinically trained LMs? We compare the AU-
ROC scores obtained by the baseline models, and
LoRA-equipped LLaMA and PMC-LLaMA (see
Table 3). Among the baseline models, UmlsBERT
performs the best with a macro-averaged AUROC
score of 72.70%. Compared to UmlsBERT, both
LLaMA and PMC-LLaMA underperform with
macro-averaged AUROC scores of 58.61% and
60.51%, respectively. This finding highlights the
importance of clinical-specific fine-tuning.

Significant improvements can be observed in
LoRA-equipped LLaMA and PMC-LLaMA, with
macro-averaged AUROC scores of 71.62% and
72.70%, respectively, with noticeable improve-
ments in the diagnoses and procedures prediction
tasks. LoRA-equipped LLaMA achieves AUROC
scores of 78.37% and 87.49% in the diagnoses and
procedures prediction tasks, respectively, compared
to 72.08% and 78.32% for UmlsBERT. This repre-
sents improvements of 6.29% in diagnoses predic-
tion and 9.17% in procedures prediction. Improve-
ments are also observed in the results obtained
by LoRA-equipped PMC-LLaMA, outperforming
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Base Model PEFT Trainable Params Train Ppl Test Ppl GPU Train Time (h:m:s)

Clinical LLaMA - 6.7B (100%) 1.811 2.210 4x80GB 49:26:38

LLaMA

LoRA 8.4M (0.12%) 1.858 2.244 1x80GB 21:37:42
Adaptation Prompt 1.2M (0.02%) 2.561 2.865 1x80GB 24:57:17
Prefix Tuning 5.2M (0.08%) 2.815 2.748 1x80GB 20:11:07
Prompt Tuning 61.4K (0.0009%) 4.846 4.007 1x80GB 23:27:28
P-tuning 16.1M (0.24%) 2.723 3.271 1x80GB 23:49:31

PMC-LLaMA

LoRA 2.1M (0.03%) 1.938 2.404 1x80GB 21:32:59
Adaptation Prompt 1.2M (0.018%) 2.374 2.867 1x80GB 23:33:10
Prefix Tuning 2.6M (0.04%) 1.789 2.848 1x80GB 20:13:10
Prompt Tuning 41K (0.0006%) 4.821 4.385 1x80GB 22:25:32
P-tuning 2.2M (0.03%) 3.491 4.572 1x80GB 22:28:15

Table 2: Domain-adaptive Pretraining results of LLaMA and PMC-LLaMA trained on MIMIC-IV clinical notes
with a language modelling objective. Lower perplexity scores indicate better language modelling performance. The
boldface row indicates the model with the lowest perplexity score from each base model variant.

UmlsBERT by 6.73% in diagnoses prediction and
8.36% in procedures prediction.

Can LLaMA and PMC-LLaMA with Clinical
LLaMA-LoRA achieve higher AUROC scores
than the clinically trained LMs? The domain-
adaptive pretraining step yields the clinically-
trained LoRA adapters for LLaMA and PMC-
LLaMA, denoted as Clinical LLaMA-LoRA. We
compare the results of Clinical LLaMA-LoRA-
equipped LLaMA and PMC-LLaMA with the base-
line models. We evaluate Clinical LLaMA-LoRA
with and without fine-tuning, referred to as "Train-
able" and "Frozen" respectively.

The results indicate that Clinical LLaMA-LoRA-
equipped LLaMA and PMC-LLaMA outperform
the baseline models. LLaMA with a trainable Clin-
ical LLaMA-LoRA achieves an AUROC score of
75.13%, surpassing UmlsBERT’s score of 72.32%.
PMC-LLaMA with a trainable Clinical LLaMA-
LoRA achieves a lower AUROC score of 72.23%.
LLaMA with a trainable Clinical LLaMA-LoRA
also outperforms Clinical LLaMA which achieves
an AUROC score of 58.86%.

These findings indicate that the Clinical LLaMA-
LoRA contributes to higher AUROC scores for
LLaMA and PMC-LLaMA over clinically trained
LLMs, while biomedical domain-adaptive pretrain-
ing may not be necessary to improve the model’s
performance in the clinical settings.

Can LLaMA and PMC-LLaMA with Clinical
LLaMA-LoRA achieve higher AUROC scores
than the other fine-tuning variants? We exam-
ine the importance of the domain-adapted LoRA
by comparing the results obtained by LLaMA and
PMC-LLaMA equipped with Clinical LLaMA-

LoRA against the results of LLaMA and PMC-
LLaMA fine-tuning, both original and with LoRA.

Firstly, we evaluate the frozen pretrained Clin-
ical LLaMA-LoRA. Both LLaMA and PMC-
LLaMA with frozen Clinical LLaMA-LoRA do
not exhibit a significant increase in performance
compared to the original fine-tuning. This indicates
that, despite the domain-adaptive pretraining, the
limited number of trainable parameters during the
downstream fine-tuning restricts the potential im-
provement that the model can achieve. A similar
finding can also be observed in the Clinical LLaMA
fine-tuning whose overall performance does not dif-
fer from the original fine-tuning. This finding is fur-
ther supported by the improvement in the AUROC
scores of LLaMA and PMC-LLaMA with trainable
Clinical LLaMA-LoRA, which achieve 75.13%
and 72.23% macro-averaged AUROC scores, re-
spectively. These represent substantial improve-
ments from the vanilla fine-tuning performance,
58.61% and 60.51% AUROC scores.

Can a downstream LoRA adapter improve the
AUROC scores of LLaMA and PMC-LLaMA
equipped with Clinical LLaMA-LoRA? By
considering Clinical LLaMA-LoRA as the "delta-
updating" outcome of the domain-adaptive pre-
training, we can view the downstream fine-tuning
process as an additional "delta-updating" step.
To investigate the impact of this approach, we
conduct experiments by adding a Downstream
LLaMA-LoRA to LLaMA and PMC-LLaMA
models that were already equipped with Clinical
LLaMA-LoRA. From Table 3, we can observe
that Downstream LLaMA-LoRA fails to improve
the performance of LLaMA and PMC-LLaMA
with frozen Clinical LLaMA-LoRA. On the other
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Model PMV MOR LOS DIAG PROC Macro Average

BlueBERT 57.31 81.34 72.92 73.39 76.62 72.32
UmlsBERT 58.29 81.83 73.02 72.08 78.32 72.70
Bio+ClinicalBERT 54.00 72.67 72.21 76.65 83.21 71.75
CORe 52.11 71.52 64.17 72.40 84.51 69.40

Clinical LLaMA* 52.28 63.22 56.06 59.31 63.42 58.86

LLaMA∗ 51.38 66.80 57.65 60.06 63.83 58.61
+ LoRA 51.65 74.89 65.70 78.37 87.49 71.62
+ Clinical LLaMA-LoRA (Frozen) 52.22 60.88 55.05 57.64 62.48 57.65

+ Downstream LLaMA-LoRA 52.31 61.72 55.16 57.70 62.58 57.90
+ Clinical LLaMA-LoRA (Trainable) 51.41 81.16 72.44 81.97 88.69 75.13

+ Downstream LLaMA-LoRA 53.81 83.02 73.26 81.93 88.31 76.07

PMC-LLaMA∗ 53.06 66.77 57.94 60.17 64.63 60.51
+ LoRA 53.84 78.03 66.14 78.81 86.68 72.70
+ Clinical LLaMA-LoRA (Frozen) 51.33 67.19 58.13 63.59 68.26 60.06

+ Downstream LLaMA-LoRA 50.90 67.00 58.31 60.50 64.42 60.23
+ Clinical LLaMA-LoRA (Trainable) 52.88 75.86 65.89 79.66 86.85 72.23

+ Downstream LLaMA-LoRA 52.21 76.54 68.42 78.67 87.08 72.58

Table 3: AUROC scores in clinical downstream document classification tasks. The macro-averaged AUROC score
is calculated by taking the average of AUROC scores across all tasks. The boldface cell indicates the highest
AUROC score in a column, the row in italic indicates the variant with the highest macro-averaged AUROC in its
category. + LoRA denotes applying LoRA on top of the pretrained LLM without domain-adaptive pretraining. +
Clinical LLaMA-LoRA denotes applying Clinical LLaMA-LoRA that is domain-adaptively pretrained on top of
the pretrained LLM. + Downstream LLaMA-LoRA denotes applying Downstream LLaMA-LoRA on top of the
LLM + Clinical LLaMA-LoRA. Frozen means that the parameters are not trainable, while Trainable means that the
parameters are trainable. ∗ Due to restricted computing resources, the fine-tunings of Clinical LLaMA, LLaMA,
and PMC-LLaMA were constrained to only training the final classification layer.

hand, improvement can be observed when adding
Downstream LLaMA-LoRA to LLaMA with train-
able Clinical LLaMA-LoRA. This combination of
LLaMA with trainable Clinical LLaMA-LoRA and
Downstream LLaMA-LoRA achieves the highest
macro-averaged AUROC score of 76.07%. The
macro-averaged AUROC score of Clinical LLaMA-
LoRA was almost similar to that of PMC-LLaMA
with LoRA, suggesting similar efficacy between
Clinical LLaMA-LoRA and the full fine-tuning
process that PMC-LLaMA has undergone. More-
over, Clinical LLaMA-LoRA offers the advantage
of reduced computational resources and training
time, which is aligned with the requirements of
practical implementation in clinical settings.

Overall, our proposed method manages to
achieve better performance in comparison to clini-
cally trained models. We also provide a comparison
with the state-of-the-art method of PMV, mortality,
and length of stay predictions, called BEEP (Naik
et al., 2022), which leverages retrieval augmen-
tation method to provide more contextual infor-
mation to the model during inference. The com-
parison is only partial as BEEP models were not
evaluated on the diagnosis and procedure predic-
tion tasks. As shown in Appendix C, our best-

performing model achieves a 70.03% averaged AU-
ROC score, which is slightly worse compared to
the best-performing BEEP model with 72.26% av-
eraged AUROC score. However, it is worth noting
that our proposed method and the state-of-the-art
method are complementary to each other. Hence,
future work may explore the possibility of combin-
ing the two approaches.

5 Conclusions

In this study, we propose a two-step PEFT frame-
work. We introduce Clinical LLaMA-LoRA,
a LoRA (Hu et al., 2022) adapter built upon
LLaMA (Touvron et al., 2023). Then, we intro-
duce Downstream LLaMA-LoRA, a task-specific
adapter that is trained on top of the pretrained
Clinical LLaMA-LoRA. The fusion of the two
adapters achieves an AUROC score of 76.07%
macro-averaged across all clinical NLP down-
stream tasks, which represents a 3.37% improve-
ment over the best-performing clinical LLM. Our
proposed framework achieves improvement in per-
formance while reducing the computational require-
ments, which is suited for clinical settings that are
often constrained by their computational power.
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Limitations

This study presents a two-step PEFT framework
aimed at effectively adapting LLMs to diverse clin-
ical downstream applications. However, the evalu-
ation of our model was restricted to MIMIC-based
datasets, which are constrained to English and ob-
tained exclusively within the Commonwealth of
Massachusetts, United States of America. Con-
sequently, despite the promising efficacy demon-
strated by our proposed method, it would have been
advantageous to directly assess its performance
across diverse hospital systems spanning other ge-
ographical locations and languages. This would
enable a more comprehensive understanding of its
applicability and generalizability. However, it is
essential to acknowledge that conducting such an
analysis would require working within a trusted
research environment and obtaining the necessary
permissions to access the relevant datasets.

It is crucial to recognise the restrictions imposed
on accessing internal clinical datasets, as they limit
our ability to evaluate the effectiveness of our
approach across different care provider systems.
Therefore, we encourage care providers to conduct
internal experiments within their trusted research
environment to ensure the efficacy of our proposed
method within their specific use cases should they
adopt this approach.

Despite the demonstrated performance improve-
ments, the proposed model may still be suscep-
tible to spurious correlations. Predicting patient
outcomes solely based on clinical notes presents
significant challenges due to the other factors that
may not be captured within those notes. For in-
stance, the length of a patient’s in-hospital stay
is not solely correlated with their diagnoses and
disease progression. Factors such as the patient’s
insurance status, which is not typically mentioned
in clinical notes, can severely impact the duration
of a patient’s stay. Therefore, we encourage end
users of such clinical LLMs to consider additional
measures to ensure predictions that reflect a holistic
view of the patient’s situation, instead of relying
solely on the predictions of LLMs.

Ethics Statement

In this study, we use MIMIC-based datasets ob-
tained after completing the necessary training.
These datasets comply with de-identification stan-
dards set by the Health Insurance Portability and
Accountability Act (HIPAA) through data cleans-

ing. Due to privacy concerns, we refrain from in-
cluding direct excerpts of the data in the paper. We
also refrain from publicly sharing the pretrained
checkpoints.

While our model demonstrates effectiveness, it is
important to acknowledge the risks associated with
relying solely on clinical outcome prediction mod-
els. There are crucial pieces of information that
can be found beyond the scope of clinical notes.
Considering the potential impact on patient health
outcomes, it is crucial to exercise caution when util-
ising these clinical LLMs. Therefore, we propose
that the PEFT adapter generated by our framework,
in conjunction with the pretrained LLM, should be
used as an aid rather than a replacement for trained
clinical professionals.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Pro-
ceedings of the 36th International Conference on
Machine Learning, page 2790–2799. PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Kexin Huang, Abhishek Singh, Sitong Chen, Edward
Moseley, Chih-Ying Deng, Naomi George, and
Charolotta Lindvall. 2020. Clinical XLNet: Mod-
eling Sequential Clinical Notes and Predicting Pro-
longed Mechanical Ventilation. In Proceedings of
the 3rd Clinical Natural Language Processing Work-
shop, pages 94–100, Online. Association for Compu-
tational Linguistics.

Alistair E. W. Johnson, Lucas Bulgarelli, Lu Shen,
Alvin Gayles, Ayad Shammout, Steven Horng, Tom J.
Pollard, Benjamin Moody, Brian Gow, Li-wei H.
Lehman, Leo A. Celi, and Roger G. Mark. 2023.
MIMIC-IV, a freely accessible electronic health
record dataset. Scientific Data, 10(1):1.

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-
wei H. Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G. Mark. 2016. MIMIC-III,
a freely accessible critical care database. Scientific
Data, 3(1):160035.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Eric Lehman, Evan Hernandez, Diwakar Mahajan,
Jonas Wulff, Micah J. Smith, Zachary Ziegler, Daniel
Nadler, Peter Szolovits, Alistair Johnson, and Emily
Alsentzer. 2023. Do We Still Need Clinical Language
Models?

Eric Lehman and Alistair Johnson. 2023. Clinical-T5:
Large Language Models Built Using MIMIC Clinical
Text.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Bo Li, Yezhen Wang, Tong Che, Shanghang Zhang,
Sicheng Zhao, Pengfei Xu, Wei Zhou, Yoshua Ben-
gio, and Kurt Keutzer. 2020. Rethinking distribu-
tional matching based domain adaptation. CoRR,
abs/2006.13352.

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning:
Optimizing Continuous Prompts for Generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Yikuan Li, Ramsey M. Wehbe, Faraz S. Ahmad, Hanyin
Wang, and Yuan Luo. 2022. Clinical-longformer
and clinical-bigbird: Transformers for long clinical
sequences. CoRR, abs/2201.11838.

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng,
Can Zheng, Junxiang Wang, Tanmoy Chowdhury,
Yun Li, Hejie Cui, Xuchao Zhang, Tianjiao Zhao,
Amit Panalkar, Wei Cheng, Haoyu Wang, Yanchi
Liu, Zhengzhang Chen, Haifeng Chen, Chris White,
Quanquan Gu, Carl Yang, and Liang Zhao. 2023.
Beyond one-model-fits-all: A survey of domain
specialization for large language models. CoRR,
abs/2305.18703.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021a. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. CoRR, abs/2110.07602.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT
understands, too. CoRR, abs/2103.10385.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
BioGPT: generative pre-trained transformer for

100

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2020.clinicalnlp-1.11
https://doi.org/10.18653/v1/2020.clinicalnlp-1.11
https://doi.org/10.18653/v1/2020.clinicalnlp-1.11
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
http://arxiv.org/abs/2302.08091
http://arxiv.org/abs/2302.08091
https://doi.org/10.13026/RJ8X-V335
https://doi.org/10.13026/RJ8X-V335
https://doi.org/10.13026/RJ8X-V335
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2006.13352
http://arxiv.org/abs/2006.13352
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2201.11838
http://arxiv.org/abs/2201.11838
http://arxiv.org/abs/2201.11838
https://doi.org/10.48550/arXiv.2305.18703
https://doi.org/10.48550/arXiv.2305.18703
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
https://doi.org/10.1093/bib/bbac409


biomedical text generation and mining. Briefings
in Bioinformatics, 23(6). Bbac409.

Bhavitvya Malik, Abhinav Ramesh Kashyap, Min-Yen
Kan, and Soujanya Poria. 2023. UDAPTER - effi-
cient domain adaptation using adapters. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 2249–2263, Dubrovnik, Croatia. Association
for Computational Linguistics.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, and Sayak Paul. 2022. Peft: State-
of-the-art parameter-efficient fine-tuning methods.
https://github.com/huggingface/peft.

George Michalopoulos, Yuanxin Wang, Hussam Kaka,
Helen Chen, and Alexander Wong. 2021. Umls-
BERT: Clinical domain knowledge augmentation of
contextual embeddings using the Unified Medical
Language System Metathesaurus. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1744–1753,
Online. Association for Computational Linguistics.

Aakanksha Naik, Sravanthi Parasa, Sergey Feldman,
Lucy Lu Wang, and Tom Hope. 2022. Literature-
augmented clinical outcome prediction. In Findings
of the Association for Computational Linguistics:
NAACL 2022, Seattle, WA, United States, July 10-15,
2022, pages 438–453. Association for Computational
Linguistics.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019. Trans-
fer learning in biomedical natural language process-
ing: An evaluation of BERT and ELMo on ten bench-
marking datasets. In Proceedings of the 18th BioNLP
Workshop and Shared Task, pages 58–65, Florence,
Italy. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67. Citation Key: JMLR:v21:20-074.

Sebastian Ruder, Jonas Pfeiffer, and Ivan Vulić. 2022.
Modular and Parameter-Efficient Fine-Tuning for
NLP Models. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing: Tutorial Abstracts, pages 23–29, Abu Dubai,
UAE. Association for Computational Linguistics.

P L Schuyler, W T Hole, M S Tuttle, and D D Sherertz.
1993. The UMLS Metathesaurus: Representing dif-
ferent views of biomedical concepts. Bulletin of the
Medical Library Association, 81(2):217–222.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Kumar Tanwani, Heather Cole-Lewis, Stephen
Pfohl, Perry Payne, Martin Seneviratne, Paul Gamble,
Chris Kelly, Nathaneal Schärli, Aakanksha Chowdh-
ery, Philip Andrew Mansfield, Blaise Agüera y Arcas,

Dale R. Webster, Gregory S. Corrado, Yossi Matias,
Katherine Chou, Juraj Gottweis, Nenad Tomasev,
Yun Liu, Alvin Rajkomar, Joelle K. Barral, Christo-
pher Semturs, Alan Karthikesalingam, and Vivek
Natarajan. 2022. Large language models encode
clinical knowledge. CoRR, abs/2212.13138.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl,
Heather Cole-Lewis, Darlene Neal, Mike Schaeker-
mann, Amy Wang, Mohamed Amin, Sami Lachgar,
Philip Andrew Mansfield, Sushant Prakash, Bradley
Green, Ewa Dominowska, Blaise Agüera y Arcas,
Nenad Tomasev, Yun Liu, Renee Wong, Christo-
pher Semturs, S. Sara Mahdavi, Joelle K. Barral,
Dale R. Webster, Gregory S. Corrado, Yossi Matias,
Shekoofeh Azizi, Alan Karthikesalingam, and Vivek
Natarajan. 2023. Towards expert-level medical ques-
tion answering with large language models. CoRR,
abs/2305.09617.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Betty van Aken, Jens-Michalis Papaioannou, Manuel
Mayrdorfer, Klemens Budde, Felix Gers, and Alexan-
der Loeser. 2021. Clinical Outcome Prediction from
Admission Notes using Self-Supervised Knowledge
Integration. In Proceedings of the 16th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 881–893,
Online. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang,
and Weidi Xie. 2023. Pmc-llama: Further finetuning
llama on medical papers. CoRR, abs/2304.14454.

Xi Yang, Aokun Chen, Nima M. Pournejatian,
Hoo Chang Shin, Kaleb E. Smith, Christopher

101

https://doi.org/10.1093/bib/bbac409
https://doi.org/10.18653/v1/2023.eacl-main.165
https://doi.org/10.18653/v1/2023.eacl-main.165
https://github.com/huggingface/peft
https://doi.org/10.18653/v1/2021.naacl-main.139
https://doi.org/10.18653/v1/2021.naacl-main.139
https://doi.org/10.18653/v1/2021.naacl-main.139
https://doi.org/10.18653/v1/2021.naacl-main.139
https://doi.org/10.18653/v1/2022.findings-naacl.33
https://doi.org/10.18653/v1/2022.findings-naacl.33
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/W19-5006
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2022.emnlp-tutorials.5
https://aclanthology.org/2022.emnlp-tutorials.5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225764/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225764/
https://doi.org/10.48550/arXiv.2212.13138
https://doi.org/10.48550/arXiv.2212.13138
https://doi.org/10.48550/arXiv.2305.09617
https://doi.org/10.48550/arXiv.2305.09617
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.18653/v1/2021.eacl-main.75
https://doi.org/10.18653/v1/2021.eacl-main.75
https://doi.org/10.18653/v1/2021.eacl-main.75
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.2304.14454
https://doi.org/10.48550/arXiv.2304.14454


Parisien, Colin Compas, Cheryl Martin, Anthony B.
Costa, Mona G. Flores, Ying Zhang, Tanja Magoc,
Christopher A. Harle, Gloria P. Lipori, Duane A.
Mitchell, William R. Hogan, Elizabeth A. Shenkman,
Jiang Bian, and Yonghui Wu. 2022. A large lan-
guage model for electronic health records. npj Digit.
Medicine, 5.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu,
Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and
Yu Qiao. 2023. LLaMA-Adapter: Efficient Fine-
tuning of Language Models with Zero-init Attention.

Rongsheng Zhang, Yinhe Zheng, Xiaoxi Mao, and Min-
lie Huang. 2021. Unsupervised domain adaptation
with adapter. CoRR, abs/2111.00667.

102

https://doi.org/10.1038/s41746-022-00742-2
https://doi.org/10.1038/s41746-022-00742-2
http://arxiv.org/abs/2303.16199
http://arxiv.org/abs/2303.16199
http://arxiv.org/abs/2111.00667
http://arxiv.org/abs/2111.00667


A Hyperparameters for the
Domain-adaptive Pretraining

A.1 Fixed Model Hyperparameters

Hyperparameter Value

Learning rate 3e-4
Warmup steps ratio 0.06
Maximum sequence length 512
Gradient accumulation step 4
Batch size 10

Table 4: Fixed model hyperparameters for language
modelling pretraining. These hyperparameters remain
unchanged to fit LLaMA into a single GPU.

A.2 PEFT Hyperparameters Optimisation
Search Space

PEFT Hyperparameter Search space

LoRA
r [2, 4, 8, 16]
alpha [4, 8, 16, 32]
dropout [0.0, 0.1, 0.2]

Prefix Tuning num virtual tokens [1, 5, 10, 15, 20]
prefix projection [true, false]

Prompt Tuning
num virtual tokens [1, 5, 10, 15, 20]
prompt init [text, random]

P-Tuning

num virtual tokens [1, 5, 10, 15, 20]
reparameterisation ["MLP", "LSTM"]
hidden size [64, 128, 256, 768]
num layers [1, 2, 4, 8, 12]
dropout [0.0, 0.1, 0.2]

Adaptation Prompt adapter length [5, 10]
adapter layers [10, 20, 30]

Table 5: The search space for PEFT Hyperparameters
optimisation runs during the domain adaptation fine-
tuning with language modelling objective. Each PEFT
technique has a specific set of hyperparameters to tune,
we selected the combination of hyperparameters which
has the lowest perplexity score.

Specifically for Prompt Tuning, we use a com-
mon prompt initialisation text "Finish this clinical
note:".

B Hyperparameters for the Downstream
Fine-tuning

B.1 Fixed Model Hyperparameters

Hyperparameter Value

Learning rate 5e-5
Warmup steps ratio 0.06
Maximum sequence length 512
Gradient accumulation step 10
Batch size 10

Table 6: Fixed model hyperparameters for the clinical
downstream fine-tuning. These hyperparameters remain
unchanged to fit LLaMA into a single GPU.

B.2 PEFT Hyperparameters Optimisation
Search Space

PEFT Hyperparameter Search space

LoRA
r [2, 4, 8, 16]
alpha [4, 8, 16, 32]
dropout [0.0, 0.1, 0.2]

Table 7: The search space for PEFT Hyperparameters
optimisation runs during the downstream fine-tuning.
Each PEFT technique has a specific set of hyperparam-
eters to tune, we selected the combination of hyperpa-
rameters which has the highest AUROC score.

C Comparison with BEEP (Naik et al.,
2022)

Model PMV MOR LOS Avg

BEEP 59.43 84.65 72.71 72.26
Our method 53.81 83.02 73.26 70.03

Table 8: AUROC scores in a subset of the clinical
downstream document classification tasks. The macro-
averaged AUROC score is calculated by taking the aver-
age of AUROC scores across this subset of tasks. The
row in italic indicates the model variant with the highest
macro-averaged AUROC.

We compared our method with the state-of-the-art
clinical outcome prediction model, BEEP (Naik
et al., 2022), which leverages a retrieval augmen-
tation technique to enhance the predictive capabil-
ities of clinical language models. A small caveat
is that BEEP focused on three downstream tasks:
prolonged mechanical ventilation, mortality, and
length of stay predictions. We selected the best-
performing solution from BEEP, UmlsBERT with
weighted voting retrieval augmentation, based on
the averaged AUROC score to compare with our
solution. While BEEP outperforms our approach,
particularly in the prediction of PMV, it is crucial to
emphasise that our method achieves its predictions
without relying on retrieval augmentation. Future
work may explore using retrieval augmentation on
top of our proposed method.

D Training Configurations

We use HuggingFace’s Transformers (Wolf et al.,
2020) and PEFT (Mangrulkar et al., 2022) libraries
for the experiments. All LLaMA-based models are
trained on one NVIDIA A100-80GB GPU, while
the baseline models are trained on a single NVIDIA
GeForce GTX 1080 Ti-16GB GPU.
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E Artefacts

The pretrained baseline models including BioClini-
calBERT (Alsentzer et al., 2019), BlueBERT (Peng
et al., 2019), and CORe (van Aken et al., 2021)
were released under the Creative Commons desig-
nation CC0 1.0 Universal license, whereas Umls-
BERT (Michalopoulos et al., 2021) was released
under the MIT license. LLaMA (Touvron et al.,
2023) was released under a noncommercial license.

MIMIC-III and MIMIC-IV dataset was released
under the PhysioNet Credentialed Health Data Li-
cense 1.5.0 and can only be accessed after one fin-
ishes the CITI Data or Specimens Only Research
training3.

3https://physionet.org/about/citi-course/
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