KU-DMIS at EHRSQL 2024:
Generating SQL query via question templatization in EHR

Hajung Kim!'", Chanhwi Kim!", Hoonick Lee!, Kyochul Jang!, Jiwoo Lee!,

Kyungjae Lee?, Gangwoo Kim', Jaewoo Kang

1,3t

'Korea University, 2LG Al Research, *AIGEN Sciences
{hajungk, chanhwi_kim, hoonick, gcj0125, hijiwoo7}@korea.ac.kr
kyungjae.lee@lgresearch.ai, {gangwoo_kim, kangj}@korea.ac.kr

Abstract

Transforming natural language questions into
SQL queries is crucial for precise data retrieval
from electronic health record (EHR) databases.
A significant challenge in this process is de-
tecting and rejecting unanswerable questions
that request information beyond the database’s
scope or exceed the system’s capabilities. In
this paper, we introduce a novel text-to-SQL
framework that robustly handles out-of-domain
questions and verifies the generated queries
with query execution. Our framework begins by
standardizing the structure of questions into a
templated format. We use a powerful large lan-
guage model (LLM), fine-tuned GPT-3.5 with
detailed prompts involving the table schemas
of the EHR database system. Our experimen-
tal results demonstrate the effectiveness of our
framework on the EHRSQL-2024 benchmark
benchmark, a shared task in the ClinicalNLP
workshop. Although a straightforward fine-
tuning of GPT shows promising results on the
development set, it struggled with the out-of-
domain questions in the test set. With our
framework, we improve our system’s adaptabil-
ity and achieve competitive performances in
the official leaderboard of the EHRSQL-2024
challenge.

1 Introduction

Electronic Health Records (EHRSs) are crucial el-
ements of the contemporary healthcare system,
storing patients’ medical histories in relational
databases. However, retrieving data from EHRs
can be challenging, requiring specialized training
in Structured Query Language (SQL). To bridge
this gap, previous works build Al-powered sys-
tems that parse the user’s question (Yin et al., 2020;
Brunner and Stockinger, 2021) or convert it into
an SQL query that the database can process. Lee
et al. (2022) identify an essential component in this

* Equal contribution, T Corresponding author

Natural Language Question

?.
~ “Tell me the maximum total hospital cost ... in 2100.”
“What was the name of ... 10007795's abscess?”
User “When and where are the rounds and procedures of dr. conerly?”
saL

SELECT MAX(T1.C1) FROM (SELECT SUM(cost. ... AS T1;

SELECT microbiologyevents.org_name FROM ... LIMIT 1;

1 EHR Database

Answer

Text-to-SQL null
Model

&

User

15682.43

Candida
albicans

null

Figure 1: In the proposed Text-to-SQL framework,
when a query is presented in natural language, the model
generates SQL code to retrieve the required information
from the database. If the query requires information ab-
sent from the database, the Text-to-SQL model returns
a ‘null’ response.

text-to-SQL task; recognizing and adequately han-
dling unanswerable questions that seek information
beyond what the database contains. Hence, to en-
sure reliability and trustworthiness, systems should
be able to refrain from answering unanswerable
questions.

To further encourage research in this field, the
Clinical NLP 2024 workshop has introduced a
new shared task called EHRSQL-2024 (Lee et al.,
2024) to motivate the development of more reliable
question-answering (QA) systems. The EHRSQL-
2024 dataset involves the real-world needs of medi-
cal personnel, incorporating templates of their most
common questions. In this challenge, systems are

tasked to generate SQL queries that accurately re-
turn the desired information from tables from the
MIMIC-IV (Johnson et al., 2016). Additionally,
the dataset includes inherently unanswerable ques-
tions, either due to the restrictions of the database
schema or the request for information not contained
within the databases. On the other hand, the test
set presents distracting question types that contain
noisy words, further testing the robustness of par-
ticipants’ systems.

In this paper, we introduce a novel framework
created to convert natural language questions to
SQL queries for EHR databases. This framework
transforms free-form questions into a templated
format to handle distracting questions. We fine-
tune GPT-3.5-turbo (Brown et al., 2020), one of the
most performant large language models (LLMs),
optimizing it to effectively interpret intricate med-
ical queries and produce the corresponding SQL
queries. We also provide detailed prompts that
describe the tables in the EHR database.

For SQL generation, given the task’s complex-
ity and relationships between tables, we break it
down into two steps: selecting relevant tables and
then generating SQL by reflecting in-depth on the
selected tables. We enhance the accuracy and relia-
bility of the generated SQL queries by correcting
any errors in table names and applying ensemble
techniques with majority voting.

Our empirical results of fine-tuned GPT-3.5 on
the EHRSQL-2024 benchmark highlight its capa-
bility, achieving third place on the development set.
However, it revealed a limitation in generalizing
to questions in the test set that diverged from the
predefined templates. By using our framework, we
successfully address this gap between free-form
questions, resulting in a notable improvement of
26.5 in the RS(10) metric in the test set. Addition-
ally, we find that decomposing the task into two
steps contributed to this success, with a significant
improvement in RS (10) in the test set. Further-
more, by employing further verification and en-
semble techniques, we attained fourth place in the
EHRSQL-2024 challenge’s official leaderboard.

We conduct in-depth analyses of the questions
to uncover disparities in each split. In particu-
lar, we apply N-gram counting of the questions
to highlight the distribution gaps. This variation
emphasizes the need to develop a resilient model
capable of adapting to and performing consistently
across datasets with diverse word distributions. Ad-
ditionally, we manually categorize the unanswer-

able questions into three distinct types.

2 Related Works

2.1 Text-to-SQL Generation

Text-to-SQL conversion requires interpreting natu-
ral language questions, matching them with the
database schema, and producing accurate SQL
queries that reflect the question’s intent. This task
is particularly challenging for individuals unfa-
miliar with database structures, highlighting the
need for methods that translate natural language
into SQL queries—a focus of ongoing research
due to real-world applications. However, accu-
rately generating SQL code from natural language
is complex, mainly because of the challenges in
integrating precise database knowledge into the
model (Qin et al., 2022; Katsogiannis-Meimarakis
and Koutrika, 2023).

Initially, efforts to address Text-to-SQL em-
ployed predefined rules (Sen et al., 2020) to handle
existing difficulties. The field has evolved since
then to explore encoder-decoder models (Cai et al.,
2017; Popescu et al., 2022), and Text-to-SQL is
tested on sequence-to-sequence approaches (Qi
et al., 2022). With the rapid advancement in
deep learning research, methodologies incorporat-
ing graph representation (Xu et al., 2018; Wang
et al., 2019; Brock et al., 2021) and attention mech-
anisms (Liu et al., 2023b) have been extensively ap-
plied to Text-to-SQL tasks. Additionally, the Text-
to-SQL task, tailored to real-world data, has been
conducted on datasets such as WikiSQL (Zhong
et al., 2017), Spider (Yu et al., 2018), KaggleD-
BQA (Lee et al., 2021), and BIRD (Li et al., 2023).

With the emergence of LLMs like GPT (Brown
et al., 2020) and LLaMA (Touvron et al., 2023),
research leveraging these models has proliferated.
Their comprehensive pretraining on massive text
corpora enables them to show promising results
using techniques like prompt engineering and in-
context learning (Trummer, 2022; Liu et al., 2023a;
Chang and Fosler-Lussier, 2023; Dong et al., 2023;
Sun et al., 2023). Despite these advancements,
exploring supervised fine-tuning has led to even
greater enhancements in their performance (Gao
et al., 2023).

2.2 Text-to-SQL in EHR database

The MIMIC-II (Johnson et al., 2016) is a promi-
nent EHR database in the healthcare domain. MIM-
ICSQL (Tarbell et al., 2023) is the first dataset

constructed based on the MIMIC-III database, de-
signing questions generated from pre-formatted
templates. Similarly, emrKBQA (Raghavan et al.,
2021) derived from the MIMIC-III database and the
emrQA (Yue et al., 2020) dataset focused on clin-
ical reading comprehension expands the research
scope. EHRSQL, introduced by Lee et al. (2022),
is an extensive text-to-SQL dataset that is linked
to the two open-source EHR databases, MIMIC-III
and eICU (Pollard et al., 2018). Created based on
feedback from 222 professionals with varied ex-
perience levels, EHRSQL covers a wide range of
real-world scenarios. This dataset includes time-
sensitive questions to highlight the critical impor-
tance of time in the healthcare domain. Addition-
ally, it incorporates unanswerable questions to eval-
uate the system’s capability to recognize and handle
such inquiries effectively.

2.3 Discriminating Unanswerable Questions

The distinction between answerable and unanswer-
able questions is crucial in NLP tasks, especially
in domains where accuracy and reliability are crit-
ical, such as healthcare. Discriminating between
these types of questions is complex due to the sub-
tle differences in what a question may require for
a satisfactory answer. The language models often
exhibit overconfidence in their ability to accurately
respond to a given question. To address this, the
specialized datasets have been designed through
various methodologies, such as rule-based edit-
ing (Jia and Liang, 2017), distant supervision (Joshi
et al., 2017), and crowdsourcing (Rajpurkar et al.,
2018), each method offering its own set of bene-
fits and challenges for identifying unanswerable
questions. This advancement facilitates more reli-
able and accurate question-answering capabilities,
which is crucial for applications where the cost of
misinformation can be high.

3 Methods

Figure 2 presents an outline of our proposed
methodology. Our process starts with the templa-
tization of questions, transforming free-form in-
quiries into a standardized format to ensure consis-
tency in how queries are represented. Additionally,
we enrich the model’s understanding by supply-
ing detailed information about the database tables,
thereby improving its capacity to formulate pre-
cise queries. To further elevate the accuracy of the
generated SQL queries, we introduce a verification

phase to confirm that the queries accurately corre-
spond to the intended data retrieval objectives.

3.1 Question Templatization

We introduce question templatization to handle the
diverse forms of question presentation. This ap-
proach addresses the challenge of questions de-
viating from a standard template by employing a
reverse engineering strategy. By converting free-
form questions into a templated format, we aim
to align them more closely with similar patterns,
thus bridging the gap between the varied question
formats in real-world contexts. Specifically, we
prompt GPT-4-turbo to rewrite questions to match
the structure of pre-defined templates more closely.

Identifying semantically close questions
involves searching for questions similar to the
input question. This similarity is quantified
by calculating the Euclidean distance between
the question embeddings and comparing input
questions to potential neighbors. = We mask
identification information to ensure that specific
table values do not skew this comparison. For
example, a question like "Count how many times
in the first hospital visit patient 10004457 had
coronary arteriography using two catheters."
is transformed into "Count how many times
patient <patient number> had <procedure>
during their first hospital visit ." By adopting this
method, we achieve a uniform question format,
effectively standardizing free-form queries and
reducing discrepancies in dataset distribution.
The templatized question is utilized as the input
question.

3.2 SQL generation

Considering the complexity of the text-to-SQL task
and the intricate relationships among more than
ten tables in the database, we propose a two-stage
approach that involves a table selection phase fol-
lowed by a self-reflection phase.

Table Selection We task the GPT model with
converting natural language questions into SQL
queries. The construction of prompts for the model
involves three essential components: (1) outlining
the text-to-SQL task guides the model to convert
a natural language question into an SQL query for
data retrieval from the EHR database. We clarify
that the database uses SQLite and highlight the syn-

(a) Step 1:
Question Templatization

Question from Test Dataset

(b) Step 2:
Table Selection with SQL

Templatized Question

(c) Step 3
Self-Reflection

o

Templatized Question

Tell me the diagnosis cost of acquired ...

+

How many patients received a diagnosis of
‘chronic ainway obstruction

¥

How many patients received a diagnosis of
'chronic airway obstruction

+

3 Neighbor Questions from
Train Dataset

[Finetuned-GPT

Extracted Tables

procedures_icd, d_icd_procedures, admissions

1. How many patients received <unk>.. .'

2 How many patients were diagnosed

3. How many patients were diagnosed saL

.' SELECT COUNT(*) .
FROM procedures_icd [Finetuned-GPT J
A WHERE procedures_icd.icd_code =(
GPT 4 turbo SELECT d_jcd_procedures.icd_code ‘
sQL
Templatized Question Extracted Tables

How many patients received a diagnosis of

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
‘chronic ainway obstruction '
1

procedures _icd, d_icd_procedures, admissions

Final SQL

i s

Figure 2: Overview of our framework. (a) Question Templatization (Sec. 3.1). Implementing question templatization
to convert free-form questions into a structured format. (b) SQL Generation (Sec. 3.2). Providing task outlines and
table information to aid in precise query generation. (c) Self-Reflection and Verification (Sec. 3.2, 3.3). Providing
detailed table information identified in the initial SQL generation and then finalizing the process.

tactical nuances between SQLite and other SQL
dialects to guide the model’s syntax choice. (2)
By detailing the database tables, we describe the
database’s complex structure, listing over ten ta-
bles with brief descriptions and their respective
columns. This detail is crucial since it aids the
model in identifying the relevant tables and navi-
gating their relational schema without direct access
to the database values. We follow the format in-
troduced in DAIL-SQL (Gao et al., 2023) for table
schema details, which allows both natural language
and SQL representations. (3) Presenting the ques-
tion for conversion is the natural language ques-
tion to be transformed. By using this prompt, we
prompt the model to produce an SQL query that
matches the question and subsequently identifies
the table name mentioned within the SQL query.

Self-Reflection The prompt for the self-
reflection stage is similar to Table Selection,
except for detailing table information. In this
stage, the prompt is augmented with detailed
descriptions for each table column identified in
the initial SQL query. This refinement aims to
enhance the SQL query formulation by providing a
more comprehensive understanding of the selected
table’s specifics, enabling the model to generate a

more accurate and targeted SQL query.

3.3 SQL Verification

We implement a verification step on the generated
SQL queries to address two specific scenarios. In
the first scenario, some questions can be technically
converted into SQL queries but remain unanswer-
able due to the absence of required information
in the dataset. To avoid providing incorrect SQL
results and improper answers, which are unanswer-
able, we verify the validity of each SQL query by
executing it against the database. If the execution
results in an error, indicating the SQL query cannot
retrieve the correct answer, we replace the SQL
query with null instead. This adjustment ensures
the query is considered valid but unanswerable,
optimizing score outcomes.

The second scenario addresses instances where
the generated SQL query includes incorrect
references to table names or column names. In
such cases, we identify the correct table name
and associated column names based on the table
values mentioned in the SQL query. We then
modify the SQL query to accurately reflect the
proper table name and column names to which the
table values correspond. This correction process

Development Test

Team RS(0) RS(5) RS®10) RS(N) RS(0) RS(5) RS(10) RS(N)
LG Al Research & KAIST 90.37 89.51 88.65 -109.6 88.17 84.75 81.32 -711.83
PromptMind 66.38 59.5 52.62 —1533.62 82.6 78.75 74.89 —817.4
ProbGate 84.18 79.45 7472 —1015.82 81.92 78.06 74.21 —818.08
KU-DMIS (Ours) 91.57 8298 7438 —1908.43 72.07 65.64 59.21 —1427.93
oleg1996 47.03 34.14 21.24 —2952.97 68.89 56.47 44.04 —2831.11
LTRC-IIITH N/A N/A N/A N/A 66.84 55.27 43.7 —2633.16
Saama Technologies 57.78 50.47 43.16 —1642.22 53.21 44.64 36.08 —1946.79
TEAM_optimist N/A N/A N/A N/A 14.14 —349.61 —713.37 —84 885.86

Table 1: Official results of the leaderboard on EHRSQL-2024 dataset. The teams are ranked based on Reliability

Score RS(10).

ensures that the SQL query accurately represents
the intended data retrieval operation, aligning with
the database’s schema.

3.4 Ensemble with Majority Voting

We incorporate an ensemble method to determine
the final SQL query. We first instruct GPT-4-turbo
to evaluate whether the generated SQL query
accurately captures the intent of the original
natural language question. This alignment check
ensures that the model prioritizes the core intent
of the query, such as using the "COUNT”’ function
in SQL queries asking for a count of patients. To
finalize the SQL query or its resulting answer
from the database execution, we adopt a majority
voting system. This ensemble strategy mitigates
the variability inherent in the fine-tuned model and
improves the robustness. Using majority voting
to select the SQL query or derive its answer aims
to improve performance metrics by effectively
managing null responses.

4 [Experiments

4.1 Experimental Setup

Dataset We evaluate our frameworkusing the
EHRSQL-2024 challenge benchmark dataset (Lee
et al., 2024). This large-scale Text-to-SQL dataset
contains 5,124 instances in the train set, 1,163 in-
stances in the development set, and 1,167 instances
in the test set, spanning 17 tables. The train dataset
comprises natural language questions paired with
their corresponding SQL queries. However, the
SQL queries associated with the questions in the
development and test sets are not provided.

Metric Following Lee et al. (2024), we use the
Reliability Score (RS). RS is unique because it
rewards correct SQL queries for answerable ques-
tions (Qqns) and the choice to abstain from an-
swering unanswerable questions (Qung). At the
same time, it penalizes incorrect SQL generation
for Quns and any attempt to answer Qypq. More-
over, RS includes a penalty factor ’c’ to adjust the
evaluation’s strictness according to specific safety
requirements. The corresponding formula is as
follows.

1 if 2 € Quns, g(7) =1, Acc(z) =1
0 ifz € Qus,g(x) =0

de(x) = ¢ —c ifx € Quns, g(x) =1, Acc(z) =0
—c ifz € Qu,g(z) =1
1 if 2 € Qu,g(x) =0

The adaptability of RS is demonstrated by evalu-
ating models under four different scenarios, which
vary based on the severity of the penalty term:
RS(0), RS(10), and RS(N). For this challenge,
the primary metric is RS(10), emphasizing the
importance of accurately assessing answerable
questions and refraining from generating SQL for
unanswerable questions.

4.2 TImplementation Details

We utilize GPT, one of the most performant
Large Language Models (LLMs), to enhance the
translation from text to SQL. We investigate the
effectiveness of in-context learning and supervised
fine-tuning methods. We employ GPT-3.5-turbo,
GPT-4-turbo, and GPT-4 models for in-context
learning, augmenting the prompt with three more
examples. These examples consist of pairs of

Model Few-shot Tableinfo. RS(0) RS(10) RS(N) Model RS(0) RS(10) RS(N)
GPT-3.5-turbo 0 (@) 29.53 -250.19 -28670.47 GPT-3.5-turbo 70.34 13.59 -6529.66
3 o 48.54 1540 -3351.46 GPT-4-turbo 76.53 -6.02 -9523.47
3 75.34 29.53 -4624.66 GPT-4 7928 -17.88 -11220.72
GPT-4-turbo (3’ g 26-; ’11986;)210 '283883623'1266 Finetuned-GPT 9312 5099 -4806.88
7. o oo w/ table info. in SQL form 83.23 17.02 -7616.77
3 85.87 4298 -4314.13 i
w/ Self-Reflection 83.15 62.51 -2316.85
GPT-4 0 0 3840 -215.98 -26061.60
3 o 7087 1550 652018 w/ Ensemble 91.57 74.38 -1908.43
3 9045 62.18 -2809.55 .
Finotoned-GPT i o 98.05 9123 60195 Table 3: Ablation study conducted on the development

Table 2: Training set performance. Comparison of GPT
models.

semantically related questions, including the
input question and their corresponding SQL
queries. The semantic relatedness is determined
by calculating the Euclidean distance between
question embeddings derived from the training
dataset and the input question embedding. For
supervised fine-tuning, we focus on the GPT-
3.5-turbo model, the primary model available
for fine-tuning. The model is prompted without
including neighboring examples. Based on the
evaluation results, it is clear that the supervised
fine-tuning methodology is particularly effective in
addressing the challenges inherent in text-to-SQL
tasks. Further details are provided in section 4.4.
Consequently, the fine-tuned GPT-3.5-turbo model
is selected for further detailed experiments.

4.3 Leaderboard Results

Table 1 presents the scores of the participants’
systems, ranked according to the RS(10) score.
We secured fourth place in the test set rankings.
All participating teams utilized Large Language
Models (LLMs), with the top four teams, including
ours, primarily employing a fine-tuned GPT
model and incorporating various other techniques.
This table underscores the efficacy of LLMs in
addressing Text-to-SQL tasks.

4.4 In-Context Learning and Fine-tuning

To evaluate the effectiveness of various GPT mod-
els for Text-to-SQL tasks, we conduct experiments
with GPT-3.5-turbo, GPT-4-turbo, and GPT-4 for
in-context learning and a fine-tuned version of GPT-
3.5-turbo for supervised fine-tuning. Due to sub-
mission limitations, we assessed the GPT models
using the training set. We adopt a k-fold cross-
validation method with £ = 5, training on four

set showcases the performance of in-context learning
with few examples using GPT-3.5-turbo, GPT-4-turbo,
and GPT-4, alongside fine-tuning performed with GPT-
3.5-turbo using various additional techniques.

folds and evaluating the remaining fold. To main-
tain the balance of answerable and unanswerable
questions in the training dataset, we divide unan-
swerable questions into three categories. When
partitioning the training dataset into five folds, we
ensured that the proportions of these categories
were reflected in each fold. A detailed analysis of
these categorized groups can be found in section
5.2.

Table 2 presents the comparison results of the
GPT models. We experimented with variations by
providing few-shot examples and including table
information. The fine-tuned GPT model demon-
strates superior performance across all metrics,
making it our model of choice. Interestingly, the
inclusion of table information slightly reduces per-
formance in all in-context learning scenarios. We
speculate that the table information in our experi-
ment, which merely lists table names and column
names, lacks detailed relational data like primary
and foreign keys. Consequently, this minimal and
potentially uninformative text might have acted as
a distraction.

4.5 Table Information Format

The prompt includes table information to accu-
rately identify the table and column names. Follow-
ing the DAIL-SQL approach (Gao et al., 2023), we
explore different formats of presenting table infor-
mation, in both natural language and SQL format,
within the same prompt framework. Our experi-
ments, detailed in table 3, reveal that presenting
table information in SQL format results in a de-
crease in the RS (10) score from 50.99 to 17.02.
This suggests that natural language formats are
more readily interpretable by the language model
such as GPT.

Model Inclusion Jaccard Exact Match
GPT-3.5-turbo 0.7933 0.7930 0.7836
GPT-4-turbo 0.8912 0.8908 0.8723
GPT-4 0.9250 0.9244 0.9123
Finetuned-GPT 0.9857 0.9855 0.9844
Table Selector (GPT-3.5-turbo) 0.8976 0.8488 0.7115

Table 4: Table selection performance.

Model RS(0) RS(10) RS(N)

Finetuned-GPT (Ensemble) 72.07 59.21 -1427.93

Finetuned-GPT (Single) 78.06 13.80 -7421.94
w/ Self-Reflection 77.55 27.85 -5722.45
w/ Question Templatization 80.55 40.27 -4619.45

Table 5: Ablation study on the test set. We provide the
performance of ensembled and single results. Every
component, including SQL regeneration and question
templatization, plays a key role in enhancing overall
performance.

4.6 Table Selection Results

Considering the complexity of over ten tables and
the resulting SQL queries that reference multiple
tables, we hypothesize that a self-reflection incor-
porating selective, detailed table information could
enhance the accuracy of the generated SQL queries.
In preparation for this self-reflection process, we as-
sess the accuracy of the tables retrieved in the gener-
ated SQL queries. This assessment involves calcu-
lating the accuracy between correct tables and the
tables extracted from the generated SQL queries.
We use three metrics as an accuracy score: 1) inclu-
sion score (indicating the presence of the correct
tables within the generated SQL), 2) the Jaccard
similarity score (comparing the intersection to the
union of correct and extracted tables), 3) and the
exact match score.

Table 4 suggests that the fine-tuned GPT model
effectively identifies the relevant tables without a
dedicated table selection model. We extract ta-
bles from the initially generated SQL queries and
use prompts augmented with detailed information,
such as descriptions of each column and examples
of values, for the fine-tuned GPT model. The com-
parison between the initially generated SQL and
the outcomes after the self-reflection stage, table 3
shows an increase in the RS(10) score from 50.99
to 62.51 in the development set, and table 5 also il-
lustrates an improvement in the RS(10) score from
13.80 to 27.85 in the test set. This improvement
indicates that the regenerated SQL queries provide
more reliable and accurate outputs.

4.7 Question Templatization

Our analysis focuses on the characteristics of the
questions across each dataset. It reveals a decline in
the fine-tuned GPT model’s scores from the train-
ing set to the development and test sets. This pat-
tern highlights substantial variations among the
training, development, and test datasets. To miti-
gate these discrepancies, we employ the technique
that reverses the deviation of questions from tem-
plates. We utilize GPT-4-turbo to rephrase the orig-
inal question. By prompting GPT-4-turbo with the
original question and semantically similar ques-
tions from the training set and template from (Lee
et al., 2022), we aim to achieve consistency with re-
lated queries. This approach significantly reduces
the distribution gaps between the training and test
sets, as demonstrated in Table 5. The improvement
in the RS(10) score from 13.80 to 40.27 highlights
the effectiveness of question templatization by com-
paring the performance of a single model before
and after its application.

S Analysis

In this section, we analyze the word distribution
of questions for each dataset split: training, devel-
opment, and test sets. The objective is to identify
variations in question composition among these
datasets. Furthermore, we investigate the distribu-
tion of unanswerable questions in the training set
to better understand questions that yield an null
response.

To focus solely on word analysis and minimize

nn

noise, we eliminate punctuation marks such as ".",
""", and "?", remove stop words such as "the", "a",
and "an" from the questions, and convert all let-
ters to lowercase. After eliminating these elements,
we analyze the processed questions using N-grams.
The analysis is limited to 1 to 3-grams, which is
sufficient for understanding the context of ques-
tions while excluding the aforementioned noise.
Appendix D details the ten most prevalent words
alongside their respective frequencies within each
dataset arranged in non-increasing order, including
the collection of unanswerable queries labeled as
Unanswerable Train set.

5.1 N-gram Distribution

The initial three columns of Appendix D enumer-
ates the top ten most frequent words in each dataset
alongside their respective frequencies. Analysis
of Appendix D indicated that words with high fre-

quency within one dataset tended to be frequent
across other datasets as well, suggesting a pat-
tern of similarity. However, it was observed that
words with lower frequency, which were not in-
cluded in the table, often did not appear in other
datasets. This discrepancy became particularly evi-
dent within the context of 3-gram sets, highlighting
a distinct distribution among the datasets.

This disparity underscores the necessity of de-
veloping a robust model that can adapt and excel
across datasets with different word distributions.

5.2 Category of Unanswerable Questions

We analyzed the training set’s null distribution,
identifying 450 unanswerable questions. Our ini-
tial qualitative analysis involved categorizing these
null-labeled questions into three distinct groups
through a detailed manual review: (1) Incorrect
Patient Number, (2) Require External Knowledge,
(3) Out of EHR Database.

In the first case, based on the MIMIC-IV
dataset’s criteria, a legitimate patient number is
identified by its 8-digit configuration; thus, ques-
tions featuring a patient number with fewer or more
than 8 digits invariably resulted in a null response.
Regarding the second case, specific questions, for
example, "I am curious what the protocols for
the drugs that work to treat cancer.” could poten-
tially be answered by a knowledgeable individual
or through QA tasks using external information re-
sources. The third group, while seemingly akin to
the second, differed in that the questions could tech-
nically be converted into SQL queries; however,
they remained unanswerable due to the absence of
the required information in the dataset. Example
questions include: "Has patient 23224 an appoint-
ment in another hospital department?”. Further
examples for each category, along with their re-
spective frequencies, are detailed in Appendix A.

Additionally, a quantitative analysis of unanswer-
able questions was also conducted using N-grams.
By examining the differences in word distribution
between "answerable" and "unanswerable" ques-
tions, as highlighted by the contrast between the
first and last columns of Appendix D, significant
disparities were noted. For instance, an examina-
tion of the 1-gram columns for both the training
set and the Unanswerable Training set reveals that
the only overlapping words are "patient” and "last."
This indicates a significantly different distribution
between the two datasets.

Based on both qualitative and quantitative analy-

sis, we were able to refine our framework to avoid
generating SQL queries for questions that solely
comprise words found in the unanswerable ques-
tions of the training set.

6 Conclusion

Throughout the challenge, we noticed that differ-
ences in the way data is distributed across training,
development, and test sets can make it hard for our
model to determine which questions are answer-
able or not. To tackle this issue, we templatized
questions to make the word distribution of develop-
ment and test data more similar to the training data.
This method aimed to bridge the gap between the
datasets, helping the model better understand the
features of unanswerable questions within the test
dataset.

Although we did not address this in this study,
we anticipate that future research could see perfor-
mance improvements by augmenting the training
dataset to more closely match the distribution of
unanswerable questions in the development and
test sets. Focusing on refining the test data to align
more closely with the characteristics observed in
the training datasets, we expect to increase model
performance in identifying unanswerable questions.
Such data augmentation strategies could bridge the
remaining gaps between datasets and ensure a more
robust model performance across varied datasets.
Also, we utilized finetuned gpt-3.5-turbo, which is
expensive and unusable for other researchers. Thus,
further study should be done with open sourced
models, like llama or gemma.

Acknowledgments

This work was supported in part by the
National Research Foundation of Korea
[NRF2023R1A2C3004176], the Ministry
of Health & Welfare, Republic of Korea
[HR20C0021(3)], the Ministry of Science and ICT
(MSIT) [RS-2023-00262002].

References

Andrew Brock, J. Donahue, Karen Simonyan, Ruisheng
Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Donghyun
Choi, M. Shin, EungGyun Kim, Xiang Deng,
Ahmed Hassan Awadallah, Oleksandr Meek, Huan
Polozov, Sun Matthew, Yujian Gan, Xinyun Chen,
Qiuping Huang, John R Purver, Jinxia Woodward,
Xie Peng-301, Amol Kelkar, Rohan Relan, V. Bhard-
waj, and Saurabh Vaichal. 2021. S 2 sql: Injecting
syntax to question-schema interaction graph encoder

https://api.semanticscholar.org/CorpusID:265038300
https://api.semanticscholar.org/CorpusID:265038300

for text-to-sql parsers. In Findings of the Association
for Computational Linguistics: ACL 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Ursin Brunner and Kurt Stockinger. 2021. Valuenet:
A natural language-to-sql system that learns from
database information. In 2021 IEEE 37th Inter-
national Conference on Data Engineering (ICDE),
pages 2177-2182. IEEE.

Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang,
Zijian Li, and Zhihao Liang. 2017. An encoder-
decoder framework translating natural language to
database queries. In International Joint Conference
on Artificial Intelligence.

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-shot,
single-domain, and cross-domain settings. ArXiv,
abs/2305.11853.

Xuemei Dong, C. Zhang, Yuhang Ge, Yuren Mao, Yun-
jun Gao, Lu Chen, Jinshu Lin, and Dongfang Lou.
2023. C3: Zero-shot text-to-sql with chatgpt. ArXiv,
abs/2307.07306.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. ArXiv, abs/2308.15363.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
ArXiv, abs/1707.07328.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G Mark. 2016. Mimic-iii, a freely accessi-
ble critical care database. Scientific data, 3(1):1-9.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. ArXiv, abs/1705.03551.

George Katsogiannis-Meimarakis and Georgia Koutrika.
2023. A survey on deep learning approaches for text-
to-sql. The VLDB Journal, 32:905-936.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. Kaggledbga: Realistic evalua-
tion of text-to-sql parsers. In Annual Meeting of the
Association for Computational Linguistics.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu
Kwon, Woncheol Shin, Seongjun Yang, Minjoon Seo,
Jong-Yeup Kim, and Edward Choi. 2022. Ehrsql: A
practical text-to-sql benchmark for electronic health
records. Advances in Neural Information Processing
Systems, 35:15589-15601.

Gyubok Lee, Sunjun Kweon, Seongsu Bae, and Edward
Choi. 2024. Overview of the ehrsql 2024 shared task
on reliable text-to-sql modeling on electronic health
records. In Proceedings of the 6th Clinical Natural
Language Processing Workshop, Mexico City, Mex-
ico. Association for Computational Linguistics.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Chenhao Ma, Kevin C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li.
2023. Can llm already serve as a database interface?
a big bench for large-scale database grounded text-
to-sqls. ArXiv, abs/2305.03111.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu.
2023a. A comprehensive evaluation of chatgpt’s zero-
shot text-to-sql capability. ArXiv, abs/2303.13547.

Hu Liu, Yuliang Shi, Jianlin Zhang, Xinjun Wang, Hui
Li, and Fanyu Kong. 2023b. Multi-hop relational
graph attention network for text-to-sql parsing. 2023
International Joint Conference on Neural Networks
(IJCNN), pages 1-8.

Tom J Pollard, Alistair EW Johnson, Jesse D Raffa,
Leo A Celi, Roger G Mark, and Omar Badawi. 2018.
The eicu collaborative research database, a freely
available multi-center database for critical care re-
search. Scientific data, 5(1):1-13.

Octavian Popescu, Irene Manotas, Ngoc Phuoc An Vo,
Hangu Yeo, Elahe Khorashani, and Vadim Sheinin.
2022. Addressing limitations of encoder-decoder
based approach to text-to-sql. In International Con-
ference on Computational Linguistics.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Chenghu Zhou, Xinbing Wang, Quanshi Zhang, and
Zhouhan Lin. 2022. Rasat: Integrating relational
structures into pretrained seq2seq model for text-to-
sql. ArXiv, abs/2205.06983.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022.
A survey on text-to-sql parsing: Concepts, methods,
and future directions. ArXiv, abs/2208.13629.

Preethi Raghavan, Jennifer J. Liang, Diwakar Mahajan,
Rachita Chandra, and Peter Szolovits. 2021. emrk-
bqa: A clinical knowledge-base question answering
dataset. In Workshop on Biomedical Natural Lan-
guage Processing.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. ArXiv, abs/1806.03822.

Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Oz-
can, Vasilis Efthymiou, Ayushi Dalmia, Greg Stager,
Ashish R. Mittal, Diptikalyan Saha, and Karthik
Sankaranarayanan. 2020. Athena++. Proceedings of
the VLDB Endowment, 13:2747 — 2759.

https://api.semanticscholar.org/CorpusID:265038300
https://api.semanticscholar.org/CorpusID:1406542
https://api.semanticscholar.org/CorpusID:1406542
https://api.semanticscholar.org/CorpusID:1406542
https://api.semanticscholar.org/CorpusID:258823166
https://api.semanticscholar.org/CorpusID:258823166
https://api.semanticscholar.org/CorpusID:258823166
https://api.semanticscholar.org/CorpusID:259924856
https://api.semanticscholar.org/CorpusID:261276437
https://api.semanticscholar.org/CorpusID:261276437
https://api.semanticscholar.org/CorpusID:7228830
https://api.semanticscholar.org/CorpusID:7228830
https://api.semanticscholar.org/CorpusID:26501419
https://api.semanticscholar.org/CorpusID:26501419
https://api.semanticscholar.org/CorpusID:26501419
https://api.semanticscholar.org/CorpusID:256226100
https://api.semanticscholar.org/CorpusID:256226100
https://api.semanticscholar.org/CorpusID:235433328
https://api.semanticscholar.org/CorpusID:235433328
https://api.semanticscholar.org/CorpusID:258547040
https://api.semanticscholar.org/CorpusID:258547040
https://api.semanticscholar.org/CorpusID:258547040
https://api.semanticscholar.org/CorpusID:257757019
https://api.semanticscholar.org/CorpusID:257757019
https://api.semanticscholar.org/CorpusID:260386464
https://api.semanticscholar.org/CorpusID:260386464
https://api.semanticscholar.org/CorpusID:252819055
https://api.semanticscholar.org/CorpusID:252819055
https://api.semanticscholar.org/CorpusID:248810824
https://api.semanticscholar.org/CorpusID:248810824
https://api.semanticscholar.org/CorpusID:248810824
https://api.semanticscholar.org/CorpusID:251903737
https://api.semanticscholar.org/CorpusID:251903737
https://api.semanticscholar.org/CorpusID:235097193
https://api.semanticscholar.org/CorpusID:235097193
https://api.semanticscholar.org/CorpusID:235097193
https://api.semanticscholar.org/CorpusID:47018994
https://api.semanticscholar.org/CorpusID:47018994
https://api.semanticscholar.org/CorpusID:221666649

Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun
Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas Pfis-
ter. 2023. Sql-palm: Improved large language model
adaptation for text-to-sql. ArXiv, abs/2306.00739.

Richard Tarbell, Kim-Kwang Raymond Choo, Glenn Di-
etrich, and Anthony Rios. 2023. Towards understand-
ing the generalization of medical text-to-sql models
and datasets. AMIA ... Annual Symposium proceed-
ings. AMIA Symposium, 2023:669-678.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Immanuel Trummer. 2022. Codexdb: Synthesizing
code for query processing from natural language in-
structions using gpt-3 codex. Proc. VLDB Endow.,
15:2921-2928.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2019. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Annual Meeting of the Association
for Computational Linguistics.

Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Liwei Chen,
and Vadim Sheinin. 2018. Sql-to-text generation with
graph-to-sequence model. ArXiv, abs/1809.05255.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314.

Tao Yu, Rui Zhang, Kai-Chou Yang, Michihiro Ya-
sunaga, Dongxu Wang, Zifan Li, James Ma, Irene Z
Li, Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir R. Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. ArXiv,
abs/1809.08887.

Xiang Yue, Bernal Jimenez Gutierrez, and Huan
Sun. 2020. Clinical reading comprehension: A
thorough analysis of the emrqa dataset. ArXiv,
abs/2005.00574.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
ArXiv, abs/1709.00103.

10

https://api.semanticscholar.org/CorpusID:258999853
https://api.semanticscholar.org/CorpusID:258999853
https://api.semanticscholar.org/CorpusID:257687830
https://api.semanticscholar.org/CorpusID:257687830
https://api.semanticscholar.org/CorpusID:257687830
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:252066513
https://api.semanticscholar.org/CorpusID:252066513
https://api.semanticscholar.org/CorpusID:252066513
https://api.semanticscholar.org/CorpusID:207863446
https://api.semanticscholar.org/CorpusID:207863446
https://api.semanticscholar.org/CorpusID:207863446
https://api.semanticscholar.org/CorpusID:52282359
https://api.semanticscholar.org/CorpusID:52282359
https://api.semanticscholar.org/CorpusID:52815560
https://api.semanticscholar.org/CorpusID:52815560
https://api.semanticscholar.org/CorpusID:52815560
https://api.semanticscholar.org/CorpusID:218486765
https://api.semanticscholar.org/CorpusID:218486765
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106

Appendix A Examples of unanswerable questions

Knowledge Base

List the single rooms that are available now?

When are dr. oneill’s rounds and procedures?

Category Example Frequency
Will they have any urine test done for patient 24628?

I t Patient

I\?‘fglrgz auett Is patient 21074 subject to tests involving covid-19? 252 (56%)
Do you know what type of blood patient 1903 has?
What is a checklist before lumb/Imbosac fus ant/ant?

Require Ext 1

Kflccl)l\l;ﬁd g); erma What is the protocol used for the anticancer drugs? 83 (18.4%)
So tell me what to do before you go for hemodialysis.
What kind of blood patient 18866 has.

Out of EHR

115 (25.6%)

Table 6: Examples of Unanswerable Questions with Respective Frequencies

11

Appendix B Prompt

Task Description

| have a database related to healthcare that consists of 17 tables, each holding various pieces of data about hospital operations. |
need to convert a natural language question into an SQL query to retrieve specific information from this database. Could you
construct an SQL query that accurately reflects the question, considering the structure and details of my database? My database

uses SQLite, and I'm looking for a query that's optimized for accl

uracy and efficiency. The detailed description of 17 tables is given

below. Note that the patient number is an eight-digit number and current year is 2100 and all table values are in lower case.

Table Information — <Step 2> Initial SQL Generation

Natural Language Form
1.admissions:

Documents each hospitalization event.

» admissions [row_id, subject_id, hadm_id (hospital admission
ID), admittime (admission time), dischtime (discharge time),
admission_type, admission_location, discharge_location,
insurance, language, marital_status, age];

2. d_icd_diagnoses:
A reference for ICD-9 diagnosis codes
«d_icd_diagnoses [row_id, icd_code, long_title];
3. d_icd_procedures:

A reference for ICD-9 procedure codes.

+d_icd_procedures [row_id, icd_code, long_title];
4. d_labitems:

Acts as a dictionary for lab test ITEMIDs.

« d_labitems [row_id, itemid, label]

SQL Form
1.admissions:
Documents each hospitalization event.
CREATE TABLE admissions (
row_id INTEGER,
subject_id INTEGER REFERENCES patients(subject_id),
hadm_id INTEGER,
admittime TIMESTAMP,
dischtime TIMESTAMP,
admission_type TEXT,
admission_location TEXT,
discharge_location TEXT,
insurance TEXT,
language TEXT,
marital_status TEXT,
age INTEGER
)
2. d_icd_diagnoses:
A reference for ICD-9 diagnosis codes.
CREATE TABLE d_icd_diagnoses (
row_id INTEGER,
icd_code TEXT,
long_title TEXT
)
3. d_icd_procedures:
A reference for ICD-9 procedure codes.
CREATE TABLE d_icd_procedures (
row_id INTEGER,
icd_code TEXT,
long_title TEXT
)
4. d_labitems:
Acts as a dictionary for lab test ITEMIDs.
CREATE TABLE d_labitems (
row_id INTEGER,
itemid INTEGER,
label TEXT
)

Templatized Question

Count how many times patient 10004457 had ‘coronary arteriography using two catheters’ during their first hospital visit.

Table 7: The prompt used in the step 2 initial SQL generation.

12

Appendix C Detailed Prompt Example

Task Description

| have a database related to healthcare that consists of 17 tables, each holding various pieces of data about
hospital operations. | need to convert a natural language question into an SQL query to retrieve specific
information from this database. Could you construct an SQL query that accurately reflects the question,
considering the structure and details of my database? My database uses SQLite, and I'm looking for a query
that's optimized for accuracy and efficiency. The detailed description of 17 tables is given below. Note that the
patient number is an eight-digit number and current year is 2100 and all table values are in lower case.

Table Information — <Step 3> SQL Regeneration

1. "procedures_icd:
« Records procedures using ICD codes.
« procedures_icd (row_id, subject_id, hadm_id, icd_code, charttime)
+ Description of Columns:
row_id: Unigue record identifier;
subject_id: Unique identifier assigned to each individual patient;
hadm_id (hospital admission ID): Unique identifier assigned to each separate hospital admission of a
patient;
icd_code: ICD code for the procedure performed;
charttime: Timestamp of when the procedure was documented in the patient's chart”,
2."d_icd_procedures:
+ Areference for ICD-9 procedure codes.
+ d_icd_procedures (row_id, icd_code, long_title)
« Description of Columns:
row_id: Unique record identifier;
icd_code: Unique ICD-9 procedure code;
long_title: Detailed description of the procedure.”,
3. "admissions:
+ Documents each hospitalization event.
+ admissions (row_id, subject_id, hadm_id, admittime, dischtime, admission_type, admission_location,
discharge_location, insurance, language, marital_status, age)
+ Description of Columns:
row_id: Unique record identifier;
subject_id: Unique identifier assigned to each individual patient;
hadm_id (hospital admission ID): Unique identifier assigned to each separate hospital admission of a
patient;
admittime: Admission time to the hospital;
dischtime: Discharge time from the hospital;
admission_type: Type of hospital admission;
admission_location: Location from where the patient was admitted;
discharge_location: Location to where the patient was discharged;
insurance: Patient's insurance type;
language: Patient's primary language;
marital_status: Patient's marital status;
age: Patient's age at admission.",

Templatized Question

Count how many times patient 10004457 had ‘coronary arteriography using two catheters’ during their first
hospital visit.

Table 8: The prompt used in Step 3 for SQL regeneration.

13

Appendix D Word frequencies: 3-gram

N-gram 1-gram 2-gram 3-gram
(’patient’,): 3205 (Chospital’, ’visit’): 608 (’since’, ’1°, ’year’): 298
(’since’,): 1572 (’since’, ’2100°): 425 (1°, ’year’, ’ago’): 298
(’last’,): 1394 (first’, "hospital’): 327 (first’, “hospital’, "visit’): 203
(Chospital’,): 1340 (’last’, ’time’): 317 (’last’, "hospital’, "visit’): 183

Train set (Cfirst’,): 1232 ("hospital’, ’encounter’): 316 | ("within’, ’2’, 'months’): 153
(Cyear’,): 934 (’last’, “hospital’): 302 (last’, "time’, "patient’): 118
(’patients’,): 861 (’since’, ’17): 302 (first’, "time’, "patient’): 104
(’2100,): 818 (1, ’year’): 298 (first’, "hospital’, ’encounter’): 94
(visit’,): 778 (’year’, ’ago’): 298 (’last’, "hospital’, ’encounter’): 92
(Ctime’,): 734 (first’, *time’): 280 (’measured’, ’last’, "hospital’): 92
(’patient’,): 656 (Chospital’, ’visit’): 150 (’since’, ’1°, ’year’): 69
(Chospital’,): 322 (’since’, °2100°): 82 (’1’, ’year’, ’ago’): 69
(’since’,): 316 (’last’, "hospital’): 72 (’last’, "hospital’, "visit’): 46
(’patients’,): 279 (’since’, ’17): 70 (first’, “hospital’, "visit’): 40

Dev set (’last’,): 255 (1, ’year’): 69 (’within’, ’2’, >months’): 30
(first’,): 253 (’year’, ’ago’): 69 (last’, “hospital’, ’encounter’): 20
(year’,): 202 (Cfirst’, ’time’): 67 (first’, "time’, *patient’): 20
(visit’,): 199 (Chospital’, ’encounter’): 65 (’current’, "hospital’, "visit’): 19
(’2100’,): 170 (first’, "hospital’): 59 (arterial’, *blood’, ’pressure’): 19
(time’,): 134 (’lab’, ’test’): 46 (’top’, ’three’, ’frequent’): 18
(’patient’,): 620 (Chospital’, *visit’): 128 (’since’, 17, "year’): 57
(Chospital’,): 318 (’since’, °21007): 100 (’1’, ’year’, ’ago’): 57
(’patients’,): 306 ("hospital’, *encounter’): 81 (first’, “hospital’, "visit’): 42
(’since’,): 304 (first’, "hospital’): 72 (’last’, "hospital’, "visit’): 42

Test set (’last’,): 265 (last’, "hospital’): 72 (’within’, ’2’, ’months’): 41
(first’,): 234 (’since’, ’17): 57 (’last’, "hospital’, ’encounter’): 26
(Cyear’,): 217 (C1’,’year’): 57 ("measured’, ’last’, *hospital’): 23
(’2100’,): 184 (year’, ’ago’): 57 (first’, "time’, *patient’): 20
(Cvisit’,): 164 ("many’, ’patients’): 54 (first’, "hospital’, ’encounter’): 20
(’prescribed’,): 140 | (Cnumber’, ’patients’): 47 (last’, "time’, ’patient’): 18
(’patient’,): 252 (’received’, ’department’): 20 | (’name’, ’diagnosis’, ’patient’): 12
(’department’,): 49 | (Coutpatient’, ’schedule’): 18 (last’, "time’, "patient’): 11
(Ctell’,): 42 (’rounds’, *procedures’): 17 (’many’, "operating’, ‘rooms’): 11
(’procedure’,): 41 (’another’, ’department’): 16 (’appointment’, ’another’, department’): 11

Unanswerable | (’blood’,): 36 (’rooms’, ’available’): 15 (’genetic’, "test’, patient’): 10

Train set (’dr’,): 36 (’diagnosis’, ’patient’): 15 (’subject’, "covid-19’, ’testing’): 9
(’received’,): 34 (’operating’, ‘rooms’): 14 (’type’, blood’, ’patient’): 9
(’rooms’,): 29 (’blood’, ’transfusion’): 14 (’ward’, ’id’, ’patient’): 9
(’test’,): 28 ('name’, ’diagnosis’): 14 ("today’s", "outpatient’, ’schedule’): 9
(’last’,): 27 (’genetic’, 'test’): 14 (Coutpatient’, ’schedule’, ’dr’): 8

Table 9: 3-Gram frequency table with 10 examples sorted in non-increasing order

14

Appendix E Examples of Question Templating

Input: "When does patient 8016’s influenza quarantine end?"

Candidate templates

"What was the time of <patient number>’s last influenza a/b by dfa microbiology test since
03/2100?"

"Can you tell me when <patient number> had their first rapid respiratory viral screen & culture
microbiology test in 08/this year?"

"When did <patient number> depart hospital during this year for the last time?"

Reformulated: ""When is

the end date of patient 8016’s influenza quarantine?"'

Input: ""Pull up the IDs of patients who were diagnosed with cataract extraction status."

Candidate templates

"Number of patients who were diagnosed with <unk>."

"Number of patients who were diagnosed throughout this year with <unk>."

"Tell me the number of patients diagnosed with <unk>."

Reformulated: ''Retrieve

the ids of patients diagnosed with ’cataract extraction status.”"'

Input: "How many duloxetine prescription cases were there since 1 year ago?"

Candidate templates

"How much duloxetine has been prescribed to <patient number> in 05/2100 in total?"

"How many drugs have been prescribed to <patient number> since 2 months ago?"

"What is the number of drugs <patient number> was prescribed since 1 year ago?"

Reformulated: '"What is the number of duloxetine prescription cases since 1 year ago?"

Table 10: Examples of question templating using question masked templates.

15

	Introduction
	Related Works
	Text-to-SQL Generation
	Text-to-SQL in EHR database
	Discriminating Unanswerable Questions

	Methods
	Question Templatization
	SQL generation
	SQL Verification
	Ensemble with Majority Voting

	Experiments
	Experimental Setup
	Implementation Details
	Leaderboard Results
	In-Context Learning and Fine-tuning
	Table Information Format
	Table Selection Results
	Question Templatization

	Analysis
	N-gram Distribution
	Category of Unanswerable Questions

	Conclusion
	Examples of unanswerable questions
	Prompt
	Detailed Prompt Example
	Word frequencies: 3-gram
	Examples of Question Templating

