
Proceedings of the 6th Clinical Natural Language Processing Workshop, pages 655–671
June 21, 2024 ©2024 Association for Computational Linguistics

Saama Technologies at EHRSQL 2024: SQL Generation through
Classification Answer Selector by LLM

Mohammed Jabir, Kamal Raj Kanakarajan, Malaikannan Sankarasubbu
Saama Technologies

{mohammed.jabir, kamal.raj, malaikannan.sankarasubbu}@saama.com

Abstract

The EHRSQL task aims to develop a depend-
able text-to-SQL model for Electronic Health
Records (EHR) databases, which are crucial
sources of clinical data that store patients’ med-
ical histories in hospitals. Large language
models (LLM) have been proven to exhibit
state-of-the-art performance for text-to-SQL
tasks across various domains. To this end,
we have developed a framework, SQL Genera-
tion through Classification Answer Selector by
LLM (SCAS), which comprises two modules.
The CAS module determines the answerabil-
ity of the question, while the SG model gener-
ates the SQL query exclusively for answerable
questions. Our system ranked 7th on the leader-
board with a Reliability Score of 53.21 on the
official test set.

1 Introduction

Electronic Health Records (EHRs) are an essential
component of modern healthcare. They store a pa-
tient’s complete medical history, allowing hospital
staff to make better clinical decisions (Wang et al.,
2020; Bardhan et al., 2022) by quickly accessing
relevant patient information. However, accessing
this information can be time-consuming, especially
when complex queries are involved. The traditional
way of accessing EHRs involves using a predefined
rule conversion system to convert user queries to
SQL and retrieve the relevant information. This
process can become a bottleneck for users who
need to build custom queries or deal with com-
plex queries. To address this issue, the EHRSQL
(Lee et al., 2022) task aims to develop a system
that can automatically translate user questions into
corresponding SQL queries, making retrieving the
information they need easier and quicker. The sys-
tem’s objective is to build a text-to-SQL system
that converts natural language queries to SQL and
informs users whether their queries are answerable.

Text-to-SQL tasks (Katsogiannis-Meimarakis
and Koutrika, 2023) involve mapping natural lan-
guage questions onto a given relational database
into SQL queries. Early studies (Dong and Lap-
ata, 2016; Wang et al., 2019) tackled this task with
pre-defined rules or as a sequence-to-sequence task.
However, recent advancements in large language
models (LLMs) (Brown et al., 2020; OpenAI et al.,
2024; Touvron et al., 2023) have become a mile-
stone for natural language processing and machine
learning. LLMs are pre-trained on massive text cor-
pus, which enables them to perform various natural
language tasks, and their ability to do in-context
learning (Liu et al., 2021) makes them most suit-
able for text-to-SQL generation.

In this paper, we present our approach to tack-
ling the EHRSQL 2024 (Lee et al., 2024) shared
task, which involves a complex dataset of elec-
tronic health records. Our proposed framework,
the SQL Generation through Classification Answer
Selector by LLM (SCAS), helps avoiding incorrect
SQL generation by using the Classification Answer
Selector (CAS) module. The CAS module uses an
LLM prompting method that incorporates the out-
put of other classification models to generate the
final classification output, thereby abstaining from
incorrect responses. The SCAS framework gener-
ates SQL queries only for necessary questions by
utilizing other LLM models. Our system achieved
a 7th position on the leaderboard, with a Reliability
Score of 53.21 on the official test set. The code to
reproduce the experiments mentioned in this paper
is publicly available1.

2 Background

2.1 Task and Dataset Description
EHRSQL is a text-to-SQL task aiming to convert
natural language queries into corresponding SQL
queries while identifying untranslatable ones. The

1https://github.com/upjabir/ehrsql_2024

655

https://github.com/upjabir/ehrsql_2024

original EHRSQL (Lee et al., 2022) task was built
on MIMIC-III (Johnson et al., 2016) and EICU
(Pollard et al., 2018) datasets, which are available
from Physionet (Goldberger et al., 2000). The
EHRSQL dataset contains a wide range of ques-
tions across various domains in EHR, including
Demographics, Prescription, Vital signs, and more,
as well as Time Sensitive questions. The dataset
for the task comprises 5124 training, 1163 vali-
dation, and 1162 testing samples.The competition
dataset is derived from the MIMIC-IV (Johnson
et al., 2023) open-access database demo subset and
includes both answerable and unanswerable ques-
tions in the training set. The system should output
corresponding SQL queries for answerable ques-
tions and null for unanswerable questions.

The Reliability Score (RS) is a new evalua-
tion metric for text-to-SQL models used in the
EHRSQL task. It rewards accurate SQL genera-
tion for certain types of questions while penalizing
incorrect SQL generation for others. It does not
assign any reward or penalty for abstaining from
answering certain questions. The competition uses
several scoring systems, including RS(0), RS(5),
RS(10), and RS(N), with RS(10) being the primary
metric for the leaderboard. In RS(10), correct pre-
dictions receive one positive point, while incorrect
predictions receive -10 points. N in RS(N) repre-
sents the size of the test set.

2.2 Related Works
The text to SQL task poses a significant challenge
and has previously been approached as a sequence-
to-sequence task. (Brunner and Stockinger, 2021)
utilized the BERT (Devlin et al., 2019) model as
an encoder architecture to achieve state-of-the-art
results in this task. They incorporated user ques-
tions and employed a neural network architecture
to extract values and generate SQL queries. An-
other study of (Qi et al., 2022) demonstrates an
innovative approach by incorporating various types
of existing relations and co-references, thereby in-
troducing new parameters to the encoder-decoder
(Sutskever et al., 2014) architecture model.

Researchers have been utilizing the Language
Model LLM for text-to-SQL since its emergence.
Downstream tasks for LLM can be achieved
through in-context learning and fine-tuning meth-
ods. (Wei et al., 2023) proposed a Chain of Thought
style prompting technique to enhance the capabili-
ties of LLM. (Pourreza and Rafiei, 2023) proposed
a decomposed in-context learning method where

the text-to-SQL task is divided into subtasks. On
the other hand (Tai et al., 2023) introduced a new
CoT-style prompting method specifically for text-
to-SQL parsing, which showed significant improve-
ments compared to standard prompting methods
and the least-to-most prompting method. Addi-
tionally, a new prompt engineering method called
DIAL SQL was proposed by (Gao et al., 2023),
demonstrating the potential of fine-tuning LLMs
for Text-to-SQL while highlighting the degeneracy
of in-context learning capability after fine-tuning.

Text classification is a crucial task in machine
learning, and it can be accomplished using clas-
sical machine learning models such as Random
Forest and Deep learning models like Transformer
(Vaswani et al., 2023), which is also effective in
handling complex language tasks. With the emer-
gence of LLM, which is trained on large text cor-
pus, (Wang et al., 2023) suggests that the efficiency
of text classification has been increased by using
LLM as a zero-shot classifier. Although using LLM
for downstream tasks is quite challenging. (Sun
et al., 2023) addresses the difficulty of using LLM
for downstream tasks by implementing effective
prompting techniques, thereby improving the effi-
ciency of LLM in text classification. On the other
hand, (Zhang et al., 2024) overcomes this challenge
by fine-tuning LLM, resulting in impressive per-
formance surpassing in-context zero-shot learning
capabilities of pre-trained LLM models like GPT 4
(OpenAI et al., 2024) in the healthcare domain.

3 System Overview

Figure 1: SCAS framework input and output flow.

Our research paper presents a novel framework

656

comprising two modules: The Classification An-
swer Selector (CAS) module and the SQL gener-
ation (SG) module. The CAS module is respon-
sible for determining whether a question can be
answered, while the SG module is designed to gen-
erate an SQL query for questions.

3.1 Classification Answer Selector Module

The CAS (Classification Answer Selector) mod-
ule is a powerful tool that includes two distinct
classification models and a selector to generate the
final classification answer. The selector utilizes
the advanced capabilities of Azure’s OpenAI GPT-
3.5-turbo (Brown et al., 2020) LLM to ensure the
accuracy and comprehensiveness of the final an-
swer.

The classification model uses a classical machine
learning approach and methodology for the classifi-
cation task. Feature selection is used to reduce the
dataset’s dimensionality by eliminating irrelevant
features, with TF-IDF (Sparck Jones, 1972) as an
effective methodology for text classification. Mul-
tiple classification models were employed, includ-
ing MultinomialNB (Lewis, 1998), SGD (Robbins,
1951; Kiefer and Wolfowitz, 1952), and CatBoost
(Dorogush et al., 2018), for ensemble classification
using a weighted ensemble approach. Predictions
were based on probabilities, with a threshold of 0.4
established to convert predicted probabilities into
class labels.

ClassLabel =

{
1 if probability > 0.4

0 otherwise
(1)

The Second classification model is a fine-tuned
LLM specifically for classification tasks. We uti-
lize a pre-trained Large language model from the
Codellama family (Rozière et al., 2024), specifi-
cally CodeLlama-7b-Instruct-hf2, for this task. In
this task, we have a large language model M and a
training dataset D={xi,yi}, where xi represents the
input prompt and yi is the class label. The goal is to
minimize the weighted cross-entropy loss, which is
calculated by dividing the total number of instances
in the training data by twice the count of positive
or negative target values:

ln = −wyn log
exp(xn,yn)∑C
c=1 exp(xn,c)

(2)

2https://huggingface.co/meta-llama/
CodeLlama-7b-Instruct-hf

The selector takes the outputs from both the first
and second classification models and utilizes an
in-context learning method to determine the final
classification result. The prompt used for the selec-
tor is shown in figure 2. A full listing of examples
is available in Appendix E

Based on the database schema and table de-
scription, determine which AI assistant’s answer
accurately identifies whether the given question
can generate an SQL query or not.

Database Table Description
The table name and its corresponding description
are as follows:
{table description}

Database Schema
This query will run on a database whose schema is
represented in this string:
{schema}

{few shots}
Question: "{question}"
Ai Assitant 1’s Answer: {model1 answer}
Ai Assitant 2’s Answer: {model2 answer}
Answer: Let’s think step by step.

Figure 2: Prompt for Classification Answer Selector.

3.2 SQL Generation Module

We employ the same pre-trained large language
model of the Codellama family, which is used in
classifier tasks for SQL generation. We perform
instruction tuning only by considering the answer-
able questions from the EHRSQL 2024 dataset.
The dataset, denoted as D={xi}, consists of input
prompts where xi represents the input prompt. The
training objective is Causal language modeling. A
full listing of prompts and examples are shown in
Appendix D

4 Finetuning

We fine-tuned the model using the efficient param-
eter tuning method LoRA (Hu et al., 2022) and
the HuggingFace library (Mangrulkar et al., 2022).
The finetuning process for both the CAS and SQL
generation modules involved using the AdamW
optimizer and a cosine learning rate scheduler, tar-
geting all linear layers within the model. We em-

657

https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf
https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf

Exp No Development Phase RS(0) RS(5) RS(10) RS(N)
1 gpt-3.5-turbo 38.60 -261.47 -561.56 -69761.39
2 codellama FD 40.84 -250.21 -541.27 -67659.15
3 codellama SA + CL1 74.97 46.17 17.36 -6625.02
4 codellama SA + CL1* 42.73 40.15 37.57 –557.26
5 codellama SA + CL2 43.59 39.29 34.99 956.40
6 codellama SA + CAS 55.97 49.52 43.07 -1444.02
Exp No Test Phase
1 codellama SA + CAS 77.03 -36.07 -149.18 -26322.96
2 codellama SA + CAS* 53.21 44.64 36.07 -1946.786

Table 1: Experimental results during development phase and test phase. FD means Full data set used for training,
SA means only Selected Answerable Questions. CL1 is the classical model, CL2 is codellama model, and CAS is
the Classical Answer Selector Module. * Adjusted threshold.

ployed a maximum sequence length of 4096 tokens
for training and inference for the SQL generation
task, using beam-search decoding strategies with
4 beams during inference. The hyperparameters
utilized for the finetuning process are outlined in
Appendix A, while Appendix B and C detail the
dataset preprocess and postprocess methods em-
ployed for fine-tuning. Additionally, every fine-
tuning process was done using a 4× Quadro RTX
8000 (48GB VRAM) card.

5 Results

We tried both fine-tuning and in-context learning of
LLM for this task. We established a baseline for our
experiment using the gpt-3.5-turbo model, which
received a RS(10) score of -561.56 points. To en-
able in-context learning for the model, we used
few-shot prompting. In the second experiment, we
fine-tuned the codellama model, and despite having
only 7B parameters, it outperformed the gpt-3.5-
turbo model. Notably, both the question classifier
and SQL generation in both 1 & 2 experiments
used the same model. Experiment 3 showcased
the robustness of our SQL generation module, as it
achieved an impressive RS(0) score of 74.97. This
indicates that our system can correctly generate ex-
ecutable queries 74.97% of the time. Experiment
4 focused on improving the question classification
model by adjusting the threshold to identify unan-
swerable questions better. While this enhanced
the RS(10) score by 23.48 points, it caused a de-
crease in the RS(0) score due to misclassification.
Experiment 5 evaluated the performance of the
codellama-based question classifier, which showed
no significant improvement over classical models.
Finally, in experiment 6, we used the CAS mod-

ule that combines the result of two classification
models to enhance the gpt-3.5-turbo model’s per-
formance. The input the CAS module is detailed in
section 2. After completing the development phase,
we submitted our top-performing model for the test-
ing phase, scoring RS(0) of 53.21 and RS(10) of
36.07 points. The SQL generator module achieved
an impressive RS(0) score of 77.03 points during
the test phase, without any adjustments made to
the Question Classifier threshold, which shows the
capabilities of the SQL generator module.

After performing an error analysis on the CAS
module, it was discovered that false negatives were
higher. This indicates that some answerable ques-
tions were incorrectly classified as unanswerable.
Since our system is designed as a pipeline model,
only the questions classified as answerable will ad-
vance to the SQL generation model. This resulted
in a decrease in the RS(0) score. Notably, most
of the false negative predictions were observed in
queries related to test procedures, hospitals and
departments.

6 Conclusion

We developed a sophisticated system that can gen-
erate SQL queries from user queries in the EHR
dataset, provided they are convertible to SQL. Our
system was able to achieve an impressive rank of
7 on the EHRSQL task. Our experiments have
shown that fine-tuning an LLM for task-specific
SQL generation significantly enhances its perfor-
mance compared to in-context learning. However,
we acknowledge that our system needs improve-
ment in identifying which user queries can be suc-
cessfully converted to SQL. This is crucial for en-
suring the reliability of our SQL converter system.

658

To facilitate the reproducibility of our work, we
have made available instruction templates, code,
and pre-trained models as open-source resources.

Limitations

Our research specifically focused on Codellama
models, and we discovered that models fine-tuned
on text-to-SQL tasks, such as SQLCoder3, did not
perform well in the EHRSQL task. Additionally,
there is a limited amount of data available to train
for unanswerable questions within the provided
training data, with only 450 out of 5124 questions
being unanswerable. In future work, generating
synthetic data for unanswerable questions using
models like GPT-4 could potentially improve per-
formance. It is important to note that all experi-
ments were conducted using Codellama 7B mod-
els.

References
Jayetri Bardhan, Anthony Colas, Kirk Roberts, and

Daisy Zhe Wang. 2022. Drugehrqa: A question an-
swering dataset on structured and unstructured elec-
tronic health records for medicine related queries.
arXiv preprint arXiv:2205.01290.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Ursin Brunner and Kurt Stockinger. 2021. Valuenet:
A natural language-to-sql system that learns from
database information. Preprint, arXiv:2006.00888.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Li Dong and Mirella Lapata. 2016. Language
to logical form with neural attention. Preprint,
arXiv:1601.01280.

Anna Veronika Dorogush, Vasily Ershov, and An-
drey Gulin. 2018. Catboost: gradient boost-
ing with categorical features support. Preprint,
arXiv:1810.11363.
3https://huggingface.co/defog/sqlcoder-7b-2

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. Preprint, arXiv:2308.15363.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jef-
frey M Hausdorff, Plamen Ch Ivanov, Roger G Mark,
Joseph E Mietus, George B Moody, Chung-Kang
Peng, and H Eugene Stanley. 2000. Physiobank,
physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals.
circulation, 101(23):e215–e220.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Steven
Horng, Leo Anthony Celi, and Roger Mark. 2023.
Mimic-iv clinical database demo.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G Mark. 2016. Mimic-iii, a freely accessi-
ble critical care database. Scientific data, 3(1):1–9.

George Katsogiannis-Meimarakis and Georgia Koutrika.
2023. A survey on deep learning approaches for text-
to-sql. The VLDB Journal, 32(4):905–936.

Jack Kiefer and Jacob Wolfowitz. 1952. Stochastic
estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, pages 462–
466.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu
Kwon, Woncheol Shin, Seongjun Yang, Minjoon Seo,
Jong-Yeup Kim, and Edward Choi. 2022. Ehrsql: A
practical text-to-sql benchmark for electronic health
records. Advances in Neural Information Processing
Systems, 35:15589–15601.

Gyubok Lee, Sunjun Kweon, Seongsu Bae, and Edward
Choi. 2024. Overview of the ehrsql 2024 shared task
on reliable text-to-sql modeling on electronic health
records. In Proceedings of the 6th Clinical Natural
Language Processing Workshop, Mexico City, Mex-
ico. Association for Computational Linguistics.

David D Lewis. 1998. Naive (bayes) at forty: The
independence assumption in information retrieval.
In European conference on machine learning, pages
4–15. Springer.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
Preprint, arXiv:2107.13586.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, and Sayak Paul. 2022. PEFT: State-
of-the-art parameter-efficient fine-tuning methods.
https://github.com/huggingface/peft.

659

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2006.00888
https://arxiv.org/abs/2006.00888
https://arxiv.org/abs/2006.00888
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1601.01280
https://arxiv.org/abs/1601.01280
https://arxiv.org/abs/1810.11363
https://arxiv.org/abs/1810.11363
https://huggingface.co/defog/sqlcoder-7b-2
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.13026/DP1F-EX47
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://github.com/huggingface/peft

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-

der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Tom J Pollard, Alistair EW Johnson, Jesse D Raffa,
Leo A Celi, Roger G Mark, and Omar Badawi. 2018.
The eicu collaborative research database, a freely
available multi-center database for critical care re-
search. Scientific data, 5(1):1–13.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. Rasat: Integrating
relational structures into pretrained seq2seq model
for text-to-sql. Preprint, arXiv:2205.06983.

Herbert E. Robbins. 1951. A stochastic approximation
method. Annals of Mathematical Statistics, 22:400–
407.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21.

Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei
Guo, Tianwei Zhang, and Guoyin Wang. 2023. Text
classification via large language models. Preprint,
arXiv:2305.08377.

660

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2205.06983
https://arxiv.org/abs/2205.06983
https://arxiv.org/abs/2205.06983
https://api.semanticscholar.org/CorpusID:16945044
https://api.semanticscholar.org/CorpusID:16945044
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2305.08377
https://arxiv.org/abs/2305.08377

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
Preprint, arXiv:1409.3215.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang
Deng, and Huan Sun. 2023. Exploring chain-of-
thought style prompting for text-to-sql. Preprint,
arXiv:2305.14215.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need. Preprint, arXiv:1706.03762.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2019. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. arXiv preprint arXiv:1911.04942.

Ping Wang, Tian Shi, and Chandan K Reddy. 2020.
Text-to-sql generation for question answering on elec-
tronic medical records. In Proceedings of The Web
Conference 2020, pages 350–361.

Zhiqiang Wang, Yiran Pang, and Yanbin Lin. 2023.
Large language models are zero-shot text classifiers.
Preprint, arXiv:2312.01044.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Xiaodan Zhang, Nabasmita Talukdar, Sandeep Vemula-
palli, Sumyeong Ahn, Jiankun Wang, Han Meng,
Sardar Mehtab Bin Murtaza, Dmitry Leshchiner,
Aakash Ajay Dave, Dimitri F. Joseph, Martin
Witteveen-Lane, Dave Chesla, Jiayu Zhou, and Bin
Chen. 2024. Comparison of prompt engineering and
fine-tuning strategies in large language models in the
classification of clinical notes. medRxiv.

A Hyperparameter

Hyperparameter Codellama SA CL2
Learning rate 2.5e-5 1e-4
Batch size 4 4
Epochs 3 3
Weight decay 0.01 0.01
Weight for loss - 0.54,

5.69
Lora rank (r) 16 16
Lora rank alpha (α) 32 32
Lora rank dropout 0.05 0.1

Table 2: Hyperparameter used for the best performing
model.

Hyperparameters used by the best performing
pre-trained language model are listed in Table 2,
and the total hyperparameter search space is listed
in Table 3. Also, the hyperparameter for the classi-
fication model is listed in the Table 4.

Hyperparameter Value
Learning rate 2.5e-5, 5e-5, 1e-4, 2e-4
Batch size 4, 8, 16, 32
Epochs 1-5
Weight decay 0.01, 0.02, 0.05, 0.1
Lora rank (r) 8, 16, 32, 64
Lora rank alpha (α) 16, 24, 32
Lora rank dropout 0.05, 0.08, 0.1

Table 3: Full list of hyperparameter search space for
finetuning LLM

B Dataset Preprocess

For classification, we derive a binary dataset from
the raw EHRSQL dataset, which contains only two
classes based on the question’s answerability. The
class label is one if the question is answerable; oth-
erwise, it is zero. We use the raw question and its
answerability for the first classification model to
create a dataset of questions and their respective
class labels. For the second classification model,
we map the input to the format of figure 3, which
involves providing the SQL schema with foreign
keys and the question itself. The class label deter-
mination remains the same as in the first classifi-
cation model. Figure 2 showcases the prompt for
the selector in the CAS module, which includes
< dti, dsi, qi, fi, cii, cij >. We select a few-shot
example based on the cosine similarity between the

661

https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2312.01044
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.1101/2024.02.07.24302444
https://doi.org/10.1101/2024.02.07.24302444
https://doi.org/10.1101/2024.02.07.24302444

Model HyperParameters values

MultinomialNB
Classifier

alpha 0, 0.01, 0.02,
1.0

fit_prior True,False

SGD classifier
loss modified_huber,

log_loss,huber
max_iter 1000, 5000, 8000

tol 1e-4, 1e-5, 2e-5
penalty l2, l1

CatBoost
classifier

learning_rate 0.01, 0.0056, 0.01,
0.2

depth 4,5,6,8
l2_leaf_reg 1, 4, 6.5, 8.5, 10
subsample 0.1, 0.3, 0.5, 1

loss LogLoss,
CrossEntropy

Table 4: Hyperparameter space for the classification experiments. Hyperparameters in bold are what we used for the
our classification models

given question (qi) and the entire set of training
questions using a pre-trained sentence transformer
called all-mpnet-base-v2 4. From this process, we
identify the four most similar training questions
along with their corresponding SQL query, which
will serve as our few-shot examples.For SQL gener-
ation, we formatted the raw data into the format of
figure 2. The prompt includes < qi, dti, dsi, qsi >,
where qi is the question, dti is the database table
information, dsi is the schema with foreign key
details, and qsi is the SQL query for the corre-
sponding question.

C Dataset Postprocess

In order to guarantee that the classification mod-
els’ outputs are effectively conveyed to the selector
within the CAS module, a postprocessing step must
be incorporated. This step entails modifying the
classification output: if the output is 1, it is trans-
formed to "Able to generate answer"; otherwise, it
is converted to "Unable to generate answer". Fur-
thermore, the generated output in the SQL genera-
tion module is trimmed to include only the section
between the [SQL] and [SQL] keywords.

4https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

[INST] ### Task
Generate a SQL query to answer [QUES-
TION]question[/QUESTION].

Database Table Description
The table name and its corresponding description
are as follows:
{table description}

Database Schema
This query will run on a database whose schema is
represented in this string:
{schema}

Answer
Given the database schema, here is the SQL query
that answers [QUESTION]question[/QUESTION]
[SQL]{sql}[/SQL]

Figure 3: Prompt for SQL generation.

D Prompt and Examples for SQL
generation module

Prompt in the figure 3 is used to train and inference
pre-trained large language model for the SQL gen-
eration task. Given below is a full-fledged example
for SQL generation prompt.

662

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

Example 1

Based on the database schema and table
description, determine which AI assistant’s
answer accurately identifies whether the
given question can generate an SQL query
or not.
Database Table Description
The table name and its corresponding
description are as follows:
ADMISSIONS – Every unique hospitaliza-
tion for each patient in the database
PATIENTS – Every unique patient in the
database
D_ICD_DIAGNOSES – International
Statistical Classification of Diseases and
Related Health Problems (ICD-9) codes
relating to diagnoses
D_ICD_PROCEDURES – International
Statistical Classification of Diseases and
Related Health Problems (ICD-9) codes
relating to procedures
D_LABITEMS – Local codes (’ITEMIDs’)
appearing in the database that relate to
laboratory tests
D_ITEMS – Local codes (’ITEMIDs’)
appearing in the database, except those that
relate to laboratory tests
DIAGNOSES_ICD – Hospital assigned
diagnoses, coded using the International
Statistical Classification of Diseases and
Related Health Problems (ICD) system
PROCEDURES_ICD – Patient procedures,
coded using the International Statistical
Classification of Diseases and Related
Health Problems (ICD) system
LABEVENTS – Laboratory measurements
for patients both within the hospital and in
outpatient clinics
PRESCRIPTIONS – Medications ordered
for a given patient
COST – All patients events cost
CHARTEVENTS – All charted observa-
tions for patients
INPUTEVENTS – Intake for patients
monitored while in the ICU
OUTPUTEVENTS – Output information
for patients while in the ICU
MICROBIOLOGYEVENTS – Micro-
biology culture results and antibiotic
sensitivities from the hospital database

ICUSTAYS – Every unique ICU stay in the
database
TRANSFERS – Patient movement from
bed to bed within the hospital

Database Schema
This query will run on a database whose
schema is represented in this string:
CREATE TABLE patients
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the patient
subject_id INT NOT NULL UNIQUE, –
Unique subject id of the patient
gender VARCHAR(5) NOT NULL, –
Gender of the patient
dob TIMESTAMP(0) NOT NULL, – Date
of birth of the patient
dod TIMESTAMP(0) – Date of death of the
patient
);
CREATE TABLE admissions
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the admission
subject_id INT NOT NULL, – Subject id
of the admission
hadm_id INT NOT NULL UNIQUE,
– Unique hospital admission id of the
admission
admittime TIMESTAMP(0) NOT NULL, –
Admit time of the admission
dischtime TIMESTAMP(0), – Discharge
time of the admission
admission_type VARCHAR(50) NOT
NULL, – Admission type of the admission
admission_location VARCHAR(50) NOT
NULL, – Admission location of the
admission
discharge_location VARCHAR(50), –
Discharge location of the admission
insurance VARCHAR(255) NOT NULL, –
Insurance of the admission
language VARCHAR(10), – Langauge of
the admission
marital_status VARCHAR(50), – Marital
status of the admission
age INT NOT NULL, – Age of the
admission
);

663

CREATE TABLE d_icd_diagnoses
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the icd diagnose
icd_code VARCHAR(10) NOT NULL
UNIQUE, – Unique icd code of the icd
diagnose
long_title VARCHAR(255) NOT NULL –
Title of the icd diagnose
);
CREATE TABLE d_icd_procedures
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of icd procedure
icd_code VARCHAR(10) NOT NULL
UNIQUE, – Unique icd code of the icd
procedure
long_title VARCHAR(255) NOT NULL –
Title of the icd procedure
);
CREATE TABLE d_labitems
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the item relate to laboratory
tests
itemid INT NOT NULL UNIQUE, –
Unique item id of the item relate to
laboratory tests
label VARCHAR(200) – Label of the item
relate to laboratory tests
);
CREATE TABLE d_items
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the item excepts item relate
to laboratory tests
itemid INT NOT NULL UNIQUE, –
Unique item id of the item excepts item
relate to laboratory tests
label VARCHAR(200) NOT NULL, –
Label of item excepts item relate to
laboratory tests
abbreviation VARCHAR(200) NOT NULL,
– Abbreviation of item excepts item relate
to laboratory tests
linksto VARCHAR(50) NOT NULL –
Event linked to item excepts item relate to
laboratory tests
);
CREATE TABLE diagnoses_icd

(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of diagnose
subject_id INT NOT NULL, – Subject id
of diagnose
hadm_id INT NOT NULL, – Hospital
admission id of diagnose
icd_code VARCHAR(10) NOT NULL, –
ICD code of diagnose
charttime TIMESTAMP(0) NOT NULL, –
Chart time of diagnose
);
CREATE TABLE procedures_icd
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of procedures
subject_id INT NOT NULL, – Subject id
of procedures
hadm_id INT NOT NULL, – Hospital
admission id of procedures
icd_code VARCHAR(10) NOT NULL, –
ICD code of procedures
charttime TIMESTAMP(0) NOT NULL, –
Chart time of procedures
);
CREATE TABLE labevents
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of laboratory event
subject_id INT NOT NULL, – Subject id
of laboratory event
hadm_id INT NOT NULL, – Hospital
admission id of laboratory event
itemid INT NOT NULL, – Item id of
laboratory event
charttime TIMESTAMP(0), – Chart time of
laboratory event
valuenum DOUBLE PRECISION, – Nu-
merical value measured of laboratory event
valueuom VARCHAR(20), – Unit of
numerical value of laboratory event
);
CREATE TABLE prescriptions
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of prescription
subject_id INT NOT NULL, – Subject id
of prescription
hadm_id INT NOT NULL, – Hospital
admission id of prescription

664

starttime TIMESTAMP(0) NOT NULL, –
Start time of prescription
stoptime TIMESTAMP(0), – Stop time of
prescription
drug VARCHAR(255) NOT NULL, – Drug
name of prescription
dose_val_rx VARCHAR(100) NOT NULL,
– Dosage value of prescription
dose_unit_rx VARCHAR(50) NOT NULL,
– Dosage unit of prescription
route VARCHAR(50) NOT NULL, – Intake
method of prescription
);
CREATE TABLE cost
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of cost event
subject_id INT NOT NULL, – Subject id
of cost event
hadm_id INT NOT NULL, – Hospital
admission id of cost event
event_type VARCHAR(20) NOT NULL, –
Event type of cost event
event_id INT NOT NULL, – Event id of
cost event
chargetime TIMESTAMP(0) NOT NULL, –
Charge time of cost event
cost DOUBLE PRECISION NOT NULL, –
Cost of cost event
);
CREATE TABLE chartevents
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of chart event
subject_id INT NOT NULL, – Subject id
of chart event
hadm_id INT NOT NULL, – Hospital
admission id of chart event
stay_id INT NOT NULL, – Stay ID of
chart event
itemid INT NOT NULL, – Item ID of chart
event
charttime TIMESTAMP(0) NOT NULL, –
Chart time of chart event
valuenum DOUBLE PRECISION, – Nu-
merical value measured of chart event
valueuom VARCHAR(50), – Unit of
numerical value of chart event
);
CREATE TABLE inputevents

(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of input event
subject_id INT NOT NULL, – Subject id
of input event
hadm_id INT NOT NULL, – Hospital
admission id of input event
stay_id INT NOT NULL, – Stay id of input
event
starttime TIMESTAMP(0) NOT NULL, –
Start time of input event
itemid INT NOT NULL, – Item id of input
event
amount DOUBLE PRECISION, – Amount
of input event
);
CREATE TABLE outputevents
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of output event
subject_id INT NOT NULL, – Subject id
of output event
hadm_id INT NOT NULL, – Hospital
admission id of output event
stay_id INT NOT NULL, – Stay id of
output event
charttime TIMESTAMP(0) NOT NULL, –
Chart time of output event
itemid INT NOT NULL, – Item id of output
event
value DOUBLE PRECISION, – Value of
output event
);
CREATE TABLE microbiologyevents
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of microbiologyevent
subject_id INT NOT NULL, – Subject id
of microbiologyevent
hadm_id INT NOT NULL, – Hospital
admission id of microbiologyevent
charttime TIMESTAMP(0) NOT NULL, –
Chart time of microbiologyevent
spec_type_desc VARCHAR(100), – Speci-
men name of microbiologyevent
test_name VARCHAR(100), – Test name
of microbiologyevent
org_name VARCHAR(100), – Organism
name of microbiologyevent
);

665

CREATE TABLE icustays
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of icu stay
subject_id INT NOT NULL, – Subject id
of icu stay
hadm_id INT NOT NULL, – Hospital
admission id of icu stay
stay_id INT NOT NULL UNIQUE, – Stay
id of icu stay
first_careunit VARCHAR(20) NOT NULL,
– first care unit of icu stay
last_careunit VARCHAR(20) NOT NULL,
– Last care unit of icu stay
intime TIMESTAMP(0) NOT NULL, – In
time of icu stay
outtime TIMESTAMP(0), – Out time of icu
stay
);
CREATE TABLE transfers
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of transfer
subject_id INT NOT NULL, – Subject Id
of transfer
hadm_id INT NOT NULL, – Hospital
admission id of transfer
transfer_id INT NOT NULL, – Transfer Id
of transfer
eventtype VARCHAR(20) NOT NULL, –
Event type of transfer
careunit VARCHAR(20), – Care unit of
transfer
intime TIMESTAMP(0) NOT NULL, – In
time of transfer
outtime TIMESTAMP(0), – Out time of
transfer
);
– admissions.subject_id can be joined with
patients.subject_id
– diagnoses_icd.hadm_id can be joined with
admissions.hadm_id
– diagnoses_icd.icd_code can be joined with
d_icd_diagnoses.icd_code
– procedures_icd.hadm_id can be joined
with admissions.hadm_id
– procedures_icd.icd_code can be joined
with d_icd_procedures.icd_code
– labevents.hadm_id can be joined with
admissions.hadm_id

– labevents.itemid can be joined with
d_labitems.itemid
– prescriptions.hadm_id can be joined with
admissions.hadm_id
– cost.hadm_id can be joined with admis-
sions.hadm_id
– cost.event_id can be joined with diag-
noses_icd.row_id
– cost.event_id can be joined with proce-
dures_icd.row_id
– cost.event_id can be joined with
labevents.row_id
– cost.event_id can be joined with prescrip-
tions.row_id
– chartevents.hadm_id can be joined with
admissions.hadm_id
– chartevents.stay_id can be joined with
icustays.stay_id
– chartevents.itemid can be joined with
d_items.itemid
– inputevents.hadm_id can be joined with
admissions.hadm_id
– inputevents.stay_id can be joined with
icustays.stay_id
– inputevents.itemid can be joined with
d_items.itemid
– outputevents.hadm_id can be joined with
admissions.hadm_id
– outputevents.stay_id can be joined with
icustays.stay_id
– outputevents.itemid can be joined with
d_items.itemid
– microbiologyevents.hadm_id can be
joined with admissions.hadm_id
– icustays.hadm_id can be joined with
admissions.hadm_id
– transfers.hadm_id can be joined with
admissions.hadm_id

Answer
Given the database schema, here is the SQL
query that answers [QUESTION]What was
the drug that patient 10015931 was pre-
scribed with within the same hospital visit
after the replacement of aortic valve with
zooplastic tissue, percutaneous approach
since 5 months ago?[/QUESTION]
[SQL] SELECT admissions.subject_id,
prescriptions.drug,prescriptions.starttime,
admissions.hadm_id FROM prescrip-

666

tions JOIN admissions ON prescrip-
tions.hadm_id = admissions.hadm_id
WHERE admissions.subject_id = 10015931
[/SQL]

E Prompt and Examples for CAS Module

Following is the full example for the prompt in the
figure 2

Example 2

Based on the database schema and table
description, determine which AI assistant’s
answer accurately identifies whether the
given question can generate an SQL query
or not.
Database Table Description
The table name and its corresponding
description are as follows:
ADMISSIONS – Every unique hospitaliza-
tion for each patient in the database
PATIENTS – Every unique patient in the
database
D_ICD_DIAGNOSES – International
Statistical Classification of Diseases and
Related Health Problems (ICD-9) codes
relating to diagnoses
D_ICD_PROCEDURES – International
Statistical Classification of Diseases and
Related Health Problems (ICD-9) codes
relating to procedures
D_LABITEMS – Local codes (’ITEMIDs’)
appearing in the database that relate to
laboratory tests
D_ITEMS – Local codes (’ITEMIDs’)
appearing in the database, except those that
relate to laboratory tests
DIAGNOSES_ICD – Hospital assigned
diagnoses, coded using the International
Statistical Classification of Diseases and
Related Health Problems (ICD) system
PROCEDURES_ICD – Patient procedures,
coded using the International Statistical
Classification of Diseases and Related
Health Problems (ICD) system
LABEVENTS – Laboratory measurements
for patients both within the hospital and in
outpatient clinics
PRESCRIPTIONS – Medications ordered
for a given patient

COST – All patients events cost
CHARTEVENTS – All charted observa-
tions for patients
INPUTEVENTS – Intake for patients
monitored while in the ICU
OUTPUTEVENTS – Output information
for patients while in the ICU
MICROBIOLOGYEVENTS – Micro-
biology culture results and antibiotic
sensitivities from the hospital database
ICUSTAYS – Every unique ICU stay in the
database
TRANSFERS – Patient movement from
bed to bed within the hospital

Database Schema
This query will run on a database whose
schema is represented in this string:
CREATE TABLE patients
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the patient
subject_id INT NOT NULL UNIQUE, –
Unique subject id of the patient
gender VARCHAR(5) NOT NULL, –
Gender of the patient
dob TIMESTAMP(0) NOT NULL, – Date
of birth of the patient
dod TIMESTAMP(0) – Date of death of the
patient
);
CREATE TABLE admissions
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the admission
subject_id INT NOT NULL, – Subject id
of the admission
hadm_id INT NOT NULL UNIQUE,
– Unique hospital admission id of the
admission
admittime TIMESTAMP(0) NOT NULL, –
Admit time of the admission
dischtime TIMESTAMP(0), – Discharge
time of the admission
admission_type VARCHAR(50) NOT
NULL, – Admission type of the admission
admission_location VARCHAR(50) NOT
NULL, – Admission location of the
admission
discharge_location VARCHAR(50), –

667

Discharge location of the admission
insurance VARCHAR(255) NOT NULL, –
Insurance of the admission
language VARCHAR(10), – Langauge of
the admission
marital_status VARCHAR(50), – Marital
status of the admission
age INT NOT NULL, – Age of the
admission
);
CREATE TABLE d_icd_diagnoses
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the icd diagnose
icd_code VARCHAR(10) NOT NULL
UNIQUE, – Unique icd code of the icd
diagnose
long_title VARCHAR(255) NOT NULL –
Title of the icd diagnose
);
CREATE TABLE d_icd_procedures
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of icd procedure
icd_code VARCHAR(10) NOT NULL
UNIQUE, – Unique icd code of the icd
procedure
long_title VARCHAR(255) NOT NULL –
Title of the icd procedure
);
CREATE TABLE d_labitems
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the item relate to laboratory
tests
itemid INT NOT NULL UNIQUE, –
Unique item id of the item relate to
laboratory tests
label VARCHAR(200) – Label of the item
relate to laboratory tests
);
CREATE TABLE d_items
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of the item excepts item relate
to laboratory tests
itemid INT NOT NULL UNIQUE, –
Unique item id of the item excepts item
relate to laboratory tests
label VARCHAR(200) NOT NULL, –

Label of item excepts item relate to
laboratory tests
abbreviation VARCHAR(200) NOT NULL,
– Abbreviation of item excepts item relate
to laboratory tests
linksto VARCHAR(50) NOT NULL –
Event linked to item excepts item relate to
laboratory tests
);
CREATE TABLE diagnoses_icd
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of diagnose
subject_id INT NOT NULL, – Subject id
of diagnose
hadm_id INT NOT NULL, – Hospital
admission id of diagnose
icd_code VARCHAR(10) NOT NULL, –
ICD code of diagnose
charttime TIMESTAMP(0) NOT NULL, –
Chart time of diagnose
);
CREATE TABLE procedures_icd
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of procedures
subject_id INT NOT NULL, – Subject id
of procedures
hadm_id INT NOT NULL, – Hospital
admission id of procedures
icd_code VARCHAR(10) NOT NULL, –
ICD code of procedures
charttime TIMESTAMP(0) NOT NULL, –
Chart time of procedures
);
CREATE TABLE labevents
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of laboratory event
subject_id INT NOT NULL, – Subject id
of laboratory event
hadm_id INT NOT NULL, – Hospital
admission id of laboratory event
itemid INT NOT NULL, – Item id of
laboratory event
charttime TIMESTAMP(0), – Chart time of
laboratory event
valuenum DOUBLE PRECISION, – Nu-
merical value measured of laboratory event
valueuom VARCHAR(20), – Unit of

668

numerical value of laboratory event
);
CREATE TABLE prescriptions
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of prescription
subject_id INT NOT NULL, – Subject id
of prescription
hadm_id INT NOT NULL, – Hospital
admission id of prescription
starttime TIMESTAMP(0) NOT NULL, –
Start time of prescription
stoptime TIMESTAMP(0), – Stop time of
prescription
drug VARCHAR(255) NOT NULL, – Drug
name of prescription
dose_val_rx VARCHAR(100) NOT NULL,
– Dosage value of prescription
dose_unit_rx VARCHAR(50) NOT NULL,
– Dosage unit of prescription
route VARCHAR(50) NOT NULL, – Intake
method of prescription
);
CREATE TABLE cost
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of cost event
subject_id INT NOT NULL, – Subject id
of cost event
hadm_id INT NOT NULL, – Hospital
admission id of cost event
event_type VARCHAR(20) NOT NULL, –
Event type of cost event
event_id INT NOT NULL, – Event id of
cost event
chargetime TIMESTAMP(0) NOT NULL, –
Charge time of cost event
cost DOUBLE PRECISION NOT NULL, –
Cost of cost event
);
CREATE TABLE chartevents
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of chart event
subject_id INT NOT NULL, – Subject id
of chart event
hadm_id INT NOT NULL, – Hospital
admission id of chart event
stay_id INT NOT NULL, – Stay ID of
chart event

itemid INT NOT NULL, – Item ID of chart
event
charttime TIMESTAMP(0) NOT NULL, –
Chart time of chart event
valuenum DOUBLE PRECISION, – Nu-
merical value measured of chart event
valueuom VARCHAR(50), – Unit of
numerical value of chart event
);
CREATE TABLE inputevents
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of input event
subject_id INT NOT NULL, – Subject id
of input event
hadm_id INT NOT NULL, – Hospital
admission id of input event
stay_id INT NOT NULL, – Stay id of input
event
starttime TIMESTAMP(0) NOT NULL, –
Start time of input event
itemid INT NOT NULL, – Item id of input
event
amount DOUBLE PRECISION, – Amount
of input event
);
CREATE TABLE outputevents
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of output event
subject_id INT NOT NULL, – Subject id
of output event
hadm_id INT NOT NULL, – Hospital
admission id of output event
stay_id INT NOT NULL, – Stay id of
output event
charttime TIMESTAMP(0) NOT NULL, –
Chart time of output event
itemid INT NOT NULL, – Item id of output
event
value DOUBLE PRECISION, – Value of
output event
);
CREATE TABLE microbiologyevents
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of microbiologyevent
subject_id INT NOT NULL, – Subject id
of microbiologyevent
hadm_id INT NOT NULL, – Hospital

669

admission id of microbiologyevent
charttime TIMESTAMP(0) NOT NULL, –
Chart time of microbiologyevent
spec_type_desc VARCHAR(100), – Speci-
men name of microbiologyevent
test_name VARCHAR(100), – Test name
of microbiologyevent
org_name VARCHAR(100), – Organism
name of microbiologyevent
);
CREATE TABLE icustays
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of icu stay
subject_id INT NOT NULL, – Subject id
of icu stay
hadm_id INT NOT NULL, – Hospital
admission id of icu stay
stay_id INT NOT NULL UNIQUE, – Stay
id of icu stay
first_careunit VARCHAR(20) NOT NULL,
– first care unit of icu stay
last_careunit VARCHAR(20) NOT NULL,
– Last care unit of icu stay
intime TIMESTAMP(0) NOT NULL, – In
time of icu stay
outtime TIMESTAMP(0), – Out time of icu
stay
);
CREATE TABLE transfers
(
row_id INT NOT NULL PRIMARY KEY, –
Unique ID of transfer
subject_id INT NOT NULL, – Subject Id
of transfer
hadm_id INT NOT NULL, – Hospital
admission id of transfer
transfer_id INT NOT NULL, – Transfer Id
of transfer
eventtype VARCHAR(20) NOT NULL, –
Event type of transfer
careunit VARCHAR(20), – Care unit of
transfer
intime TIMESTAMP(0) NOT NULL, – In
time of transfer
outtime TIMESTAMP(0), – Out time of
transfer
);
– admissions.subject_id can be joined with
patients.subject_id

– diagnoses_icd.hadm_id can be joined with
admissions.hadm_id
– diagnoses_icd.icd_code can be joined with
d_icd_diagnoses.icd_code
– procedures_icd.hadm_id can be joined
with admissions.hadm_id
– procedures_icd.icd_code can be joined
with d_icd_procedures.icd_code
– labevents.hadm_id can be joined with
admissions.hadm_id
– labevents.itemid can be joined with
d_labitems.itemid
– prescriptions.hadm_id can be joined with
admissions.hadm_id
– cost.hadm_id can be joined with admis-
sions.hadm_id
– cost.event_id can be joined with diag-
noses_icd.row_id
– cost.event_id can be joined with proce-
dures_icd.row_id
– cost.event_id can be joined with
labevents.row_id
– cost.event_id can be joined with prescrip-
tions.row_id
– chartevents.hadm_id can be joined with
admissions.hadm_id
– chartevents.stay_id can be joined with
icustays.stay_id
– chartevents.itemid can be joined with
d_items.itemid
– inputevents.hadm_id can be joined with
admissions.hadm_id
– inputevents.stay_id can be joined with
icustays.stay_id
– inputevents.itemid can be joined with
d_items.itemid
– outputevents.hadm_id can be joined with
admissions.hadm_id
– outputevents.stay_id can be joined with
icustays.stay_id
– outputevents.itemid can be joined with
d_items.itemid
– microbiologyevents.hadm_id can be
joined with admissions.hadm_id
– icustays.hadm_id can be joined with
admissions.hadm_id
– transfers.hadm_id can be joined with
admissions.hadm_id

670

Question: ’What was the drug that patient
10015931 was prescribed with within the
same hospital visit after the replacement
of aortic valve with zooplastic tissue,
percutaneous approach since 5 months
ago?’
Answer: Able to generate SQL Query.

Question: ’Tell me the name of the
prescription drug that patient 10015931 was
prescribed in the same day after having a
replacement of aortic valve with zooplastic
tissue, percutaneous approach procedure
since 4 months ago?’
Answer: Able to generate SQL Query.

Question: ’What was prescribed to patient
10015931 during the same hospital visit
following their replacement of aortic
valve with zooplastic tissue, percutaneous
approach during this month?’
Answer: Able to generate SQL Query.

Question: ’What was the drug that patient
10025463 was prescribed for during the
same hospital encounter after the procedure
of excision or destruction of other lesion or
tissue of heart, endovascular approach?’
Answer: Able to generate SQL Query.

Question: "What was the drug that patient
10015931 was prescribed with within the
same hospital visit after the replacement of
aortic valve with zooplastic tissue, percuta-
neous approach since 5 months ago?"
Ai Assitant 1’s Answer: Able to generate
SQL Query.
Ai Assitant 2’s Answer: Able to generate
SQL Query.
Answer: Let’s think step by step."

671

