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Abstract

Recent advancements in large language mod-
els (LM) like OpenAI’s GPT-4 have shown
promise in healthcare, particularly in medi-
cal question answering and clinical applica-
tions. However, their deployment raises pri-
vacy concerns and their size limits use in
resource-constrained environments. Smaller
open-source LMs have emerged as alternatives,
but their reliability in medicine remains under-
explored. This study evaluates small LMs in
the medical field using the MEDIQA-CORR
2024 task, which assesses the ability of mod-
els to identify and correct errors in clinical
notes. Initially, zero-shot inference and sim-
ple fine-tuning of small models resulted in poor
performance. When fine-tuning with chain-of-
thought (CoT) reasoning using synthetic data
generated by GPT-4, their performance signif-
icantly improved. Meerkat-7B, a small LM
trained with medical CoT reasoning, demon-
strated notable performance gains. Our model
outperforms other small non-commercial LMs
and some larger models, achieving a 73.36 ag-
gregate score on MEDIQA-CORR 2024.

1 Introduction

Large language models (LM) have recently
made significant advancements, finding useful-
ness across diverse applications in healthcare and
medicine (Thirunavukarasu et al., 2023; Tian et al.,
2024). For instance, OpenAI’s GPT-3.5 (Brown
et al., 2020) and GPT-4 (Achiam et al., 2024)
have demonstrated their capabilities by achiev-
ing remarkable accuracy on standardized tests like
the United States Medical Licensing Examination
(USMLE). They have also shown excellence in
real-world clinical applications—from responding
to queries to diagnosing complex cases (Kung et al.,
2023; Nori et al., 2023a,b; Singhal et al., 2023a,b).

However, deploying proprietary LMs in this sen-
sitive sector presents significant challenges, primar-
ily due to privacy concerns and the need for secure

Figure 1: Overview of our proposed method. (a) In
chain-of-though (CoT) dataset generation using GPT-4,
we feed GPT-4 with clinical notes, error sentences, and
correct sentences to generate CoT explanation that artic-
ulates error and correction. (b) In supervised fine-tuning,
we fine-tune Meerkat-7B (Kim et al., 2024) with gener-
ated dataset to enhance its error detection and correction
capabilities.

data handling (Thirunavukarasu et al., 2023; Li and
Zhang, 2017; Meskó and Topol, 2023; Bartoletti,
2019). Since these models rely on APIs, it can be
hard to use them in hospitals where a significant
amount of sensitive personal information is present.
Moreover, their vast computational requirements
make them impractical for deployment on local
servers in hospitals or medical research centers.

For these reasons, smaller open-sourced LMs
are emerging as alternatives. For instance, models
such as Mistral (Jiang et al., 2023) and BioMis-
tral (Labrak et al., 2024) come with manageable
sizes that are more suitable for deployment on local
servers, while mitigating the security issues. How-
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ever, because these models have significantly fewer
parameters (typically 7B) compared to large LMs
(more than 100B), there are doubts about whether
these models can provide factual responses based
on their parametric knowledge. This necessitates
rigorous verification before being deployed espe-
cially in the medical domain, where reliability is of
utmost importance.

In this paper, we evaluate the reliability of small
LMs in the medical domain. For this purpose, we
utilize the MEDIQA-CORR 2024 shared task (Ben
Abacha et al., 2024a), which tasks models with
identifying potential errors in clinical notes and
correcting them. This task assesses the ability of
models to address common medical sense errors,
enabling us to verify their reliability and identify
hallucinations in small language models.

Our initial experiment found that when small
LMs were evaluated in a zero-shot setting or trained
using training data through simple supervised fine-
tuning, their performance fell short of expectations.
Notably, the scores were similar to random guess-
ing in a binary classification task. This result sug-
gests solving complex medical problems is chal-
lenging for small models lacking advanced reason-
ing capabilities.

Thus, we hypothesized that fine-tuning the
model with chain-of-thought (CoT) reasoning (Wei
et al., 2022) could effectively equip the model with
these necessary reasoning capabilities. To imple-
ment this, we generated reasoning paths between
the inputs and outputs of the training dataset us-
ing GPT-4 and then trained the model not only to
generate correct answers but also to provide the
underlying reasoning for each decision (Figure 1).
This approach resulted in noticeable performance
improvements, confirming the critical role of CoT
reasoning in solving complex medical problems.

Furthermore, we observed that small LMs could
benefit from reasoning capabilities aquired from
other tasks. Specifically, Meerkat-7B (Kim et al.,
2024), trained on an extensive medical CoT rea-
soning dataset for USMLE-style questions, showed
greater performance improvements compared to
other small LMs. This significant improvement
highlights the importance of reasoning capabilities
for small LMs to generate reliable responses.

Using this approach, we achieved an aggregate
score of 73.36 for the natural language genera-
tion (NLG) evaluation, 63.46 for binary classifi-
cation accuracy in detecting the presence of an
error (error flag accuracy), and 61.51 for accuracy

in identifying the specific sentence containing the
error (error sentence accuracy) on the test set. De-
spite its much smaller size relative to proprietary
Large LMs, Meerkat-7B demonstrated competi-
tive performance in the MEDIQA-CORR 2024
shared task, achieving the best score among non-
commercial/small LMs. This achievement is par-
ticularly significant considering the dominance of
GPT-4-based frameworks among other teams.

2 Methods

2.1 Task Formulation
MEDIQA-CORR 2024 (Ben Abacha et al., 2024a)
involves identifying medical errors in clinical notes
and correcting them. This task is broken down into
the following three sub-tasks: (1) binary classifica-
tion, determining whether the clinical text contains
a medical error or not, (2) span identification, de-
tecting the specific text span associated with the
error, and (3) natural language generation (NLG),
creating a corrected version of the text in a free-
form format. Sub-tasks 2 and 3 are performed only
when an error exists in the given note.

In this study, we frame the task around genera-
tive models that produce free-form text as output.
Let D = {X,Y} be a dataset, where N is the
dataset size, X = {xn}Nn=1, and Y = {yn}Nn=1.
The n-th clinical note, denoted as xn, is composed
of several sentences structured as follows:

xn = {s1, s2, . . . , sTn}, (1)

where Tn is the number of sentences within the
note, and si is the i-th sentence (i ∈ {1, . . . , Tn}).
The label set yn consists of an error flag e ∈ {0, 1},
error sentence index kn (if available), and corrected
sentence s∗ (if available).

We input the entire text xn to the model, and in
return, the model outputs its structured response as
shown in Table 1. We parsed the model’s structured
response to construct the output format. If the
model predicts ‘the note does not contain an error.’,
we set the error flag to 0 and fill the fields for error
sentence index and corrected sentence with ‘-1’
and ‘NA’, respectively. Conversely, if the model
indicates the presence of an error, we set the error
flag to 1 and record both the error sentence index
and the corrected sentence. The final submission
format for the output is structured as follows:

output =

{
(e, kn, s

∗) if e = 1

(e,−1, ‘NA’) otherwise,
(2)
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<INPUT>
You are an expert tasked with providing a logical explanation as to whether there is an error in the given clinical
note. Your job is to analyze the clinical note step-by-step and provide an explanation leading to the conclusion
regarding the presence or absence of an error. You are strongly recommended to follow the output format: At the
end of your response, without modifications, use the phrase "Therefore, the error sentence {ERROR_SENT} should
be corrected to the corrected sentence {CORRECT_SENT}." or "Therefore, the note does not contain an error."

{NOTE}

ASSISTANT:

<OUTPUT>
{CoT Reasoning}

Therefore, the error sentence {ERROR_SENT} should be corrected to {CORRECT_SENT}.
or
Therefore, the note does not contain an error.

Table 1: Input and output format of our CoT dataset that was used to fine-tune small language models. The output
format was specifically structured to simplify the parsing process.

2.2 Generating Reasoning Chains
We instructed GPT-4 to conduct a thorough analysis
of clinical notes and provide explanations as to
whether the given note potentially contains an error
or not. Specifically, we use a clinical note, x, and
an error flag, e, to prompt the model. When the note
contains an error, we also provide both the error
sentence ŝ and the corrected sentence s∗; otherwise,
we only provide the error flag as follows:

r =

{
gpterr(x, ŝ, s

∗) if e = 1

gptno(x) otherwise,
(3)

where r is the generated reasoning chain, and gpterr
and gptno are the OpenAI API functions with the
pre-defined input prompts. Figure 2 details the
input prompts for error and non-error examples. In
our initial experiments, we observed that when we
did not provide label information to the model and
instead asked it to determine the presence of errors
and correct them, the model often gave incorrect
predictions; therefore, we provided gold-standard
labels to increase the recall rate of the reasoning
data. An example of the reasoning chain generated
by GPT-4 can be seen in Figure 3.

We generated five different reasoning paths for
each example to supplement the limited amount of
data. After filtering out samples that did not follow
the specified output format, we obtained 9,712 and
3,207 examples from the training set and validation
set, respectively. This generated dataset was piv-
otal in training our model, as it helped enhance the
model’s reasoning capabilities and as well as per-
formance in correcting errors in clinical notes. The
fine-tuning process enabled the model to generate

explanations as coherent and contextually appropri-
ate as those produced by GPT-4.

2.3 Model

As our backbone model, we used Meerkat-7B (Kim
et al., 2024)1 because it is specifically designed to
handle complex medical queries through advanced
multi-step reasoning. Built on Mistral-7B (Jiang
et al., 2023), Meerkat-7B has been trained on a
high-quality medical instruction-tuning dataset in-
cluding extensive synthetic USMLE-style ques-
tions from 18 medical textbooks and corresponding
CoT reasoning paths. The questions and CoT rea-
soning paths are generated by GPT-4, thereby en-
dowing the model with distilled medical knowledge
and reasoning capabilities from GPT-4. Leverag-
ing these characteristics, Meerkat-7B has achieved
state-of-the-art performance across various med-
ical question-answering benchmarks that require
complex reasoning.

2.4 Training and Inference

We adopted supervised fine-tuning to fine-tune a
language model using our reasoning dataset. For a
given clinical note, the model was trained to gen-
erate a reasoning path r first, and then structured
output as shown in Table 1.

During inference, we employed a self-
consistency method (Wang et al., 2023) to mitigate
potential instability in the outputs generated by
a single model. This method, often used as an
ensemble technique, helps aggregate predictions

1https://huggingface.co/dmis-lab/
meerkat-7b-v1.0
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Figure 2: The input prompts for generating CoT reasoning paths from error (left) and non-error (right) examples
using GPT-4. These prompts guide GPT-4 through a detailed analysis of a clinical note to determine and explain the
presence and the absence of errors within step-by-step reasoning.

from generative language models. The model
generated 30 separate outputs for each input and
then these outputs are aggregated to determine the
most reliable result. If ‘Therefore, the note does
not contain an error.’ is the predominant output,
it is interpreted that the clinical note contains no
errors. Conversely, if a specific corrected sentence
emerges as the most consistent across the outputs,
that sentence is selected as the final correction.
This strategy reduces the impact of potentially
erroneous outputs by leveraging the consensus
from multiple outputs.

3 Experimental Settings

In all our experiments, we utilized eight 80GB
NVIDIA A100 GPUs. When fine-tuning, we used
a learning rate of 1e-6 and a batch size of 128.2 For
generating the CoT dataset, we used GPT-4 Turbo
(gpt-4-1106-preview) through the OpenAI API.

3.1 Dataset

For our experiments, we utilized the official
dataset (Ben Abacha et al., 2024b) provided by
the MEDIQA-CORR 2024 shared task. Table 2
details the number of samples in each split. We
used the training set for initial model tuning and se-
lecting the best model and hyperparameters based
on validation performance. For the final submis-

2We tested a range of learning rates, {1e-7, 5e-7, 1e-6,
5e-6, 1e-5}, and picked the best one based on performance on
the MS validation set.

Dataset Training Validation Test

MS 2,189 574 597
UW - 160 328

Table 2: Statistics of the MEDIQA-CORR 2024 dataset.
The training and validation sets were provided for model
development, whereas the test split was specifically des-
ignated for the official evaluation during the challenge.

sion of the test set, the model was trained using a
combination of the training and validation sets.

3.2 Metrics

For binary classification, we used error flag ac-
curacy to evaluate whether the model accurately
determines if a clinical text contains a medical er-
ror. We used error sentence detection accuracy for
span identification to evaluate whether the model
accurately outputs the index of the error sentence.

For NLG, we utilized the following evaluation
metrics: ROUGE (Lin, 2004), which measures the
overlap of ngrams between the generated text and
the reference; BERTScore (Zhang et al., 2020),
which evaluates semantic similarity using BERT
embeddings; and BLEURT (Sellam et al., 2020),
which assesses text generation quality based on a
learned metric. Additionally, we used an Aggre-
gateScore, calculated as the arithmetic mean of
ROUGE-1, BERTScore, and BLEURT. Note that
these NLG evaluation metrics are computed when
the model corrects an error sentence in the clinical
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note that contains an error.

4 Results

4.1 Effect of Medical Reasoning on Clinical
Note Correction

To verify the impact of fine-tuning with medical
reasoning on clinical note correction, we evaluated
three small LMs—Mistral-7B (Jiang et al., 2023),
BioMistral-7B (Labrak et al., 2024), and Meerkat-
7B (Kim et al., 2024)—using three methods: zero-
shot CoT, fine-tuning with CoT reasoning, and fine-
tuning without CoT reasoning.

Table 3 demonstrates that zero-shot CoT models
exhibited poor accuracy and NLG evaluation re-
sults compared to models fine-tuned with CoT rea-
soning. Specifically, Mistral-7B performed worse
than a random guess in the binary classification
task, and BioMistral-7B largely failed to adhere
to the output formats suggested in the prompts.
Meerkat-7B demonstrated relatively strong perfor-
mance, but there was considerable room for im-
provement. When fine-tuning Meerkat-7B with
CoT reasoning, the performance improved by
33.51% in AggregateScore (AS), indicating that
the model requires fine-tuning to adapt effectively
to the target task.

In fine-tuning settings, models trained on the
CoT dataset notably outperformed those trained
without CoT reasoning in all metrics. Specif-
ically, Meerkat-7B showed substantial improve-
ments when trained with CoT reasoning: error flag
accuracy increased by 9.23%, error sentence detec-
tion by 10.28%, AggregateScore by 3.36%. The
result highlights the crucial role of medical reason-
ing in enhancing the reliability and performance of
small LMs for medical domain problems.

Meerkat-7B, which was extensively trained on
question-answering CoT data to enhance its com-
plex reasoning capabilities, significantly outper-
formed other small language models in terms of
accuracy metrics and NLG evaluation results when
fine-tuned with CoT. Specifically, Meerkat-7B ex-
ceeded both Mistral-7B and BioMistral-7B in er-
ror flag accuracy, with improvements of 5.75%
and 8.71% respectively. It also scored higher on
NLG aggregate scores, outperforming Mistral-7B
by 3.08% and BioMistral-7B by 6.79%. These
results are attributed to the transfer of complex
medical reasoning skills, acquired from other tasks,
to the task of clinical note correction.

4.2 Official Evaluation
Based on the observations in the previous sections,
we selected Meerkat-7B as our backbone model
for the final submission, affirming its effectiveness
for tasks requiring complex medical reasoning. Ta-
ble 4 shows the official test results in the MEDIQA-
CORR 2024.3 Among the fourteen final submis-
sions, seven teams employed large models, predom-
inantly GPT-4, and five teams used smaller models.
Large LMs demonstrated superior performance in
both accuracy and NLG evaluation metrics. How-
ever, the results indicate that Meerkat-7B achieves
competitive outcomes compared to them. Despite
having significantly fewer parameters, our model
secured fourth place overall and was the top per-
former among open-source and smaller LMs.

Based on the official results, our model shows
substantial error flag accuracy and error sentence
detection accuracy compared to other models. Still,
a 63.46% accuracy rate in binary classification
suggests room for improvement. To enhance our
performance in binary classification, we could
consider adopting an encoder model (such as
BERT (Devlin et al., 2019)) focused specifically
on this classification task, rather than relying solely
on a general decoder model. A Two-step approach
using an encoder model and decoder model in each
step may help address both binary classification
and correction of error sentences.

Conversely, our model achieved strong results
in NLG evaluation, indicating a robust capability
to generate accurate corrected sentences within the
context of identified errors. This highlights its ef-
fectiveness in detailed text generation and correc-
tion tasks within the clinical domain. Given these
strengths, we can expect more promising usability
of our model in tasks where error existences are
known, enhancing its practical application in error
correction scenarios.

4.3 Case Study
We present a case study comparing reasoning from
different approaches, using an example from the
validation dataset. Figure 4 provides example out-
puts from three approaches: zero-shot CoT from
each Mistral-7B and Meerkat-7B, and fine-tuned
Meerkat-7B with CoT reasoning.

The clinical note describes a rash that started
behind the ears and spread to the trunk and ex-

3We obtained basic information about the submissions
from the official result sheet, but please note that we do not
have precise details about the submissions.

530



Figure 3: Example of CoT reasoning generated by GPT-4. The CoT reasoning shows a detailed explanation
process in which GPT-4 uses the provided clinical note, error sentence, and corrected sentence to construct a logical
reasoning path leading to the appropriate correction.

tremities, accompanied by mild sore throat, red
itchy eyes, and headache. It concludes with a di-
agnosis of measles. However, the rash pattern and
postauricular and suboccipital lymphadenopathy
align more closely with rubella, which typically
presents with milder symptoms and lymph node
swelling. Measles would more likely involve a
cough and more severe conjunctivitis, which are
not mentioned.

In a zero-shot CoT setting, Mistral-7B did not
detect any error in the note due to insufficient rea-
soning, while Meerkat-7B accurately identified the
error sentence ‘The patient has measles,’ noting the
lack of adequate evidence to conclude that the pa-
tient has measles, through step-by-step reasoning.
However, the model failed to correct the sentence,
indicating that it is not fully adapted to the task.
In contrast, the fine-tuned Meerkat-7B with CoT
reasoning successfully corrected the clinical note.
It suggested that rubella is more consistent with the
patient’s symptoms by providing appropriate sup-
porting reasoning. This case study demonstrates
that although Meerkat-7B exhibits relatively decent
medical reasoning in error detection within clinical
notes compared to other baselines, fine-tuning is

necessary to tailor the model for the target task.

5 Related Works

5.1 Commonsense Detection

Commonsense detection refers to the ability of
an AI system, to use basic knowledge about the
world that is typically obvious to humans, to
understand and respond appropriately in various
situations. It has traditionally been explored within
general domains, such as SemEval-2020 Task 4 on
Commonsense Validation and Explanation (Wang
et al., 2020) and the CREAK dataset (Onoe
et al., 2021). Unlike these general applications,
MEDIQA-CORR 2024 Shared Task (Ben Abacha
et al., 2024a) is specifically focused on the medical
domain, where the implications of errors are
particularly critical. Medical texts require a high
degree of expertise and knowledge to not only
detect errors but also correct them appropriately.
This focus emphasizes the need for AI systems
that perform reliably and accurately in healthcare,
where factuality directly affects patient care.
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Accuracy Results NLG Eval Results

Model EF ES R1 BS BL AS

Zero-shot CoT

BioMistral-7B∗ - - - - - -
Mistral-7B 48.95 35.89 17.81 25.97 36.56 26.78
Meerkat-7B 54.18 45.99 25.83 33.06 40.88 33.26

Fine-tuning w/o CoT reasoning

BioMistral-7B 52.61 47.74 49.09 57.27 50.77 52.38
Mistral-7B 48.78 46.86 61.01 66.63 58.83 62.16
Meerkat-7B 52.09 50.17 61.60 68.26 60.38 63.41

Fine-tuning w/ CoT reasoning

BioMistral-7B 52.61 51.22 56.55 65.82 57.58 59.98
Mistral-7B 55.57 54.70 61.07 68.93 61.08 63.69
Meerkat-7B 61.32 60.45 64.98 71.30 64.03 66.77

Table 3: Performance of small language models on the MS validation set, evaluated through three methods: zero-
shot CoT, fine-tuning without CoT reasoning, and fine-tuning with CoT reasoning. Metrics include error flag
accuracy (EF), error sentence detection accuracy (ES), ROUGE-1 (R1), BERTScore (BS), BLUERT (BL), and
AggregateScore (AS). We did not evaluate BioMistral-7B in the zero-shot CoT method (marked with an asterisk(*))
because this model does not generate responses in the required format, making parsing impossible. Due to superior
performance compared to other models, we chose Meerkat-7B as our base model for the final submission.

5.2 Biomedical Language Models

With the success of transformer-based models
on various NLP tasks, ongoing research has
focused on applying them to the medical domain.
Different transformer architectures have been
trained with large amounts of biomedical text to
encapsulate domain-specific context, including
encoder-decoder-based (Yuan et al., 2022; Phan
et al., 2021), encoder-based (Lee et al., 2020; Gu
et al., 2021), and decoder-based (Luo et al., 2022)
architectures. More recently, models equipped
with billions of parameters have opened the era of
Large LMs, showing superior performance and
generalizability compared to smaller models. In
line with this trend, recent works (Singhal et al.,
2023a) have deployed various training strategies
that enable Large LMs to excel at highly complex
biomedical tasks, such as MedQA (Jin et al., 2021).

5.3 Reasoning Distillation

LMs have shown to generate CoT reasoning steps
that can benefit end task performance, but only
when equipped with at least 100 billion parameters
(Wei et al., 2022). To this end, recent works have
focused on distilling reasoning chains derived from

larger models to smaller models (Li et al., 2022;
Magister et al., 2023). SOCRATIC CoT (Shridhar
et al., 2023) suggests a two-step approach, where
a problem decomposer model interacts with a sub-
problem solver model to reach the final solution.

6 Conclusion

In this study, we explored the capabilities of small
open-sourced language models in medical error
correction and the effect of CoT reasoning on this
problem. Our findings confirm that CoT reason-
ing capabilities are highly encouraged for the task
of clinical note correction, especially for small
LMs. Particularly, Meerkat-7B, initially trained
to solve complex medical questions using an ex-
tensive CoT dataset, demonstrates superior perfor-
mance compared to other open-sourced small LMs.
Despite having far fewer parameters than propri-
etary large LMs, Meerkat-7B achieves competitive
performance in clinical note correction. This un-
derscores the potential of well-designed smaller
models to handle demanding medical AI tasks ef-
fectively. In future research, there should be on-
going efforts to continuously improve small LMs
to enhance the reliability and safety of automated
systems in healthcare, paving the way for more
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Accuracy Results NLG Eval Results

Rank Base Model Model Size EF ES AS

1 GPT-4 Large 86.49 83.57 78.91
2 GPT-4 & Claude Opus Large 62.16 60.86 78.66
3 GPT-4 Large 52.22 52.00 78.06
4 Meerkat-7B (Ours) Small 63.46 61.56 73.36
5 Palmyra Small 56.00 52.00 73.30
6 OpenAI (Not Specified) Large 66.92 61.08 71.09
7 GPT-4 Large 69.41 61.95 65.81
8 OpenAI (Not Specified) Large 68.00 64.00 58.75
9 GPT-4 Large 67.41 60.97 58.10
10 GPT-4 Large 67.78 59.03 55.87
11 GPT-4 Large 56.65 49.08 48.09
12 BioMistral-7B Small 50.16 37.84 45.01
13 BioMistral-7B Small 53.95 36.32 44.83
14 BART & SVM Small 73.73 60.00 44.56

Table 4: Official evaluation on MEDIQA-CORR 2024, featuring metrics such as error flag accuracy (EF), error
sentence detection accuracy (ES), and aggregate score (AS). The table lists each base model used and roughly
categorizes them into ‘Large’ or ‘Small’ based on their parameter size. Ranks are determined based on the aggregate
score (AS). The best performance in each metric is highlighted in bold, while the best performance among small
models is underlined. Our Meerkat-7B-based model achieved an aggregate score of 73.37, outperforming all small
models and several large model-based systems.

accurate and trustworthy medical assistants.

Limitation

One limitation of our current approach is that the
model’s integration of external knowledge sources
is not fully developed (e.g., knowledge base- or
retrieval-augmented generation). While Meerkat-
7B exhibits high-quality reasoning capabilities, it
has not yet been optimized to incorporate external
knowledge. Integrating this model with a retriever
and utilizing biomedical knowledge sources could
significantly improve its ability to solve complex
cases while reducing the likelihood of generating
hallucinations. Future work will explore adapting
Meerkat-7B to harness external biomedical corpora,
potentially increasing its accuracy and reliability.
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