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Abstract
This document describes our solution to the
MEDIQA-M3G: Multilingual & Multimodal
Medical Answer Generation. To build our
solution, we leveraged two pre-trained mod-
els, a Visual Language Model (VLM) and
a Large Language Model (LLM). We fine-
tuned both models using the MEDIQA-M3G
and MEDIQA-CORR training datasets, respec-
tively. In the first stage, the VLM provides
singular responses for each pair of image &
text inputs in a case. In the second stage, the
LLM consolidates the VLM responses using it
as context among the original text input. By
changing the original English case content field
in the context component of the second stage
to the one in Spanish, we adapt the pipeline
to generate submissions in English and Span-
ish. We performed an ablation study to explore
the impact of the different models’ capabili-
ties, such as multimodality and reasoning, on
the MEDIQA-M3G task. Our approach favored
privacy and feasibility by adopting open-source
and self-hosted small models and ranked 4th in
English and 2nd in Spanish.

1 Introduction

Recent visual iterations of Large Language Mod-
els (LMM) explore a central concept that deals
with multimodal inputs, known as visual instruc-
tion tuning. These studies result in sizable Visual
Language Models (VLM) such as VisualBERT
(Li et al., 2019), LLaVA (Haotian et al., 2023),
MiniGPT-4 (Zhu et al., 2023) that demonstrate im-
pressive results on natural instruction-following
and visual reasoning capabilities.

The need for multimodal models is particularly
pronounced in the medical domain. Medical Visual
Question Answering (VQA) can assist in clinical
decision-making, provide reliable and user-friendly
answers to free-form questions, serve as a diag-
nostic tool, or act as a knowledgeable assistant,
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potentially alleviating the burden on the healthcare
system and enhancing the efficiency of medical pro-
fessionals. A mature and comprehensive medical
VQA system could directly review patients’ im-
ages and answer any questions, especially relevant
when medical professionals may not be immedi-
ately available.

The MediQA-M3G task, which focuses on clin-
ical dermatology multimodal query response gen-
eration, exemplifies this need. This task aims to
automatically generate clinical responses given tex-
tual clinical history, user-generated images, and
queries. The common challenges of VQA are am-
plified in the medical domain, where highly spe-
cialized knowledge must be leveraged in coordina-
tion with specific visual features from the images.
This task is further complicated by the fact that
the query, content, and images are provided by pa-
tients, which implies a highly heterogeneous text
style, varying levels of description details, and, in
the case of images, highly variable light, focus,
zoom, and quality conditions.

We utilized a compact (1.86B parameters) Vi-
sual Language Model (VLM) named Moondream
(Moondream AI, 2024) to evaluate the performance
of small Language-Image Models (LIMs) on the
M3G multimodal task. Moondream is built upon
a Sigmoid loss for Language-Image Pre-training
(SigLIP) and the Phi-1.5 language model. We fine-
tuned the VLM using the provided training data,
extending each case title and description to all the
provided images.

The output of VLM might contain redundan-
cies and short answers that deviate from the pro-
vided context in the query. We implemented a post-
processing step of the VLM output to address this
issue by constructing a new query for a fine-tuned
BioMistral LLM. This step relies on the idea that
we already have the context to improve the VLM
answer. The context consists of the original query
title and content from the test dataset cases and the
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VLM response, which we refer to as image anal-
ysis. Along with the context, we used the general
query "What is the disease present in the photo?
What is the treatment?" We use the same pipeline
for both English and Spanish submission entries.

2 Task definition

The MEDIQA-M3G: Multilingual & Multimodal
Medical Answer Generation task focuses on the
problem of clinical dermatology multimodal query
response generation, a first of its kind, aiming to
automatically generate clinical responses given tex-
tual clinical history, user-generated images, and
queries (wai Yim et al., 2024a). This shared task
is motivated and very in line with the rapid de-
velopment of telecommunication technologies and
the increased demand for remote clinical diagno-
sis and treatment. Unlike previous works focusing
only on text or specific types of images, this task
incorporates text and one or more images. Partici-
pants were given textual inputs, including clinical
history and a query, along with associated images,
and they were expected to generate a relevant tex-
tual response. The training data for this task was
translated and adapted from Chinese datasets, and
participants could opt to work in Chinese (Simpli-
fied), English, or Spanish for the test set (wai Yim
et al., 2024b).

3 Related work

3.1 Large Language Models (LLM)
Integrating generative large language models
(LLMs) has been pivotal in medical question-
answering systems. Recent advancements have
seen the adaptation of generalist LLMs like GPT-4
and Gemini to more specialized domains. How-
ever, the proprietary nature of such models limits
their accessibility to research. This challenge has
been addressed by the open-source movement, with
models such as Llama 2 (Touvron et al.), Vicuna
(Chiang et al.), and Mistral (Jiang et al.) provid-
ing a foundation for further innovations in medi-
cal LLMs. Multiple open-source LLMs based on
decoder-only architecture have recently been devel-
oped for the medical domain, e.g., BioGPT (Luo
et al.) and PMC-LLaMA (Wu et al.). Two notable
recent contributions in this space are MediTron
(Chen et al.) and BioMistral (Labrak et al.). Med-
iTron, leveraging Llama-2, has been pre-trained on
a vast corpus of medical literature to offer medi-
cal reasoning capabilities. In parallel, BioMistral

adapts the Mistral model to the biomedical domain,
showing the potential of merging techniques (Yu
et al.) on pre-trained models to enhance perfor-
mance and out-of-domain generalization. In par-
ticular, BioMistral, through techniques like DARE,
has demonstrated improved robustness in multi-
lingual settings, a key factor in real-case global
medical applications.

The massive increase in the size of large lan-
guage models and, by extension, visual language
models to hundreds of billions of parameters has
unlocked various emerging capabilities that have
redefined the landscape of natural language pro-
cessing and a plethora of downstream tasks. A
common challenge remains whether such emergent
abilities can be achieved at a smaller scale using
strategic choices for training, e.g., data selection.
Proposals such as the Phi family models aim to
answer this question by training small language
models (SLMs) that achieve performance on par
with models of much larger (yet still far from the
frontier models) (Javaheripi and Bubeck, 2024).
Their success relies upon training data quality and
the scalability of their smaller models.

3.2 Multimodality

The recent progress of multimodal models in the
medical domain is highlighted by the progress in
large vision language models such as Flamingo
(Alayrac et al.), GPT-4V, and Gemini (Gemini
Team et al.), which have demonstrated remarkable
capabilities in executing instructions, engaging in
dialogues, and managing image-based tasks. Such
advancements show the potential of fusing vision
encoders with large language models (LLMs) to
create systems that can interpret and respond to
complex queries involving textual and visual inputs.
However, increased hardware demands, longer test
times, slower inference speeds, and privacy con-
cerns when used as cloud services are challenges to
their use in real-case scenarios, especially for the
case of medical applications.

End-to-end Vision-Language Pre-training.
End-to-end vision-language pre-training (VLP)
has been used to develop multimodal foundation
models that excel in various vision-and-language
tasks. Despite the effectiveness of these models,
thanks to the evolution of architectures, learning
objectives, and strategies such as contrastive learn-
ing and image-text matching, their use is hindered
by requiring substantial computational resources
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for end-to-end training in large image-text pair
datasets. Another limitation is the lack of leverage
in existing unimodal pre-trained models. (Faria
et al.; Lin et al.)

Modular Vision-Language Pre-training. In
contrast, this approach involves modular VLP meth-
ods that utilize off-the-shelf pre-trained models,
keeping them frozen during VLP. This includes
techniques that freeze the image encoder, leverag-
ing pre-trained models like CLIP (Radford et al.),
and methods that freeze the language model to
harness the knowledge from LLMs for vision-to-
language tasks. A challenge in this approach is
aligning visual features with the text space. BLIP-2
(Li et al.) is a successful recent approach that effi-
ciently uses frozen image encoders and LLMs for
various vision-language tasks with reduced compu-
tational costs.

Multimodal Instruction-following Agents. In-
struction tuning has been crucial in reducing com-
plexity and costs by training the model to han-
dle various tasks represented by different instruc-
tions, thus eliminating the need for separate mod-
els for each application. Common architectures
for instruction-following Large Language Mod-
els (LLMs) include a pre-trained visual backbone,
a pre-trained LLM, and a vision-language cross-
modal connector. Notable recent implementa-
tions include BLIP-2 (Li et al.) and LLaVA (Liu
et al., 2023b,a) models. These represent significant
steps in leveraging pre-trained models and visual
instruction-tuning to enhance the capabilities of
multimodal systems. The introduction of LLaVA-
Phi (Zhu et al.) further exemplifies the trend toward
creating efficient and compact models capable of
delivering high performance in real-time applica-
tions. These developments point to AI systems’
growing capabilities in understanding and acting
upon instructions involving both visual and textual
information.

Medical Visual Question Answering. Medical
VQA can potentially transform clinical decision-
making and patient engagement (Lin et al.). The
unique challenges of the medical domain, such as
privacy requirements, the need for expert anno-
tation, and the integration of medical knowledge
bases, are part of the complexity of developing
effective Medical VQA systems. Dataset qual-
ity and diversity are among the most impactful
limitations that must be addressed to advance the

field. Although the LLMs and LMMs are adapted
to the medical domain and already trained for
instruction-following, it is often observed that their
zero-shot and few-shot performance can be further
enhanced by performing a complementary, focused
SFT stage on specific tasks. Notably, task-specific
models trained on carefully curated datasets have
frequently outperformed generalist models of simi-
lar size, especially in highly specialized domains
such as medicine.

4 Methodology

We utilized a compact (1.83B parameters) Vi-
sual Language Model (VLM) named Moondream
(Moondream AI, 2024) to evaluate the performance
of small Language-Image Models (LIMs) on the
M3G multimodal task. Moondream is built upon
a Sigmoid loss for Language-Image Pre-training
(SigLIP) (Beyer et al., 2022) and the Phi-1.5 lan-
guage model, a Transformer with 1.3B parameters
(Li et al., 2023; Microsoft Research, 2023). In such
a setup, a contrastively pre-trained model provides
significantly more useful tokens than one classifi-
cation pre-trained model (Zhai et al., 2023). Figure
1 shows the schematic of the proposed solution in-
volving the VLM and the BioMistral-7B-DARE
(Labrak et al.) LLM as a specialized stage for final
response consolidation.

4.1 Training

Fine-tuning VLM. We fine-tuned the VLM us-
ing the whole provided training data, extending
each case title and description to all the provided
images (see Table 1). We employed the flash atten-
tion algorithm to mitigate memory issues during
training and inference. Our hardware setup was
limited to a single NVIDIA RTX 3090 GPU for
fine-tuning and inference.

The motivation behind this training dataset is to
increase the number of training samples, given the
reduced number of clinical cases in the provided
training data. The caveat of this approach is that
although we consider each augmented sample as
valid, there might be responses that overlap, com-
plement, or contradict a valid clinical response.

Fine-tuning LLM. Our team, having partici-
pated in the MEDIQA-CORR (Ben Abacha et al.,
2024a) task, leveraged the LLM fine-tuned for
that task. Specifically, we instruction-tuned the
BioMistral-7B-DARE on the MEDIQA-CORR
dataset (Ben Abacha et al., 2024b). For this, we
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Figure 1: Overview of the proposed solution1. The contrastively pre-trained SigLIP vision model encodes the image
into visual tokens individually. These visual tokens are passed along with a query to the Phi 1.5 LLM, producing
responses for individual images. A consolidation response stage is performed via the fine-tuned Biomistral LLM
using the VLM responses and context from the original query.

mapped the labeled dataset into three types of in-
structions: classifying if the statement had an error
or not, detecting the culprit sentence, and correct-
ing a given erroneous sentence to ensure consis-
tency with the rest of the clinical text. The Super-
vised Fine-Tuning (SFT) was performed using the
parameter-efficient method LORA on an NVIDIA
A100-80G for four epochs. Without further train-
ing, we then used this MEDIQA-CORR fine-tuned
model in the M3G task.

4.2 Inference strategies

Strategy-1: Direct inference with VLM. We
constructed the output by performing inference on
each image of each case in the test dataset. This
step means that for one case, we request the fine-
tuned VLM with our query and each of the case’s
images. Finally, all VLM responses for a case, as
many as images in the test case, were concatenated
as the final response (see Table 2:2). The results
of this strategy outperform the baseline obtained
using the non-fine-tuned VLM (see Table 2:1).

Strategy-2: Two-stage inference (VLM + LLM)
The output of the previous approach might contain
redundancies and short answers that deviate from
the provided context in the query. To address this
issue and to harness knowledge from a bigger spe-
cialized model, we implemented a two-stage strat-
egy that augmented the previously described Direct
inference strategy with a post-processing step. This
step relies on the idea of leveraging the arguably
better reasoning capabilities of a bigger specialized

1MEDIQA-M3G dataset contains images of medical con-
ditions that may be sensitive and/or graphic in nature.

LLM to better harness the provided case informa-
tion, i.e., query title and content, along with the
VLM answers to generate a final response. Specif-
ically, we requested the LLM with a prompt con-
sisting of the query: "What is the disease present
in the photo? What is the treatment?"; the context:
dataset query title and content; and the image anal-
ysis: list of VLM responses (see Table 2:3). Table
3 shows examples of the composite input of this
step and the resulting consolidated response.

Regarding multilingualism, Strategy-1 was built
considering only one language data stream, English.
The VLM was fine-tuned using only the English
queries, content, and responses. However, as the
LLM we employed in Strategy-2 has multilingual
capabilities (see sec. 3.1), we also applied the post-
processing step of Strategy-2 to the Spanish version
of the cases. We provided a prompt with the query
and context in Spanish but with the English image
analysis. We added additional prompt instructions
to the model to request Spanish responses exclu-
sively. As a result of this change, we could provide
output for the Spanish version of the task (see Ta-
ble 2:3).

5 Results and analysis

Results during competition. From the official
results during the competition (Table 2 ids: 1-3),
we observe that by fine-tuning the VLM (id: 2),
we obtained a significant improvement, with a
deltableu of 0.595, which is more than a two-
fold enhancement over the baseline non-fine-tuned
version (id: 1) that held a deltableu of 0.231. Fur-
thermore, the implementation of Strategy-2 (id: 3)
marked a substantial leap, exhibiting a quadruple
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Original sample (single language) Training sample

case: ENC00018 sample: ENC00018_image1_response1
(image1, image2) (image1)
from: human; value: (title) View image (content)
Female, 19 years old, has had a hard lump
in her ear for three months, as hard as a
wooden board, with no sense of fluctuation.
After incision, a white dense substance was
found. What kind of cyst could this be?

from: human; value: (title) View image (content) Female,
19 years old, has had a hard lump in her ear for
three months, as hard as a wooden board, with no
sense of fluctuation. After incision, a white dense
substance was found. What kind of cyst could this
be? (augmented query) What is the disease in the photo?
What is the best treatment?

from: response 1; value: Erythema annulare
centrifugum? Use licorice decoction with
corticosteroid ointment.

from: agent ; value: Erythema annulare centrifugum? Use
licorice decoction with corticosteroid ointment.

from: response 2; value: I think it still
looks like urticaria, continue with the
anti-allergy treatment.

from: response 3; value: I think the likelihood
of urticaria is the highest, but the skin
lesions at the root of the thigh are hard to
explain, so erythema annulare cannot be ruled
out either...

Table 1: Training example used for fine-tuning the VLM. We augment the training query (represented by the title
and content case) with the standard query from the challenge description. We generate a training sample per each
image and response combination. Hence, each case in the training dataset will generate I × R training samples,
where I is the number of images in the case, and R is the number of responses for the selected language.

increase in performance for the English language
tasks, as indicated by a deltableu of 2.133 com-
pared to the 0.595 achieved by Strategy-1 (id: 2).
When applied to Spanish, Strategy-2 (id: 3) show a
significant drop but still got a competitive perfor-
mance with a deltableu of 0.974. Our best runs
(id: 3) were placed at the 4th and 2nd positions for
English and Spanish, respectively.

5.1 Ablation study
We conducted an ablation study to assess the im-
pact of various components in our best strategy
(Strategy-2). We can isolate and understand their
contributions to the strategy’s effectiveness by sys-
tematically removing or altering specific model
elements. Our analysis focuses on three primary
objectives: investigating the Unimodal Bias phe-
nomenon, assessing the extra reasoning capacity
contribution of the Large Language Model (LLM),
and evaluating the impact of training the LLM on
a specialized dataset for error detection and correc-
tion in clinical notes.

Investigating the Unimodal Bias Phenomenon.
To explore the Unimodal Bias and the impact of
incorporating visual modality, we performed ex-
periments 4 and 5 (see Table 2). We follow the
same pipeline as in Fig. 1 without using the input
images for the unimodal experiments. Thus, the

VLM only sees the test case’s title and content text
inputs as prompts, i.e., we remove the references to
"image" from the prompt. In experiment id:4 our
strategy involved employing the Visual Language
Model (VLM) without providing visual inputs, re-
lying solely on textual content. This setup mimics
Strategy-1 but aims to quantify the absence of vi-
sual modality. Experiment id:5 followed a similar
approach, utilizing both the VLM and LLM with-
out visual inputs, akin to Strategy-2. As seen in Ta-
ble 2, the results – deltableu scores of 1.418 and
0.968 for English and Spanish, respectively in id: 4
and 0.328 for English in id: 5– indicate the positive
impact of using both modalities in this task. The
decrements in BERTscore and deltableu metrics
suggest that relevant information in the encoded &
tokenized image input is helping, along with textual
case input, to determine the test case queries.

Assessing the Extra Reasoning Capacity of
the LLM. The comparison of Strategy-2’s per-
formance under varying conditions—specifically
when the LLM is provided with both the case
context and VLM responses versus when it
only receives the VLM responses for summariza-
tion—sheds light on the LLM’s reasoning ability.
Experiment id:6 explores this, allowing us to dis-
till the LLM’s added value in synthesizing and
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id Strategy EN ES

Te
st

1 Moondream 0.231 -
2 Moondream-FT 0.595 -
3 Moondream-FT + BioMistral-FT 2.133 0.974

Te
st

_a
ft

er

4 Moondream-FT :: w/o visual 0.328 -
5 Moondream-FT + BioMistral-FT :: w/o visual 1.418 0.968
6 Moondream-FT + BioMistral-FT :: w/o context 1.183 -
7 Moondream-FT + BioMistral :: w/o FT-LLM 1.963 1.745

Table 2: Official scores (deltableu) of the different submitted strategies for English (EN) and Spanish (ES). Stages,
Test: during competition, Test_after: after the end of competition. The best scores by language appear in bold.

reasoning over the provided information. With a
deltablue score of 1.183 in English, this exper-
iment shows how much the LLM’s reasoning ca-
pabilities, beyond mere summarization, contribute
to generating more correct and contextually aware
responses.

Evaluating the LLM’s Training on Error Detec-
tion and Correction. BioMistral LLM utilizes
Mistral as its foundation model. It is further pre-
trained on PubMed Central (a dataset containing
citations and abstracts of biomedical literature),
making it a top performer in medical question-
answering benchmarks in English. Experiment
id:7 investigates the relevance of the ability of er-
ror detection and correction within clinical notes
by exploring the original BioMistral against one
fine-tuned on the CORR dataset. This experiment
examines the hypothesis that an LLM trained for
error detection&correction could better integrate
VLM responses with the textual case content, es-
pecially in correcting inconsistencies in VLM re-
sponses ("diagnostic"). The results from this ex-
periment, 1.963 for English and 1.745 for Spanish,
demonstrate the potential benefits of specialized
fine-tuning for tasks out of the LLM’s immediate
domain expertise, highlighting the enhanced ca-
pability for error correction and the generation of
coherent and accurate clinical responses.

5.2 Discussion

Analyzing the results of the competition phase and
of the ablation study (see Figure 2 & Table 2), we
observe that when using the non-fine-tuned ver-
sion of BioMistral, we obtain the smallest drop
in performance, a mere 7%. In contrast, a more
significant drop in scores, a 33% degradation, was

observed when the visual input was removed. In-
terestingly, the loss was even higher, at 44%, when
neglecting the reasoning capabilities of the LLM.
This suggests that the analysis and synthesis, i.e.,
consensus generation capacity of the LLM, is a
key component of the strategy.

All the ablation experiments in Table 2, except
for the experiment id:7, for Spanish, resulted in
lower scores. Interestingly, the Spanish version in
experiment id:7 scored the highest and surpassed
any published run in the leaderboard to the best of
our understanding. We hypothesize that by fine-
tuning BioMistral on the CORR dataset (which is
only in English), we not only steered the LLM to-
wards a narrow set of tasks, specifically clinical
error detection and correction but also disrupted
the model’s capacity to handle other languages due
to the monolingual nature of the training set and the
prevalent use of English in the pretraining corpora.
This leads to an intriguing inquiry: how robust
is the multimodal capacity attributable to merg-
ing methods like DARE (Yu et al., 2024) when
subjected to monolingual posterior fine-tunings?
This question warrants further investigation. Fur-
thermore, removing the visual input has almost no
impact on the performance in the Spanish version
(id:3 vs. id:5). We hypothesize that this is also
the result of our BioMistral-FT version’s degraded
multilingual capacity, which makes it unable to in-
tegrate the case context in Spanish with the VLM
responses in English.

The competition results and ablation analysis
clearly indicate that in Strategy-2, all components
work collaboratively for the better. Even the fine-
tuned version of BioMistral, which had the lowest
impact, positively contributed to the final score.
This shows the key role of consensus generation.
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Figure 2: Deltableu scores of our submissions. The strategy used is represented on the X-axis. Scores for English
are in blue and for Spanish in orange. The shaded area represents the submissions in the after-test stage.

By integrating multiple independent responses
from the multimodal model and re-analyzing the
case context, the strategy generates a revised final
response, which is more contextually accurate.

LLMs, and by extension VLMs, differ signifi-
cantly from prior deep learning methods regarding
their scale, capabilities, and broad potential impact.
For instance, these models are trained on massive
datasets and use billions of parameters, resulting
in considerable complexity. Models of this scale
require significant hardware resources for training,
fine-tuning, and, some, even inference. Privacy in
medical applications of LLMs is paramount, and
the possibility of training and testing this kind of
model on-site is critical. Relying on third-party
hardware providers to store or process medical data
becomes a privacy risk (Khullar et al., 2024; Meskó
and Topol, 2023). Our proposed pipeline considers
this requirement when dealing with the delicate na-

ture of the images in the training dataset. To do so,
we explored the use of compact Visual Language
Models and their performance in the M3G task.
Our results provided a promising perspective, even
with the limited data we utilized for training and the
conservative score we obtained in the challenge.

6 Limitations

Our proposed approach holds significant promise
for the VQA problem in clinical dermatology ,
but several limitations associated with deploying
VLMs and LLMs in real-world medical settings
necessitate careful consideration.

We are optimistic about the potential of our 2-
step method, which is designed to consolidate mul-
tiple responses from image-text query pair analysis
into a single, consensus-based solution. This ap-
proach allows us to utilize simpler VLMs, initially
intended for single-image scenarios, in settings
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with an unknown number of multiple images. How-
ever, we acknowledge that this flexibility comes
with the cost of posing as many queries to the VLM
as there are images in a single case. This could in-
crease computational costs, potentially making the
solution computationally impractical for real-world
deployment.

Another limitation is that VLMs, which were
aligned with domain-specific images and texts dur-
ing pretraining, are observed better to leverage
domain-specific training examples during the in-
struction tuning phase. However, in our setting, the
VLM lacks alignment for visual-medical texts and
relies solely on fine-tuning to generate the most
appropriate answers. This lack of alignment makes
the VLM more demanding for instruction tuning
data.

Another crucial problem with VLMs based on
the pre-trained vision encoder is resolution. They
are trained and also expect to analyze the full im-
age input. However, for some specific cases, and
even if the input is big enough, the focus of the
query relies on certain zones of the image –in ex-
treme cases, these zones are tiny compared to the
image resolution. The M3G dataset showcases this
very problem. Most dermatology-related images
in either training, validation, or test datasets con-
tain wide shots of the patient’s limbs, and only a
tiny region of the image provides valuable visual
cues. We envisioned exploring techniques such as
Visual Search (Wu and Xie, 2023) and Visual Crop-
ping (Zhang et al., 2024) that can help us tackle
this issue without compromising the size of our
affordable VLM.

Regarding the LLM component, even if we are
within the considered "small" scale, the compu-
tational demands of these models are substantial.
Operating such models requires significant compu-
tational resources, which may not be feasible in all
clinical environments. This issue can hinder our
proposed solution’s scalability and practical deploy-
ment in resource-limited settings. Moreover, LLMs
are prone to generating "hallucinations" or outputs
that may include incorrect or misleading informa-
tion. This phenomenon is particularly concerning
in the medical field, where accuracy is crucial to
avoid misdiagnoses or inappropriate treatments. In-
trinsic hallucinations, where outputs logically con-
tradict known facts, and extrinsic hallucinations,
where outputs cannot be verified, both pose serious
risks in clinical applications.

Additionally, data bias and patient privacy are

critical. LLMs trained on biased data can perpetu-
ate or amplify these biases, leading to skewed or un-
fair medical advice. For example, the competition
dataset observed a frequent recommendation based
on traditional Chinese medicine. Thus, a model
trained on this dataset may exhibit a predisposi-
tion, favoring a certain type of recommendation,
irrespective of local or user-specific preferences.
Given the sensitive nature of medical data, ensur-
ing patient privacy while using such models is also
paramount. Furthermore, updating these models
with new medical knowledge remains a complex
and resource-intensive process. This is problem-
atic in the fast-evolving field of medicine, where
staying current with the latest research and clinical
findings is essential. For example, if a new Adverse
Drug Effect is discovered, it is vital to update the
models’ knowledge promptly.

Finally, it is necessary to be aware that although
this shared task is a crucial step towards better
understanding and addressing the relevant task of
automatically generating clinical responses given
the textual clinical history and user-generated im-
ages, similar to existing benchmarks and metrics, it
does not imply a comprehensive assessment of the
performance of the system in real-medical contexts.
Metrics such as trustworthiness, helpfulness, ex-
plainability, and faithfulness are crucial for clinical
applications, and addressing these issues involves
not only technical advancements in the architecture
and training of LLMs but also close collaboration
with medical professionals to ensure the clinical
validity and ethical deployment of these technolo-
gies.

In conclusion, while our solution shows promise
in addressing the MEDIQA-M3G task, limitations
must be addressed to make it suitable for clinical
use. Further exploration of optimization strategies,
evaluation with other metrics, and collaboration
with medical professionals are necessary to im-
prove our approach’s clinical relevance and effec-
tiveness in real-world healthcare settings.

7 Future directions

We plan to incorporate a broader array of med-
ical and health-related datasets into our training
regimen to enhance our models’ domain-specific
accuracy and relevance. Specifically, we aim to
utilize the Skin Condition Image Network (SCIN)
dataset (Ward et al., 2024) focused on dermatology,
including structured and unstructured textual data.
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Moreover, we are interested in exploring the poten-
tial benefits of integrating data from various clinical
specialties into our training process to see how this
affects the model’s performance and applicability
across different medical fields.

We are particularly keen on incorporating
retrieval-augmented generation (RAG) strategies
related to the challenges of model knowledge updat-
ing and mitigating hallucinations. These strategies
leverage existing related medical knowledge during
the inference phase to enhance the factuality of the
generated responses. By doing so, we expect to
improve the reliability and accuracy of the model
outputs, which is crucial for clinical applications.

Finally, we recognize the importance of inter-
disciplinary collaboration in developing medical
VLMs and LLMs. Therefore, we are already in
plans to initiate partnerships with medical profes-
sionals who can provide valuable insights, con-
tribute relevant training data, and help define the
desired outcomes for these technologies. Their in-
volvement is critical not only in the development
phase but also in testing these models in real-world
clinical scenarios to ensure they meet both practical
clinical needs and high standards of medical care.

8 Conclusions

We explored a solution to the clinical dermatol-
ogy multimodal query response generation task
and proposed a pipeline that can be expanded to
similar multimodal tasks. We leverage performant
pre-trained language models, fine-tuning the small
VLM to adapt to the clinical task. We also show
how the pipeline adapts to the multilingual com-
plementary problem by relying on the multilingual
capabilities of the pre-trained LLM. Participating
in this challenge represented a feasibility study and
opened several work perspectives for multimodal
medical applications.
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- Content

Case ENC00932
Prompt ### Instruction: Given the CONTEXT and IMAGE ANALYSIS What is the disease

and treatment?

### Input:
CONTEXT: Please help take a look Is this onychomycosis? The patient
is female, 60 years old. Got onychomycosis. Use Levothyroxine Sodium
tablet daily. The nail is thin in the front, but rather thick in the
rear part.

IMAGE ANALYSIS: Onychomycosis, nail detachment? Onychomycosis,
nail detachment? Onychomycosis, nail detachment?

Response Onychomycosis, nail detachment?

Official responses - It doesn’t look like onychomycosis.
- Should be onychomycosis.

Case ENC00952
Prompt ### Instruction: Given the CONTEXT and IMAGE ANALYSIS What is the disease

and treatment?

### Input:
CONTEXT: Please help see what disease is this. What is the treatment
plan for that? Appreciate your help. Hand itchy, dry and cracking for
more than 2 months. Small blisters showed up two months ago with unknown
cause. Unbearably itchy. Later on, the small blisters fused together
to form a patch, cracking and peeling with pain that is unbearable.
Prescribed in the hospital oral medicines ( Compound glycyrrhizin
capsules, Cimetidine, Cyproheptadine) with no succes. Even with help
from many people, still not knowing the cause, treatment unsuccessful.
Urgently requesting experts here can help diagnose and treat. Many
thanks!

IMAGE ANALYSIS: It should be eczema, in my personal opinion. It
should be eczema, but because your location is in the hospital, it’s
hard to treat, especially if it’s related to infections. It should
be eczema, but because your location is in the hospital, it’s hard to
treat, especially if it’s related to infections.

Response Eczema, Intravenous prednisolone

Official responses - Chapped eczema
- Chronic eczema. Take special care on contact with specific material or
work related.

Case ENC00925
Prompt ### Instruction: Given the CONTEXT and IMAGE ANALYSIS What is the disease

and treatment?

### Input:
CONTEXT: Papules and lumps at the lower left side of the abdomen for 7
months. The infant patient is 10 months old, and got the disease for 7
months. Got white flat papules and plaque on lower left abdomen. (see
pictures) There is no pathological examination yet. Would experts here
help diagnose.

IMAGE ANALYSIS: Consider whether there is a lesion under the skin, the
specific direction is difficult to consider.

Response Langerhans cell histiocytosis

Official responses - Could be Verrucous nevus
- Verrucous nevus

Table 3: Examples of prompts given to the LLM for the Strategy-2. Note: In this table, prompts are formatted in the
Alpaca style with added line breaks for improved readability.
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run_id lang stage shortdesc deltaBLEU BERTScore

52859 en test Moondream 0.231 0.810
52872 en test Moondream-FT 0.595 0.851
52897 en test Moondream-FT + BioMistral-FT 2.133 0.850
54076 en test_after Moondream-FT :: w/o visual 0.328 0.842
54086 en test_after Moondream-FT + BioMistral-FT :: w/o visual 1.418 0.846
54091 en test_after Moondream-FT + BioMistral 1.963 0.829
54092 en test_after Moondream-FT + BioMistral-FT :: w/o context 1.183 0.860
52899 es test Moondream-FT + BioMistral-FT 0.974 0.814
52908 es test Moondream-FT + BioMistral-FT 0.974 0.814
54085 es test_after Moondream-FT + BioMistral-FT :: w/o visual 0.968 0.810
54173 es test_after Moondream-FT + BioMistral 1.745 0.809

Table 4: All team submissions by language and in chronological order.
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