Project PRIMUS at EHRSQL 2024: Text-to-SQL Generation using Large
Language Model for EHR Analysis

Sourav Bhowmik Joy
Minhaj Ahmed

Rohan Ahmed
Utsho Das

Argha Pratim Saha
Partha Sarothi Bhowmik

CSE, Shahjalal University of Science & Technology

Abstract

This paper explores the application of
the sqlcoders model, a pre-trained neural
network, for automatic SQL query generation
from natural language questions. We focus
on the model’s internal functionality and
demonstrate its effectiveness on a domain-
specific validation dataset provided by
EHRSQL. The sqlcoders model, based on
transformers with attention mechanisms, has
been trained on paired examples of natural
language questions and corresponding SQL
queries. It takes advantage of a carefully
crafted prompt that incorporates the database
schema alongside the question to guide the
model towards the desired output format.

1 Introduction

Electronic health records (EHRs), a large
collection of data related to digital medical
records, serve as the backbone of modern

healthcare, storing a wealth of patient
information. This data, encompassing
diagnoses, procedures, medications, and

more, offers invaluable insights for clinical
decision-making and research.[3] [4]
However, effectively utilizing this vast
resource is often hampered by the complexity
of querying the underlying relational
databases.

Traditionally, hospital staff relies on pre-
defined rule conversion systems to interact
with EHR databases. These systems,
while functional, limit access to information
beyond pre-configured rules. Modifying and
extending these systems requires specialized
training, creating a bottleneck for users
seeking broader data access.

This paper explores the potential of natural
language processing (NLP) to bridge this

gap. We present a system that leverages
the power of large language models (LLMs)
to automatically translate natural language
questions into corresponding SQL queries.
This approach empowers users to directly
query the EHR database wusing natural
language, eliminating the need for complex
SQL syntax and significantly streamlining
data retrieval.

The core of our system lies in a pre-trained
LLM, specifically the sqlcoders model. This
model, trained on paired examples of natural
language questions and their corresponding
SQL queries, has the remarkable ability to
understand the user’s intent and translate it
into the appropriate database query language.
We delve into the inner workings of the
sqlcoders model and the concept of prompt
engineering, a crucial aspect of guiding
the LLM towards generating accurate SQL
statements.

By focusing on open-source LLMs like
sqlcoders, our work contributes to the broader
exploration of readily available resources
for NLP tasks. We aim to demonstrate
the effectiveness of supervised fine-tuning in
enhancing the performance of open-source
LLMs for the challenging task of text-to-
SQL translation in the specific domain of
healthcare.

This paper is structured as follows. First,
we discuss related work on text-to-SQL
translation, highlighting the advantages of
LLM-based approaches and the importance
of prompt engineering. Subsequently,
we introduce the sqlcoders model and its
methodology. We then present our approach
and implementation details, followed by

422

Proceedings of the 6th Clinical Natural Language Processing Workshop, pages 422427
June 21, 2024 ©2024 Association for Computational Linguistics

an evaluation of the system’s performance.
Finally, we conclude by discussing the
implications of our work and outlining future
directions.

2 Related Work

Extracting SQL queries from natural language
questions has been a well-studied area
within NLP, with applications spanning
various domains. This section explores
relevant research directions and highlights
how the sqlcoders model aligns with these
methodologies.

2.1 Semantic Parsing and Question
Answering

Question-to-SQL generation can be viewed
as a sub-task of semantic parsing, where
the goal is to translate natural language
into a formal representation like SQL. Early
approaches relied on rule-based systems or
semantic parsing methods that focused on
identifying the SQL structure and filling slots
with relevant information from the question
.These methods achieve good performance
but struggle with complex queries or domain-
specific terminology. [2][6] [7][8]

2.2 Sequence-to-Sequence Learning

Another approach leverages sequence-to-
sequence (Seq2Seq) models with attention
mechanisms.[5] These models encode the
natural language question and decode the
corresponding SQL query directly. While
effective, they may struggle with order-
sensitive aspects of SQL syntax and require
large amounts of training data.

2.3 Template-Based Methods and
Prompt Engineering

Some studies adopt template-based
approaches where pre-defined SQL templates
are filled with question elements. While
this method can handle complex queries
efficiently, it relies heavily on hand-crafted
templates and may not generalize well to
unseen scenarios. Recent work focuses
on "prompt engineering," which involves

carefully crafting prompts that guide large
language models (LLMs) towards generating
the desired output format. The sqlcoders
model aligns with this approach by utilizing
a comprehensive prompt that incorporates the
database schema alongside the question to
improve its SQL generation capabilities.

The sqglcoders model addresses the limitations
of traditional semantic parsing and Seq2Seq
methods by leveraging the power of LLMs.
Its ability to learn from paired examples
of natural language questions and their
corresponding SQL queries allows it to
capture complex relationships and generate
accurate SQL statements. Additionally, the
focus on prompt engineering ensures that
the model effectively utilizes the provided
database schema information. Compared to
template-based methods, the sqlcoders model
is more flexible and can potentially adapt to
unseen scenarios. However, similar to other
LLM-based approaches, it requires careful
fine-tuning for optimal performance in the
specific domain of healthcare.

3 Methodology

This section delves into the research
methodology employed to investigate
the effectiveness of the sqlcoders model
for automated SQL query generation from
natural language questions in the healthcare
domain. We exploit the model’s capability to
learn intricate relationships between natural
language and database structures, coupled
with the power of prompt engineering, to
achieve this goal.

3.1 Data Preparation
3.1.1 EHR Dataset:

We utilize a well-structured Electronic
Health Records (EHR) dataset, namely
MIMIC-IV dataset, [1] containing various
tables (e.g., patients, medications, diagnoses)
and attributes (e.g., patient ID, diagnosis
code, medication name) relevant to patient
information. This dataset serves as the

423

Tell me the method

of disinfection ina
quarantine?

Text-to-SQL

How many artificial tear

ointment presecription
instances occurred?

SELECT COUNT(*) FROM
prescriptions WHERE
preseriptions.drug = 'artificial tear
ointment'

Figure 1: Natual language question to appropriate sql

underlying data source for generating and
evaluating SQL queries.

3.1.2 Question-SQL Pairs:

We create a collection of question-SQL pairs
specific to the healthcare domain. Each
pair consists of a natural language question
seeking information from the EHR data
and its corresponding valid SQL query that
retrieves the desired answer. Here, we can
introduce an image (Figure 1) to visually
represent a sample question-SQL pair.

3.2 The sqlcoders Model

The core component of our system is
the sqlcoders model, a pre-trained large
language model (LLM) specifically designed
for text-to-SQL translation tasks. Here, we
can delve into the mathematical intuition
behind the model’s functionality, but due
to the potentially complex nature of LLM
architectures, a high-level explanation might
be more suitable for this section.

3.3 Conceptual Framework

The sqlcoders model can be thought of as
a function that maps a natural language
question (q) and a database schema
description (s) to a corresponding SQL query
(y). We can represent this mathematically as:

y:f<Q78)

where f represents the models functionality.
This function involves a complex neural
network architecture, namely transformers
with attention mechanisms. During training,

(3.1)

the model is exposed to numerous paired
examples of questions, schema descriptions,
and their corresponding SQL queries. This
training process allows the model to develop
an internal representation that captures the
intricate relationships between:

* Natural Language Semantics: The
model identifies and encodes the
meaning of words and phrases within the
natural language question. This includes
understanding the intent of the question
(e.g., retrieval, aggregation), the entities
of interest (e.g., patients, medications),
and the relationships between them.

* Database Schema Knowledge: The
model learns to represent and utilize
the information provided in the schema
description. This includes understanding
the structure of the database (tables,
attributes, data types), the relationships
between tables (foreign keys), and
the available data elements relevant to
answering the question.

* SQL. Constructs and Syntax:
Eventually The model attempts to map
the extracted meaning from the question
and schema to the appropriate SQL
constructs. This includes generating
the core components of a query like
SELECT, FROM, WHERE, and JOIN,
as well as populating them with relevant
attributes and conditions based on the
question and schema information.

424

3.4 Prompt Engineering

A crucial aspect of using the sqlcoders model
effectively is prompt engineering. We design
a comprehensive prompt that incorporates the
following elements:

 Task Description: This clarifies the task
as generating an SQL query to answer
the provided question.

* Question Placeholder: This section
is denoted by a placeholder (e.g.,
[QUESTION]question[/QUESTION])

where the actual natural language
question is inserted during query
generation.

* Schema Description: This section
provides a representation of the
database schema, including table
names, attributes, and data types. This
information is essential for the model
to understand the available data and
construct valid SQL queries. We can
consider different ways to represent the
schema, such as tables with columns or a
more natural language-like description.

* Instructions: We can optionally
include instructions for the model,
such as handling situations where data
might be unavailable or specifying
calculations for revenue or cost. These
instructions further guide the model
towards generating accurate and relevant
SQL queries.

* Answer Placeholder: This section (e.g.,
[SQL]) serves as a placeholder where
the model will generate the predicted
SQL query. In case of an unanswerable
question, the model would generate
"null" as the answer.

By effectively combining these elements
within the prompt, we provide context and
guide the sqlcoders model towards generating
accurate and relevant SQL statements that
retrieve the intended information from the
EHR data.

3.5 Query Generation Process

1. Iterating Through Questions: We
iterate through the collection of natural
language questions in the prepared
dataset.

2. Prompt Construction: For each
question, a prompt is constructed by
inserting the question into the designated
placeholder within the pre-defined
prompt template. The constructed
prompt and schema description are fed
to the sqglcoders model.

3. Model Prediction: The model utilizes
its learned knowledge and the provided
context to predict the most likely
sequence of tokens representing a valid
SQL query that answers the question.

4 Results

This section dives deeper into the model’s
performance based on the Reward Scoring
(RS) schemes employed for evaluation.

4.1 Evaluation Criteria

The model’s effectiveness was assessed using
four RS (Reliability Score) schemes, each
representing a different level of penalty for
incorrect predictions:

¢ RS(0): This is the most lenient scenario
where the model receives no penalty
for mistakes (c=0). In the context
of question answering (QAs) alone,
this score essentially reflects execution
accuracy in the standard text-to-SQL
task.

e RS(5): This scenario introduces a
moderate penalty (c=5). A correct
prediction earns a +1 reward, while each
mistake incurs a -5 penalty. In simpler
terms, every five accurate predictions
compensate for one incorrect prediction.

* RS(10): This is considered the primary
evaluation metric (c=10). Each correct
prediction earns a +1, whereas each

425

mistake results in a -10 penalty. This
means ten correct predictions are needed
to outweigh a single incorrect prediction.

* RS(N): This scenario represents the most
stringent evaluation (c=N, where N is the
size of the evaluation data). Here, even
a single mistake can lead to a negative
overall score, even if all other predictions
(N-1) are correct.

4.2 Model Performance

The model’s performance varied significantly
across the different RS schemes:

1. RS(0): 14.14 - This positive score in the
most lenient scenario indicates that the
model can generate some correct SQL
queries. However, the lack of penalty for
mistakes doesn’t provide a clear picture
of its true accuracy.

2. RS(5): -349.61 - The substantial drop in
score compared to RS(0) suggests a high
number of incorrect predictions. The
moderate penalty magnifies these errors,
highlighting the model’s sensitivity to
mistakes.

3. RS10): -713.37 - This significantly
lower score further emphasizes the
model’s shortcomings. With a stricter
penalty, the negative impact of errors
becomes even more pronounced.

4. RS(N): -84885.86 - The negative score
under the most stringent evaluation
highlights severe limitations. Even if
the model generates a large number
of correct queries, a single mistake
can significantly impact the overall
performance.

4.3 Key Findings

The model’s inability to achieve positive
scores under most RS scenarios indicates a
fundamental limitation in generating accurate
SQL queries.

The significant drop in score with increasing
penalty severity demonstrates the model’s

RS Scheme Score
RS(0) (No Penalty) 14.14
RS(5) (Moderate Penalty) -349.61
RS(10) (Main Evaluation | -713.37
Metric)

RS(N) (Strict Penalty) -84885.86

Table 1: Model Performance under Different
Reliability Scoring (RS) Schemes

susceptibility to errors. Even a moderate level
of penalty leads to substantial performance
degradation.

The stark contrast between RS(0) and
other scores emphasizes the importance of
incorporating penalties into model evaluation.
It provides a more realistic assessment of the
model’s ability to handle real-world scenarios
with potential errors.

Moreover, the negative RS(N) score reveals
a lack of robustness. Even a single mistake
can outweigh a large number of correct
predictions, indicating the model’s inability to
consistently generate reliable queries.

5 Conclusion and Future Direction

This investigation evaluated the sqlcoder
model’s performance in generating SQL
queries using various Reliaibilty Scoring
(RS) schemes. Though the model shows
a basic capability to generate some correct
results (evident in the positive RS(0) score),
its overall accuracy and robustness require
significant improvement. .By focusing on
exploration of different model architectures,
enhanced error handling and incorporating
human expertise, future investigations hold
promise for significant advancements in this
domain.

Acknowledgments

We extend our sincere gratitude to the
contributors of the SQLCoder repository
(https://github.com/defog—-ai/
sglcoder). We acknowledge the authors
contributions in this field without which this
paper would not have been possible.

426

https://github.com/defog-ai/sqlcoder
https://github.com/defog-ai/sqlcoder

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Alistair E. W. Johnson, Lucas Bulgarelli, Lu Shen,
Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J. Pollard, Sicheng Hao, Benjamin Moody,
Brian Gow, Li-wei H. Lehman, Leo A. Celi, and
Roger G. Mark. Mimic-iv, a freely accessible
electronic health record dataset. Scientific Data,
10(1):1, 2023.

Dongjun Lee, Jaesik Yoon, Jongyun Song, Sanggil
Lee, and Sungroh Yoon. One-shot learning for text-
to-sql generation, 2019.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu
Kwon, Woncheol Shin, Seongjun Yang, Minjoon
Seo, Jong-Yeup Kim, and Edward Choi. Ehrsql: A
practical text-to-sql benchmark for electronic health
records. 35:15589-15601, 2022.

Gyubok Lee, Sunjun Kweon, Seongsu Bae, and
Edward Choi. Overview of the ehrsql 2024
shared task on reliable text-to-sql modeling on
electronic health records. In Proceedings of the 6th
Clinical Natural Language Processing Workshop,
Mexico City, Mexico, June 2024. Association for
Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V
Le. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger,
editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet:
Generating structured queries from natural language
without reinforcement learning, 2017.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. Typesql: Knowledge-based type-
aware neural text-to-sql generation, 2018.

Victor Zhong, Caiming Xiong, and Richard Socher.
Seq2sql: Generating structured queries from natural
language using reinforcement learning, 2017.

427

