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Abstract

We construct a word complexity lexicon for
medical terms in Japanese. To facilitate com-
munication between medical practitioners and
patients, medical text simplification is being
studied. Medical text simplification is a nat-
ural language processing task that paraphrases
complex technical terms into expressions that
patients can understand. However, in con-
trast to English, where this task is being ac-
tively studied, there are insufficient language
resources in Japanese. As a first step in ad-
vancing research on medical text simplifica-
tion in Japanese, we annotate the 370,000
words from a large-scale medical terminology
lexicon with a five-point scale of complexity
for patients.

1 Introduction

Communication between medical practitioners
and patients is important to facilitate understand-
ing of the diagnosis and agreement on a treat-
ment plan (Ha and Longnecker, 2010). One of
the factors that make communication difficult in
the medical field is the difference in expertise be-
tween medical practitioners and patients. In par-
ticular, since many medical terms are difficult for
patients to understand, medical practitioners are
expected to paraphrase them into simple expres-
sions to make them easier to understand.

To solve this problem, medical text simplifi-
cation (Leroy and Endicott, 2012; Joseph et al.,
2023; Yang et al., 2023) has been studied, mainly
in English. However, there is a lack of available
lexicons and corpora for medical text simplifica-
tion in Japanese. In this study, as a first step
to tackle Japanese medical text simplification, we
construct a complexity lexicon for medical terms.

We first recruited 40 annotators, who were not
medical practitioners via crowdsourcing to survey
word complexity for 10,000 medical terms. As a

Complexity Medical Terminology

1 (Simple) めまい (Dizzy)
2 感電死 (Electrocution)
3 若年性脱毛症 (Premature Alopecia)
4 後天性てんかん (Acquired Epilepsy)
5 (Complex) 掌蹠膿疱症性骨関節炎

(Pustulotic Arthro-Osteitis)

Table 1: Examples of Japanese medical terminology.

result, we found that the number of unknown med-
ical terms decreased with age and that men tended
to be unaware of medical terms related to preg-
nancy and childbirth, among other characteristics
observed for each of the attributes of the annota-
tors. Furthermore, we trained a complexity es-
timation model for medical terms using machine
learning with features such as character types,
word frequencies, and word embeddings, and
achieved higher performance than existing meth-
ods. Finally, as shown in Table 1, we estimated
the word complexity for 370,000 disease names
and symptom expressions from a large-scale med-
ical terminology lexicon in Japanese1 (Ito et al.,
2018). Our word complexity lexicon will be avail-
able2 upon publication of this paper.

2 Related Work

Large-scale word complexity lexicons in English
have been constructed using two approaches. One
is to estimate word complexity using the log ra-
tio of the probability of word occurrence in the
normal and simple corpora (Pavlick and Nenkova,
2015). The other is to manually annotate word
complexity for a subset of the vocabulary and train
a word complexity estimation model using these
annotations (Pavlick and Callison-Burch, 2016;

1https://sociocom.naist.jp/manbyou-dic/
2https://github.com/EhimeNLP/

J-MeDic-Complexity
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Maddela and Xu, 2018). In Japanese, the former
approach cannot be applied because of the unavail-
ability of a large-scale corpus written in simple
language. Therefore, this study takes the latter ap-
proach to construct a word complexity lexicon.

In Japanese, a domain-independent word com-
plexity estimation model has been proposed that
employs character types, word frequencies, and
word embeddings as features (Kajiwara et al.,
2020). For word complexity estimation specific
to the medical domain, a method that takes into
account the number of characters and morphemes
has been proposed (Yamamoto et al., 2019). Sim-
ilar to these previous studies, we train a machine
learning-based word complexity estimator.

3 Word Complexity Annotation

3.1 Crowdsourcing
To train the word complexity estimation model,
we asked non-medical practitioners to annotate
the complexity of medical terms. These medical
terms are 10,000 terms randomly selected from the
top 30,000 terms with the most reliable terminol-
ogy in a large-scale lexicon of disease names in
Japanese1 (Ito et al., 2018).

For diversity of annotators, eight groups were
formed based on a combination of age (20s, 30s,
40s, and 50s) and gender (male and female), with
five annotators per group, for a total of 40 annota-
tors recruited. For the crowdsourcing service, we
used Lancers3 and paid the annotators 1 JPY per
word (1,000 JPY per hour).

The annotators assigned each word the follow-
ing a five-point scale of complexity.

1. I use this term in my daily conversation.

2. I have used this terminology.

3. I can understand what this term means.

4. I have seen or heard this term but do not know
what it means.

5. I do not know what this term means and have
never seen or heard of it.

To improve quality, two levels of filtering were
applied to the annotators. First, we requested a
small annotation of 300 words. We reviewed the
responses and asked only those who had no prob-
lems to annotate the remaining 9,700 words. In

3https://www.lancers.jp
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Figure 1: Distribution of complexity by age and gender.

addition, after all 10,000 words were annotated,
inter-annotator agreement was calculated for each
group of age and gender. Annotators with a
Quadratic Weighted Kappa (QWK) (Cohen, 1968)
of less than 0.3 with someone in the group were
excluded and new annotators were recruited.

3.2 Analysis

We analyze characteristics by age and gender
based on our complexity annotations. Figure 1
shows the distribution of complexity labels by age
and gender. In their 20s and 30s, only about
10% of medical terms are understood. As they
get older, the number of medical terms they don’t
know decreases. However, even in their 50s, more
than 70% of medical terms cannot be understood.

Next, we observe examples of medical terms
that are known above a certain age. All annotators
know “しゃっくり” (hiccups) and “かぜ” (cold)
used in daily conversation, while only annotators
in their 40s or older or 50s know “食道ポリープ”
(esophageal polyp) and “大腿骨骨折” (femur frac-
ture) which tend to increase in patients as they get
older. These imply that our complexity annota-
tions reflect age-specific characteristics.

Finally, we observe examples of medical terms
that certain groups do not know. Young men in
their 30s and younger seem to be unfamiliar with
some of the medical terms related to pregnancy
and childbirth, such as “異常胎位” (abnormal fe-
tal presentation) and “早発卵巣不全” (premature
ovarian failure). These imply that our complexity
annotations reflect gender-specific characteristics.

4 Word Complexity Estimation

We train a machine learning-based word complex-
ity estimation model in addition to the three ba-
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sic features used in the previous study (Yamamoto
et al., 2019), with three proposed features. As in
previous studies (Yamamoto et al., 2019; Kajiwara
et al., 2020), we use the support vector machine
(SVM) model4 for machine learning.5

4.1 Basic Features

Character Types These features represent the
types of characters (hiragana, katakana, kanji,
numbers, and alphabetic characters) that make up
a medical term. It consists of the following 15 di-
mensions: binary features (5 dimensions) that rep-
resent the presence or absence of each character
type, integer features (5 dimensions) that repre-
sent the number of characters for each character
type, and integer features (5 dimensions) that rep-
resent the maximum number of consecutive char-
acters for each character type.

Number of Morphemes This is one-
dimensional integer feature that represents
how many morphemes a medical term is com-
posed of. Medical terms are tokenized with
MeCab6 (IPADIC) (Kudo et al., 2004) and the
number of morphemes is counted.

Character/Morpheme Frequencies These fea-
tures are the frequencies of the letters and mor-
phemes that make up the medical term in the cor-
pus. Six types of frequency information are used
as the features: the total, average, maximum, and
minimum frequencies of morphemes in the medi-
cal term, as well as the frequency of the first mor-
pheme and the frequency of the last morpheme.
Japanese Wikipedia was used as the corpus, and
MeCab was used as the morphological analyzer.
Note that frequencies are used logarithmically, but
as in previous study (Yamamoto et al., 2019),
when the frequency is 0, 0 is used instead of log
0. These features are obtained not only in mor-
pheme units but also in character units, for a total
of a 12-dimensional real number of features.

4We also experimented with neural networks, but the
SVM model achieved higher performance.

5As one of the features, previous study (Yamamoto et al.,
2019) employed word frequencies counted on Twitter. How-
ever, we do not use this feature because changes in Twit-
ter’s API restrictions have made this counting difficult. Fur-
thermore, word frequencies from the Balanced Corpus of
Contemporary Written Japanese (BCCWJ) (Maekawa et al.,
2010) are not used in this study, since previous study (Ya-
mamoto et al., 2019) reported that these word frequencies
were not effective.

6https://taku910.github.io/mecab/

4.2 Proposed Features

PF1: Frequencies on Web Corpus We count
frequencies of characters and morphemes similar
to basic features on the CC-1007 (Conneau et al.,
2020), a large-scale Web corpus. These are 12-
dimensional real number of features, same as the
basic features. Counting frequencies on multiple
corpora is known to contribute to the word com-
plexity estimation (Kajiwara and Komachi, 2018).
However, as mentioned earlier, this study does not
use the Twittr and the BCCWJ corpora used in pre-
vious study (Yamamoto et al., 2019), so a large-
scale Web corpus is employed instead.

PF2: Word Frequencies In contrast to previous
study (Yamamoto et al., 2019), we also count the
frequency of medical terms in word units without
segmentation. This is implemented by extending
MeCab’s morphological analysis with a Japanese
disease lexicon8 (Ito et al., 2018). We count word
frequencies in each of the Wikipedia and CC-100
corpora, logarithmize them, and use them as two-
dimensional real number features.

PF3: Word Embeddings We also employ word
embeddings, which has been used in previous
study (Kajiwara et al., 2020). We use pre-trained
fastText9 (Bojanowski et al., 2017). If a med-
ical term consists of multiple morphemes, each
of those vectors is averaged and used as a 300-
dimensional real number of features.

5 Experiments and Results

We train and evaluate word complexity estimation
models using complexity annotations for 10,000
medical terms.

5.1 Experiments

Dataset We average the complexity labels ob-
tained from 40 annotators and round them to in-
tegers to define a five-point scale of gold com-
plexity labels for 10,000 medical terms. Since this
task is an ordinal classification, we use accuracy
and QWK (Cohen, 1968) as evaluation metrics.
As shown in Table 2, the training and evaluation
dataset were randomly split at a ratio of 9:1 for our
experiments. Since our dataset is unbalanced, we

7https://data.statmt.org/cc-100/
8https://sociocom.naist.jp/

j-meddic-for-mecab/
9https://fasttext.cc/docs/en/crawl-vectors.

html
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Labels 1 2 3 4 5 Total

Train 33 100 341 2,650 5,876 9,000
Test 4 11 38 294 653 1,000

Total 37 111 379 2,944 6,529 10,000

Table 2: Number of terms per complexity.

adjusted the label ratios in both training and eval-
uation datasets to be equal by stratified splitting.10

Model For word complexity estimation
model, a multi-class classification model
was implemented using SVM (RBF kernel)
in scikit-learn (1.3.2)11 (Pedregosa et al.,
2011). The hyperparameters C and gamma
were selected from {1, 5, 10, 50, 100} and
{0.0001, 0.0005, 0.001, 0.05, 0.1}, respectively,
and the combination with the highest QWK was
selected by grid search with a five-fold cross-
validation.12 The features were standardized.13

Comparative Methods We compare the pro-
posed method to two types of baselines. One is
a simple baseline that always outputs the most fre-
quent class, label 5. The other is a baseline that
uses only the basic features of Section 4.1, which
replicates the previous study (Yamamoto et al.,
2019). Our method uses the proposed features of
Section 4.2 in addition to the basic features.

5.2 Results

Table 3 shows the experimental results. Existing
method using only basic features does not perform
well enough, as it is equivalent in accuracy to a
baseline that always outputs the most frequent la-
bels. The proposed method significantly improved
performance over these baselines by 14 points in
accuracy and 28 points in QWK.

To clarify the effectiveness of each of the pro-
posed features, an ablation analysis was performed
to remove one of the proposed features from the
proposed method. The fact that both accuracy and
QWK decrease when any of the features are ex-

10https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.train_test_
split.html

11https://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVC.html

12https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.GridSearchCV.
html

13https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.StandardScaler.
html

Accuracy QWK

Baseline 0.653 -
Basic features 0.653 0.456
Proposed method 0.793 0.732

Proposed method w/o PF1 0.782 0.729
Proposed method w/o PF2 0.785 0.695
Proposed method w/o PF3 0.718 0.612

Only PF1 0.658 0.483
Only PF2 0.612 0.444
Only PF3 0.768 0.660

Table 3: Experimental results of word complexity esti-
mation.

cluded shows that all of our proposed features are
useful. Note that the performance decreases sig-
nificantly when PF3 is excluded, suggesting that
word embeddings are a particularly important fea-
ture. When each of the proposed features was
used alone, PF1 alone outperformed the baselines,
revealing that frequency features on a large-scale
Web corpus are also useful for estimating the com-
plexity of medical terminology.

6 Conclusion

In this study, we trained a word complexity es-
timation model based on word complexity anno-
tations of 10,000 Japanese medical terms by 40
non-medical practitioners. Our word complexity
annotations revealed that even though the number
of unknown medical terms decreases with increas-
ing age, more than 70% of medical terms are diffi-
cult to understand, even for those in their 50s. Ex-
periments on word complexity estimation revealed
that features of word frequencies and word embed-
dings obtained from a large-scale Web corpus are
useful. Finally, we developed a word complexity
estimator for Japanese medical terms that can clas-
sify five levels of complexity with about 80% ac-
curacy, and released a word complexity lexicon2

covering about 370,000 Japanese medical terms.
Although this study focused on disease and

symptom names in Japanese, our future work in-
cludes the application of complexity estimation to
more diverse medical terminology, such as drug
names and names of human body parts. Note that
the “word complexity” in this study was judged by
the patients themselves. Even if the patients them-
selves consider it to be simple, it is possible that
medical misunderstandings may have occurred.
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