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Abstract

Automatic conversion of free-text radiology re-
ports into structured data using Natural Lan-
guage Processing (NLP) techniques is crucial
for analyzing diseases on a large scale. While
effective for tasks in widely spoken languages
like English, generative large language models
(LLMs) typically underperform with less com-
mon languages and can pose potential risks to
patient privacy. Fine-tuning local NLP mod-
els is hindered by the skewed nature of real-
world medical datasets, where rare findings
represent a significant data imbalance. We
introduce SMP-BERT, a novel prompt learn-
ing method that leverages the structured na-
ture of reports to overcome these challenges.
In our studies involving a substantial collec-
tion of Crohn’s disease radiology reports in He-
brew (over 8,000 patients and 10,000 reports),
SMP-BERT greatly surpassed traditional fine-
tuning methods in performance, notably in de-
tecting infrequent conditions (AUC: 0.99 vs
0.94, F1: 0.84 vs 0.34). SMP-BERT empow-
ers more accurate AI diagnostics available for
low-resource languages.

1 Introduction

Medical imaging, particularly Computed Tomogra-
phy (CT) and Magnetic Resonance Imaging (MRI),
emerges as a key element in the management of
complex conditions such as Crohn’s Disease (CD)
(Minordi et al., 2022) serving as a cornerstone for
diagnosis, monitoring, and guiding treatment deci-
sions (Bruining et al., 2018). Large-scale analyses
of imaging data in CD hold promise for advancing
research on the inflammatory burden in the bowel
and developing predictive models of disease pro-
gression (Gu et al., 2024). The critical clinical in-
formation extracted from these images is typically
embedded in free-text radiology reports, presenting
a significant challenge for large-scale analysis.

Figure 1: Comparison of the median AUC and F1-score
of three models (Standard Fine-tuning, SMP-BERT
Zero-Shot, and SMP-BERT + tuning) over all pheno-
types with 10+ positives. Error bars represent the In-
terquartile Range (IQR).

Manually extracting phenotypes and other per-
tinent information from radiology reports is labor-
intensive and requires domain-specific expertise in
radiology. Furthermore, CD exhibits high hetero-
geneity in the disease course, necessitating manual
evaluation of a wide range of potential conditions
(Torres et al., 2017). This task’s time-consuming
nature and impracticality for large-scale applica-
tions pose significant challenges in achieving effi-
cient and accurate data extraction.

Recent attempts to automate this extraction pro-
cess have utilized generative Large Language Mod-
els (LLMs) such as GPT-4, which leverage free-text
instructions instead of requiring annotated data for
training (Liu et al., 2023b). While these models
hold promise, concerns regarding low-resource lan-
guages and data privacy remain a challenge.

Other approaches have involved directly fine-
tuning open-source language models on a manually
labeled subset of the data (Smit et al., 2020; Yan



Figure 2: Example of SMP-BERT Input and Output. A medical radiology report section relevant to a patient’s CD
diagnosis. The section labeled “Findings” serves as the input for the SMP-BERT model, similar to its pre-training
phase.

et al., 2022). However, fine-tuning performance
suffers from significant data imbalance, a common
challenge in medical datasets and particularly in the
case of CD, which features some rare conditions.

To address these limitations, we propose SMP-
BERT, a novel prompt learning method built upon
the “pre-train, prompt, and predict” framework
(Liu et al., 2023a), specifically tailored for the
structured nature of radiology reports. SMP-BERT
leverages a new pre-training task called Section
Matching Prediction (SMP). This task leverages
the structured format of radiology reports, where
key findings reside in some “Impression” section.
By pre-training on this task, SMP-BERT can in-
fer in a zero-shot setting and also further fine-tune
using a relatively small amount of annotated data.
This approach not only mitigates the challenge of
data imbalance but also eliminates the need for
massive training corpora during pre-training. This
advantage makes SMP-BERT readily applicable
to low-resource languages, paving the way for a
more inclusive and efficient method of extracting
information from radiology reports.

2 Related Work

2.1 Radiology Reports Information
Extraction

Various natural language processing approaches
have been used in the past to extract information
and identify findings on radiology reports, from
rule-based methods to deep learning–based lan-
guage models (Smit et al., 2020; Mozayan et al.,
2021; Tejani et al., 2022; Fink et al., 2022). While
deep learning models like ClinicalBERT (Huang
et al., 2019), and RadBERT (Yan et al., 2022) ex-
ploited the use of pre-training on clinical notes and
radiology reports, they still require human anno-
tation and a somewhat balanced dataset for fine-
tuning.

Generative LLMs, such as GPT-4 and Cluade,
may have clear advantages: They don’t require
extra training and can be easily instructed in natural
language to do the task with high performance (Liu
et al., 2023b). Unfortunately, radiology reports are
usually confidential and can’t be sent as a query
through the Internet. Although open-source LLMs
might be the solution (Mukherjee et al., 2023) they
are still focused on English and struggle when it
comes to low-resource languages. Moreover, even
GPT4 gets comparable results to those of fine-tuned
BERT in German (Adams et al., 2023) and an open-
source model Vicuna-13B also gets comparable
results to BERT-based model (Mukherjee et al.,
2023).

2.2 Prompt Learning

Prompt learning (Liu et al., 2023a) is a recent ad-
vancement in Natural Language Processing (NLP)
that offers a powerful alternative to traditional su-
pervised learning methods which rely on extensive
datasets for training a model P (y|x; θ). Utiliz-
ing pre-trained language models (LMs), this ap-
proach employs specific input prompts to extend
the models’ capabilities to tasks beyond their origi-
nal training. It capitalizes on the input text’s prob-
ability P (x; θ), enabling effective use of the com-
prehensive knowledge amassed by LMs during pre-
training. Prompt learning’s benefits include its effi-
cient use of data, versatility across different tasks,
and reduced need for additional extensive training.

Most prompt learning techniques are based
on token-level pre-training tasks such as Left-to-
Right Language Modeling (Radford et al., 2019;
Brown et al., 2020) or Masked Language Modeling
(Schick and Schütze, 2021a,b). However, a handful
of approaches operate at the sentence level, such as
(Wang et al., 2021), which reformulates the classi-
fication task into an entailment task between two
sentences.



NSP-BERT (Sun et al., 2022) is another tech-
nique that employs sentence-level pre-training
through the Next Sentence Prediction (NSP) task.
It uses a structured input format beginning with a
[CLS] token, followed by two sentences, A and B,
separated by a [SEP] token. The training model
balances instances where B genuinely follows A
(IsNext) with cases where B is a random sentence
(NotNext). The NSP component predicts the likeli-
hood of B following A, relying on a specific matrix
Wnsp and the [CLS] token’s hidden vector. For
tasks like sentiment analysis, one might use a sen-
tence such as “The ambiance of the restaurant was
cozy and inviting,” and assess if the sentiment is
positive by juxtaposing it with prompts like “The
sentiment of this sentence is positive.” and “The
sentiment of this sentence is negative.”, compar-
ing their “IsNext” probabilities. This approach
allows labels to correspond with phrases of vary-
ing lengths, crucial for extracting information from
radiology reports, which often contain findings de-
scribed in multiple words.

NSP-BERT is optimized for classifying individ-
ual sentences, as demonstrated in the pre-training
task 3. However, radiology reports consist of multi-
ple sentences, posing a challenge for its application.
Furthermore, NSP-BERT capitalizes on the logi-
cal progression found in narrative texts, where the
sequence of ideas or events aids in making pre-
dictions. Contrarily, radiology reports primarily
present factual details without a narrative flow, di-
minishing the method’s effectiveness in such con-
texts.

3 SMP-BERT Framework

3.1 Section Matching Prediction

To overcome these challenges, we propose the Sec-
tion Matching Prediction (SMP) task, designed
specifically for analyzing radiology reports. These
reports typically contain structured sections, no-
tably “Findings” and “Impression”. The “Findings”
segment provides detailed observations from ra-
diological examinations, while the “Impression”
segment offers crucial observations and their sum-
marized interpretations. SMP, inspired by the Next
Sentence Prediction approach, considers “Findings”
as the first segment and “Impression” as the follow-
up. During training, “Impression” sections are ac-
curately matched with their “Findings” counter-
parts half of the time (Match), and mismatched the
rest (NotMatch).

Let M denote the model trained on our radiol-
ogy reports. The model is trained on the SMP task
where xF and xI represent the findings and impres-
sion sections, respectively. The model’s input takes
the following form:
xinput = [CLS]xFi [SEP]x

I
i [EOS]

Let qM(nk|xFi , xIi ) denotes the output probabil-
ity from the model’s SMP head based on the input,
where n ∈ {Match, NotMatch}. The scores s
are computed by: s = Wsmp(Tanh(Wh[CLS] + b))
where h[CLS] represents the hidden vector of the
special token [CLS] and Wsmp is the SMP head
matrix. The output probability is calculated using
the softmax function:

qM(nk|xFi , xIi ) =
exp s(nk|xFi , xIi )∑
n exp s(n|xFi , xIi )

This training process, optimized by a cross-entropy
loss function, allows the model to discern and as-
sess the logical link between these report sections
effectively. During inference, we can leverage this
learned ability to construct prompts that specifi-
cally target the presence or absence of findings in
our reports.

3.2 Inference with SMP-BERT

In the inference stage, SMP-BERT leverages its
pre-trained understanding of the connection be-
tween “Findings” and “Impression” sections. We
substitute the “Impression” section with a prompt
corresponding to the presence/absence of a clin-
ical finding. By analyzing both the “Findings”
section and the prompt, SMP-BERT assigns a
higher probability to “Match”" when the prompt
aligns with the content of the “Findings” sec-
tion. The input for inference is formulated as:
xinput = [CLS]xFi [SEP]p

j[EOS]. Here, pj rep-
resents the prompt corresponding to the j’th label
(presence/absence of a finding).

The template T combines the report’s findings
section (xFi ) with generalized prompt: T (x) =
[CLS] xF [SEP] There {is/isn’t} {finding}
in the {organ} [EOS]. This approach maps labels
to prompts of varying lengths. A verbalizer func-
tion f : Y → P associates each label yj ∈ Y with
its corresponding prompt pj ∈ P . For example, let
pj = “There is narrowed lumen in the Ileum” and
pk = “There is not narrowed lumen in the Ileum”
then, the prediction for report xi regard-
ing narrowed lumen in the Ileum would be
argmax (qM(Match|xFi , pk), qM(Match|xFi , pj)).



Figure 3: SMP-BERT Methodology - This figure illustrates three pre-training tasks and how they can be used
for text classification through prompt learning. Using MLM (token-level) for inference requires “cloze question”
prompts and a verbalizer function to convert labels into single-token answers (e.g., “positive”/“negative”). Using
NSP (sentence-level) is more simple. While it allows prompts of varying lengths, it’s still limited to single-sentence
classification. Our novel SMP solves it by pre-training on matching whole sections (multiple sentence level). Then,
replace the “Impression” section with a prompt about the presence/absence of a finding.

3.3 SMP-tuning

The SMP-tuning process is visualized in Figure 4
and conducted similarly to the approach of NSP-
tuning from NSP-BERT (Sun et al., 2022).

Generally, this process is a continuation
of the SMP pre-training just given annotated
reports we use the prompts instead of actual
“Impression” sections. Given a sample i with its
reference label y+i , we define a positive instance as
(T (xi, y

+
i ), Match) and for each label y−i that does

not match the reference label, we define negative
instances as {(T (xi, y−i ), NotMatch)}y−i ∈Y \{y+i },
where Y is the set of all possible la-
bels. This constructed data sums up to
(n_samples*n_phenotypes*n_labels) in-
stances and then used to fine-tune the model,
leveraging the initialized weights from the SMP
pre-training phase.

4 Experiments

4.1 Data

This study’s dataset consists of radiology reports
from three medical institutions, spanning 2010 to
2023. This dataset contains 9,683 free-text reports
(one for each visit) for 8093 distinct patients. Since
this dataset is confidential, no study has used it
to assess the performance of any model. Ethics
approval was obtained from the Shaare Zedek Med-
ical Center Institutional Review Board (Helsinki)

committee.
For this study, a subset of 700 reports were manu-

ally annotated for the presence or absence of certain
phenotypes in various organs according to the Con-
sensus Recommendations of the American Gas-
troenterological Association and the Society for
Abdominal Radiology (Bruining et al., 2018). The
annotations focused on the following organs: or-
gans jejunum, ileum, cecum, colon, sigmoid, and
rectum. Specific findings annotated included bowel
wall thickening, hyper-enhancement, pre-stenotic
dilatation, narrowed lumen, restricted diffusion,
and comb sign. Since our radiology reports are
in the form of free text, we segmented them into
“Findings” and “Impression” sections using key-
words like “In summary:".

4.2 Experimental Setup

We divided the dataset into three distinct sets using
a multi-label stratification (Sechidis et al., 2011):
training (300 reports), validation (100 reports), and
test (300 reports) as illustrated in Figure 5. This
stratification was crucial to maintain representative
distributions of labels across the sets, considering
the significant class imbalance present in the ma-
jority of labels.

Our goal was to compare the performance of our
method against standard fine-tuning and assess the
advantages of adding the SMP-tuning step on top
of the zero-shot approach.



Figure 4: SMP-tuning - Fine-tuning SMP-BERT by generating a negative and a positive instance for every annotated
sample and every label. The true label is “There is finding ...” so the negative instance is paired with “There is not
finding ...”

Figure 5: Flowchart of study design - The flowchart outlines the sequence of processing steps from data acquisition to
model evaluation. It visualizes the progression from the initial collection of MRI and CT Hebrew radiology reports,
through the stages of manual annotation and multi-label stratification, culminating in the pre-training/training of the
different models.

The foundation of our models is the Hebrew
RoBERTa (HeRo) model (Shalumov and Haskey,
2023), initially pre-trained on the HeDC4 corpus,
a comprehensive Hebrew language corpus. We
further pre-trained the model on all our radiol-
ogy reports using the Masked Language Modeling
(MLM) task, since there are no other open medical
large corpora for Hebrew.

We conducted experiments using three models:

• Standard Fine-tuning: This model was fine-
tuned directly for multi-label classification for
all phenotypes.

• SMP-BERT Zero-Shot: This model was fur-
ther pre-trained on all radiology reports using
the SMP task. Inference was executed using
the SMP-BERT methodology mentioned in
the Inference section.

• SMP-BERT + tuning: Like the zero-shot
model, this model underwent pre-training
with the SMP task on all radiology reports.
Additionally, it was trained further using SMP-
tuning to optimize its performance.

In addition, we assessed the impact of training
set size: The models were trained on datasets of
varying sizes (50 to 300 reports) to analyze how the
amount of training data affects their performance
and ability to generalize to unseen data. We further
conducted an ablation study to asses the contribu-
tions of MLM and SMP pre-training tasks to the
model’s performance.

Our initial goal was to compare our method with
open-source generative LLMs like Llama 2. How-
ever, currently available open-source LLMs are not
optimized for low-resource languages such as He-
brew, which made the comparison infeasible.

Due to the inherent class imbalance in the
dataset, where most labels have a low number
of positive samples, we primarily evaluated the
models using the F1-score alongside the AUC met-
ric. The F1-score considers both precision and re-
call, making it well-suited for imbalanced datasets.
Additionally, we reported the Interquartile Range
(IQR) along with the scores to provide insight into
the variability and distribution of model perfor-
mance across different labels.



All experiments were conducted using a single
NVIDIA RTX A6000 GPU, with each experiment
taking approximately 1-3 hours.

Hyper-parameters
For SMP-BERT + tuning, we train 6 epochs on the
constructed dataset (300 ∗ 36 ∗ 2 = 21600). For
standard Fine Tuning, we trained 120 epochs on
the original data (300). For both we set learning
rate as 2e-5 with linear decay and the batch size is
24.

5 Results

To account for the inherent class imbalance in our
dataset, we focused our analysis on phenotypes
with at least 10 positive samples, ensuring the reli-
ability of our findings.

Our evaluation across three distinct model con-
figurations highlighted the superior performance
of the SMP-BERT + tuning approach in extracting
phenotypic information from CD radiology reports.
The SMP-BERT + tuning model achieved the high-
est median AUC of 0.99 (IQR 0.98-0.99), outper-
forming the Standard Fine-tuning model’s median
AUC of 0.94 (IQR 0.92-0.96) and the SMP-BERT
Zero-Shot model’s median AUC of 0.88 (IQR 0.81-
0.91). For F1-score evaluations, the SMP-BERT +
tuning model again leads with a median score of
0.84 (IQR 0.76-0.94), which is substantially higher
than the scores of the Standard Fine-tuning model
(0.34, IQR 0.22-0.85) and the SMP-BERT Zero-
Shot model (0.58, IQR 0.55-0.62). A comprehen-
sive breakdown of these results, including F1 and
AUC scores for individual phenotypes, is detailed
in the accompanying Table 1.

Further analysis presented in Figure 7 of model
performance relative to the count of positive in-
stances exhibited the strength of SMP-BERT + tun-
ing, particularly for labels with sparse positives in
the training set. For example, with only 19 positive
cases for "Rectum Bowel Wall Thickening," SMP-
BERT + tuning achieved a significantly higher F1-
score (0.74) compared to the standard model (0.1).
This demonstrates its superior ability to generalize
well from limited data.

However, both models performed well when
dealing with abundant positive instances. For ex-
ample, with 137 positives for "Ileum Bowel Wall
Thickening" (almost half the dataset), both models
achieved good results, with SMP-BERT + tuning
maintaining a decent gap (F1-score 0.97 vs. 0.915
for the standard model).

The graph shown in Figure 7 indicates that the
performance gap between the models decreases
with an increase in the number of positive in-
stances. This suggests that while SMP-BERT +
tuning shines with limited data, it still performs
better when more data is available.

We also analyzed how the size of the training set
impacts model performance. As shown in Figure 6,
the SMP-BERT + tuning model exhibits superior
adaptability. Notably, it achieves good performance
even with limited training data (50-100 samples).
The Standard Fine-tuning model exhibits a trend
of broadening IQRs and decrease of median score.
This could suggests an improving performance for
common phenotypes (like Ileum Bowel Wall Thick-
ening) but potentially decreasing performance for
rarer ones due to increased data imbalance.

Ablation Study

As evidenced by Table 2, both pre-training tasks,
MLM and SMP, significantly contribute to optimiz-
ing the performance of SMP-BERT. Moreover, it
appears that standard fine-tuning benefits from the
inclusion of the SMP task.

6 Discussion

This study examined the efficacy of SMP-BERT, a
novel prompt-learning approach, in extracting de-
tailed information from Hebrew radiology reports
of CD patients. Our results reveal that SMP-BERT,
especially the fine-tuned version (SMP-BERT +
tuning), significantly outperforms the standard fine-
tuning approach, , achieving an improvement of
49% in median F1 score and 5% in median AUC.

Our study highlights the significant improvement
of SMP-BERT + tuning, achieving superior F1-
scores and AUCs compared to standard fine-tuning
across all analyzed phenotypes. Notably, the model
performs well even with a low amount of annotated
data. This improvement is particularly notable for
rarer phenotypes, demonstrating the model’s abil-
ity to handle imbalanced datasets, a common chal-
lenge in the medical domain. This robustness is
crucial for advancing research in CD and other
conditions with diverse clinical presentations.

Furthermore, this study contributes to the grow-
ing exploration of prompt learning for NLP tasks
in healthcare. Unlike traditional fine-tuning ap-
proaches, which require substantial labeled data,
SMP-BERT leverages pre-training on the “Section
Matching Prediction” task and further SMP-tuning



Figure 6: Median F1 scores and IQRs for SMP-BERT
+ tuning and Standard fine-tuning trained on different
training set sizes.

Figure 7: This line chart plots the F1 scores against the
number of positive instances of all phenotypes in the
dataset (300 total).

to achieve exceptional performance even with lim-
ited data. This opens exciting possibilities for ap-
plying prompt learning in scenarios with limited
annotated data, imbalanced data, or low-resource
languages, pushing the boundaries of NLP applica-
tions in healthcare.
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Organ-Finding SMP-BERT
+ tuning

SMP-BERT
Zero-Shot

Standard
Fine-Tuning

prevalence

ileum-bowel wall thickening 0.97/1.0 0.85/0.91 0.92/0.98 44%
ileum-enhancement 0.95/0.99 0.77/0.86 0.86/0.95 36%
ileum-narrowed lumen 0.96/1.0 0.79/0.92 0.85/0.97 19%
ileum-dilatation 0.96/1.0 0.62/0.87 0.86/0.96 18%
ileum-comb sign 0.9/0.99 0.48/0.81 0.84/0.97 15%
ileum-restricted diffusion 0.94/0.99 0.78/0.91 0.9/0.99 16%
colon-bowel wall thickening 0.84/0.98 0.58/0.88 0.62/0.93 12%
colon-enhancement 0.92/0.99 0.57/0.88 0.59/0.95 9%
colon-comb sign 0.86/1.0 0.18/0.74 0.33/0.94 3%
colon-restricted diffusion 0.76/0.98 0.33/0.94 0.29/0.91 3%
rectum-bowel wall thickening 0.74/0.96 0.56/0.89 0.1/0.96 6%
rectum-enhancement 0.76/0.98 0.59/0.78 0.22/0.89 5%
sigmoid-bowel wall thickening 0.75/0.97 0.55/0.77 0.3/0.9 10%
sigmoid-enhancement 0.7/0.98 0.58/0.89 0.34/0.88 7%
sigmoid-comb sign 0.53/0.98 0.31/0.78 0.17/0.93 3%
cecum-bowel wall thickening 0.77/0.98 0.62/0.89 0.12/0.93 5%
cecum-enhancement 0.82/0.99 0.56/0.93 0.0/0.92 3%

Table 1: Performance comparison. Values are F1/AUC scores for each model across different phenotypes. The
Prevalence column indicates the percentage of test samples in which the phenotype is present.

Method MLM SMP F1-Score AUC

SMP-BERT + tuning

0.84 [0.76,0.94] 0.99 [0.98,0.99]
× 0.75 [0.59,0.87] 0.97 [0.96,0.98]

× 0.73 [0.67,0.89] 0.97 [0.95,0.98]
× × 0.42 [0.26,0.57] 0.94 [0.92,0.96]

Standard Fine-tuning

0.55 [0.35,0.86] 0.96 [0.95,0.98]
× 0.34 [0.22,0.85] 0.94 [0.92,0.96]

× 0.15 [0.0,0.72] 0.85 [0.82,0.91]
× × 0.12 [0.0,0.61] 0.83 [0.78,0.88]

Table 2: Ablation Study on Pre-training Tasks.
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