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Abstract

Climate adaptation in the agricultural sector
necessitates tools that equip farmers and farm
advisors with relevant and trustworthy infor-
mation to help increase their resilience to cli-
mate change. We introduce My Climate Ad-
visor, a question-answering (QA) prototype
that synthesises information from different data
sources, such as peer-reviewed scientific liter-
ature and high-quality, industry-relevant grey
literature to generate answers, with references,
to a given user’s question. Our prototype uses
open-source generative models for data privacy
and intellectual property protection, and re-
trieval augmented generation for answer gener-
ation, grounding and provenance. While there
are standard evaluation metrics for QA sys-
tems, no existing evaluation framework suits
our LLM-based QA application in the climate
adaptation domain. We design an evaluation
framework with seven metrics based on the
requirements of the domain experts to judge
the generated answers from 12 different LLM-
based models. Our initial evaluations through a
user study via domain experts show promising
usability results.

1 Introduction

Climate change impacts are seen across the
globe in many different ways, from an increase
in annual mean temperatures to an increase in
the frequency of natural disasters. According
to the United Nations Framework Convention
on Climate Change (Bodansky, 1993), climate
change adaptations are increasingly necessary to
adjust and respond to the impacts of climate
change. These can include technological devel-
opments (Smithers and Blay-Palmer, 2001), be-
havioral changes (Lenzholzer et al., 2020), early
warning systems for extreme events (de Perez et al.,
2022), and improved risk management (Massetti
and Mendelsohn, 2018). In the agricultural sector,
climate adaptation means improving farmers’ ca-

pacity to deal with climate change. This adaptation
can include the development and use of tools to
increase their knowledge of and resilience to cli-
mate change. (Cradock-Henry et al., 2020). Our
study contributes to the goal of making such knowl-
edge accessible. Specifically, our contributions are
two-fold: (1) To make the evolving knowledge of
climate change and adaptation practices accessi-
ble, we have developed a question-answering tool
called My Climate Advisor (MCA). It is a proto-
type online service for farmers and farm advisors
to gain easier access to information from scientific
literature, grey literature and reports, as well as
future climate projection data. Given a farmer or
farm advisor’s question, it responds with informa-
tion synthesised from the literature alongside ref-
erences for further reading; and, (2) We propose a
novel framework for evaluating such a system, with
seven different evaluation criteria, which we share
through an annotation guideline together with our
initial experimental results. Note that the domain
experts carefully designed these criteria.1

The tool will integrate with My Climate View’s
API, allowing access to both historical and pro-
jected climate data within a 100-year window for
a breadth of Representative Concentration Path-
way (RCP) emission scenarios (Van Vuuren et al.,
2011).

2 Background and Related work

Below, we provide a background on climate adap-
tation, relevant tools and research in the climate
change-agriculture space.

Climate Adaptation Climate adaptation is de-
scribed as an adjustment in a social, economic
or ecological setting in response to actual or ex-
pected climate change (Armstrong et al., 2015). In

1This tool is to be made public, however, it is currently
(June 2024) private while further developments and testing are
underway.
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agriculture, farmers may need to adjust their prac-
tices to improve resilience to variations in temper-
ature, precipitation patterns and extreme weather
events (Bate et al., 2019). Farmers may need to
implement new technologies, crop cultivars and
management techniques to ensure food security or
economic security in a sustainable manner (Fosu-
Mensah et al., 2012). To help farmers adapt to
climate change, a goal of My Climate Advisor is to
produce regionally- and commodity-relevant, up-
to-date management insights from the literature.

My Climate View My Climate View (Webb
et al., 2023)2 is a service that provides climate
projections for commodities and regions within
Australia. The service is backed by climate indices
constructed by climate and commodity experts and
climate information from the Australian Bureau
of Meteorology. The service is being continually
updated with a continuing user engagement initia-
tive. We obtain the data specific to the Australian
climate through this service.

NLP for Climate Science Machine learning in
the climate science domain has been prevalent for
years. Many efforts have been dedicated to cli-
mate modelling (Dueben and Bauer, 2018; Bittner
et al., 2023), disaster prediction (Haggag et al.,
2021; Keum et al., 2020), climate change in fi-
nance and commerce (Nguyen et al., 2021), climate
forecasting (Nguyen et al., 2023) and to inform pol-
icy change (Milojevic-Dupont and Creutzig, 2021).
However, natural language processing (NLP) for
climate science is under-explored.

NLP techniques have been utilised as an anal-
ysis tool to provide an overview of climate senti-
ment on social media, (Prasse et al., 2023; Pup-
neja et al., 2023) for events such as the Conference
of the Parties on Climate Change, (Pupneja et al.,
2023) or government policies (Greenwell and John-
son, 2023). Aside from analysis, NLP techniques
helped with the monitoring of climate technology
innovation (Toetzke et al., 2023), strategies for En-
vironmental, Social and Governance (ESG) invest-
ment decision-making (Visalli et al., 2023) and the
filtering of literature related to adaptation or miti-
gation strategies for climate-change-related health
problems (Berrang-Ford et al., 2021).

Annotated datasets are crucial for evaluating
NLP models. The existing datasets include stance
detection for climate change mitigation on social

2https://myclimateview.com.au/

media (Vaid et al., 2022), and global warming in
the news (Luo et al., 2020), claim verification for
climate change (Leippold and Diggelmann, 2020)
and question-answering for both carbon disclosure
and climate risk disclosure (Spokoyny et al., 2023).
Climate-aware or Green Machine Learning has be-
come more relevant over the years (Cowls et al.,
2023). This is also reflected in the NLP commu-
nity, in the form of Green NLP intending to reduce
carbon emissions in the training process of NLP
models by re-using pretrained models (Wolf et al.,
2020) or in the disclosing or tracking of carbon
emissions from NLP models (Strubell et al., 2019;
Hershcovich et al., 2022).

A common approach in NLP is to pre-train
foundation models with a language model objec-
tive for downstream tasks (Devlin et al., 2019).
These models have been used in the form of
Transformer (Vaswani et al., 2017) encoder-based
models such as ClimateBERT (Bingler et al.,
2022), which was pretrained on climate-related
news articles, research abstracts, and corpo-
rate climate reports using domain-adaptive pre-
training (Gururangan et al., 2020), and CliMed-
BERT (Jalalzadeh Fard et al., 2022) which
proposed pre-training on climate science litera-
ture (Berrang-Ford et al., 2021), climate-policy
documents and IPCC reports. However, such ap-
proaches using masked language modeling (Devlin
et al., 2019) are becoming less prevalent in the
question-answering space.

Instead, recently, there has been a shift in the
NLP community in adopting Large Language Mod-
els (LLMs) pretrained on an autoregressive lan-
guage modelling task (Brown et al., 2020) and fine-
tuned with instructions and human preference la-
bels (Ouyang et al., 2022). These have been used
in a chatbot question-answering context (Vaghefi
et al., 2023) to provide climate-related information
from a combination of Intergovernmental Panel on
Climate Change (IPCC) reports and internal LLM
knowledge.

However, absent from the literature is NLP for
climate change-related agriculture or climate adap-
tation management advice for agriculture. To the
best of our knowledge, we present the first study
that collates relevant peer-reviewed literature in the
broad climate-agricultural space to answer ques-
tions on the impacts and risks of climate change
on agriculture and provides tailored adaptation and
management options to farmers and farm advisors.
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3 Methods

My Climate Advisor is currently designed as a
question-answering tool3 with several components
and data sources. We detail our data collection
method and corpora used for the Retrieval Aug-
mented Generation (RAG) and the retrieval algo-
rithm to search over the corpora. For generation,
we detail the Large Language Model (LLM) used
in the study and the decoding algorithms and hy-
perparameters used for answer generation.

3.1 Data Collection and Indexing

Climate adaptation information needs to be trust-
worthy and relevant. We therefore gather in-
formation from reputable sources such as peer-
reviewed published agriculture literature, books,
expert-curated documents and high-quality indus-
try grey literature.

For peer-reviewed agriculture literature, we
gather articles from the S2ORC corpus (Lo et al.,
2020), snapshot on 2023-11-03. The initial size of
the corpus was 12.4 million articles. We filter the
corpus using the ‘fields of study‘ facet provided
by semantic scholar (Kinney et al., 2023). Docu-
ments matching the fields of study ‘Agricultural
and Food Sciences’ and ‘Environmental Science’
are retained, resulting in 1.88 million documents.
We remove documents without body text or a Dig-
ital Object Identifier (DOI), leaving a final set of
1.36 million articles. We use this corpus for general-
purpose agriculture-related questions in our first
index.

From this corpus, we filter the documents found
in the top 100 agriculture journals ranked by impact
score (13,400 documents). However, not all jour-
nals could be found within S2ORC. We supplement
the rest from the Elsevier 4 snapshot 2023-11-03,
leading to a total of 126,000 articles. We use this
corpus for more precise climate adaptation advice,
forming our second index.

For our third index, we use an expert-curated
document containing regionally specific climate
risk information for a wide range of agricultural
commodities grown in Australia. We augment it
with information from books and industry reports
containing information on climate risk and adap-
tation methods relevant to the Australian climate.

3The restrictions on the inputs and outputs for users will
require a thorough investigation. See Appendix D for more
details.

4https://www.elsevier.com/en-au/about

Corpus # Documents # Chunks (C=400) Size (GB)

S2ORC 1.36M 30.6M 124
Top Journals 126K 221K 8.3
Grey Literature 28 1513 0.008

Table 1: Corpus statistics.

This corpus is highly specialised; as such, it is the
smallest of the three indexes, with 28 documents.

For indexing, we chunk all documents using a
semantic chunking parser5 to 400 tokens, roughly
the size of a paragraph, and ensure we split at sen-
sible sentence boundaries. For each chunk, we use
a sentence encoder (Reimers and Gurevych, 2019),
JinaBERT (Günther et al., 2023), to produce con-
textual embeddings which are then normalised and
byte quantised. Further details on the statistics of
the datasets can be found in Table 1.

3.2 Generative Models

Causal LLMs provide a conditional probability dis-
tribution over an output vocabulary, V , given an
input sequence, S = (w1, ..., w2) or preceding con-
text (Jurafsky and Martin, 2009):

P (wn|w1, ..., wn−1), w ∈ V. (1)

To select the word to decode from the probability
distribution at each autoregressive timestep, t, we
use maximum likelihood (greedy decoding) to en-
able reproducibility and reduce hallucinations from
pseudo-randomness (Ippolito et al., 2019; Peng
et al., 2023):

ŵt = argmax
w∈V

P (w|w<t). (2)

When LLMs are fine-tuned with instruc-
tions (Chung et al., 2024), they can generate
responses given a prompt Sp as an assistant rather
than behaving as a text completion language
model (Ouyang et al., 2022).

We use an open-source LLM, in this case, Llama
3-8b (Touvron et al., 2023), which has been in-
struction fine-tuned. Using an open source allows
control over the privatisation of the user’s data,
compliance with API agreements, use of scientific
literature and most importantly, reliability, which
cannot be achieved with proprietary mixture-of-
expert models as they are non-deterministic (Hayes
et al., 2024). Open source allows access to the

5https://crates.io/crates/
text-splitter, (Accessed: 15/5/24)
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weights, which can be beneficial for precise safe-
guarding with control vectors (Zou et al., 2023).
Furthermore, although they have more represen-
tation power, proprietary models tend to be more
resource-heavy, contributing to climate change (Ril-
lig et al., 2023).

3.3 Retrieval Augmented Generation
We use retrieval augmented generation (RAG) to
generate answers using scientific document snip-
pets as context. Using RAG emphasises the prove-
nance of scientific literature as the LLM can be
instructed via system prompt to provide the DOI
of any relevant document snippets used to generate
the answer. We also provide these references in our
user interface for further transparency.

It also uses an API from My Climate
View (Webb et al., 2023) for location and
commodity-specific information, such as notewor-
thy climate factors6.

We use Naive RAG (Gao et al., 2023) to syn-
thesise information from an inverted index with a
Hierarchical Navigable Small World (HNSW) vec-
tor store. For retrieval, we use a hybrid scoring to
capture orthogonal signals from keyword match-
ing and semantic similarity (Wang et al., 2021;
Nguyen et al., 2022). The hybrid score, S, is a
function of an exact-matching (lexical overlap) and
soft-matching (vector embeddings)7 of tokens com-
ponent. The hybrid scorer is used to rank the query
q ∈ Q and document d ∈ D pairs as follows,

S(q, d) = β(α
∑

t∈q∩d
f(t) + (1− α)

q⃗ · d⃗
|⃗q||⃗d|

), (3)

where f(t) is a function of term, which uses
document-level or term-level statistics to produce a
score given an exact match between the query and
document terms, the vector representations, or em-
bedding representations, x⃗ = Enc(x), x ∈ (q, d),
is given by a universal embedding model, Enc. A
soft-match can be computed using cosine similar-
ity between the vector representations. The hyper-
parameter α is a weighted linear combination of
the exact-matching and soft-matching components.
Finally, the entire score is multiplied by an index-
specific weight, β, which denotes the importance
of the index/corpus. We set β = 1 and α = 0.02
in our experiments. The matching components
can be interchanged with any model; currently,

6API access was not used for the evaluation experiments.
7We use the terminology from (Gao et al., 2021).

we use BM25 (Robertson et al., 1994) for our
exact-matching component and Jina BERT (Gün-
ther et al., 2023) for soft-matching.

4 Experiments

To understand how our tool performs, we bench-
mark it against other existing and proprietary meth-
ods. With consultation of climate risk and adapta-
tion experts, we created 15 questions about Aus-
tralian climate change impacts and adaptation (Ap-
pendix ??), which we used to generate responses.
These questions range from general climate change
and adaptation questions to more difficult commod-
ity and region-specific questions.

4.1 Evaluation

Evaluating the capabilities of abstractive QA sys-
tems using standardised benchmarks remains chal-
lenging due to problems such as data contamina-
tion (Sainz et al., 2023), hallucination (Li et al.,
2023) and sycophancy (Sharma et al., 2023). Au-
tomatic metrics for abstractive question answer-
ing such as BERT-score, METEOR, and ROUGE
suffer from lexical insensitivity and negation er-
rors, which distort the semantics of text (Saadany
and Orasan, 2021) and have bias towards machine-
written text (Caglayan et al., 2020) leading to a low
alignment with human annotators (Liu et al., 2023).

We, therefore, rely on two experts, a climate
scientist and an agronomist, to evaluate the sys-
tem responses of our system (with and without
RAG) and proprietary methods: GPT-3.5, GPT-
4, Gemini, Claude, Mistral and the 70B variant
in a single-blind study. For all models, includ-
ing ours, we use the default settings aside from
temperature, which we manually set to 0. Specif-
ically for the Llama models, we use the defaults
from the llama.cpp library8. The Llama 3 models
used in the experiments are all the instruct-tuned
variants from Meta’s official repository. However,
for Mistral (Jiang et al., 2023), we use a variant
that is instruction fine-tuned with OpenHermes
2.5 (Teknium, 2023) and preference aligns using di-
rect preference optimisation (DPO) (Rafailov et al.,
2024) with Argilla’s DPO mix (Argilla, 2024).

Given that the Llama family models do not pro-
vide a default system prompt, we use a customised
system prompt depending on whether or not RAG
was used. Details of these prompts can be found in

8https://github.com/ggerganov/llama.
cpp, (Accessed: 15/5/24)
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Appendix C.
The expert annotators curated the following set

of 15 questions for the Australian climate to which
each system generated responses:

1. What are the ideal pollination conditions for
growing almonds?

2. What can I do to prevent sunburn risk in ap-
ples?

3. What varieties of apples are more tolerant to
sunburn?

4. What regions will support growing cotton in
2070?

5. How does the climate in South West Western
Australia compare from 1970 to now?

6. What will be the greatest climate risk for grow-
ing wheat in the wheatbelt in 2050?

7. Will my rainfall continue to increase in vari-
ability in Northern NSW?

8. In north-east SA, how many days will I likely
experience over 45 degrees?

9. How accurate are climate projections?

10. What is the difference between a heatwave
and a hot day?

11. Will we likely see less cold risk days over the
lambing season in central Tasmania?

12. How will climate change impact cherry pro-
duction in Young?

13. What is the production cycle of potatoes?

14. Are there regions in Australia where agricul-
ture will not be viable in 2050?

15. Will commodity distribution in Australia
change under a future climate?

We used maximum likelihood decoding for each
model by setting the temperature to zero. The an-
notators were given the generated responses with-
out knowing the model used to generate the re-
sponse. They were the literature alongside refer-
ences for further reading; and asked to evaluate the
15 question-response pairs according to the follow-
ing annotation criteria and the Likert scale (Likert,
1932):

1. Context: Does the LLM provide enough
background information to understand its re-
sponse?

1.1. Attempts to give some broader context
to explain the issue.

1.2. Provides an introductory paragraph to
introduce the topic.

1.3. Provides a summary paragraph at the
end.

2. Readability: Is the response of the LLM easy
to read?

2.1. Overall, the response is well-structured
and easy to read.

2.2. Headings and subheadings are well struc-
tured and logical and with appropriate
categories.

2.3. Used dot points appropriately.

3. Language: Does the LLM use fluent industry
terminology?

3.1. Phrasing is appropriate (easy to read, flu-
ent) and not awkward or incorrect.

3.2. Correct use of grammar.
3.3. Consistent with the language used within

the industry.

4. Provenance: Does the LLM provide relevant
citations to its answers?

4.1. Citations are used appropriately with re-
spect to the context.

4.2. The number of citations used is appropri-
ate (not too few, not too many, regarding
what we might expect for the topic).

5. Specificity: Is the information in the response
relevant? For instance, to location, time and
commodity in question?

5.1. Gives information that is specific to a
commodity.

5.2. Gives information specific to the loca-
tion/region in question, where applica-
ble.

5.3. Where there is no information specific
to a location, the LLM admits this (and,
preferably, gives information for the ap-
propriate broader region).

6. Comprehensiveness: Does the LLM respond
with a complete answer?
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6.1. The LLM’s response is comprehensive
and does not just give a partial, incom-
plete answer.

7. Scientific accuracy: Is the information correct,
given the source material?

7.1. The citations used accurately cite their
source material.

7.2. The cited source material provides high-
quality, reliable scientific information.

7.3. No obvious hallucinations.

We then normalise each annotator’s scores be-
fore combining them. This allows us to capture
the overall ranking preference of the systems rather
than an absolute scoring. The raw unnormalised
scores can be found in Appendix Table 3 and 4.

5 Results and Analysis

In the literature, we often see that proprietary gener-
alist models perform better than open-source mod-
els (Zhao et al., 2023; Chiang et al., 2024). How-
ever, we found no clear distinction between pro-
prietary and open-source models (Table 2). The
GPT-4 model responses were preferred most across
all metrics except accuracy and citation. However,
when inspecting the raw scores, the open-source
models, Llama and Mistral, are either tied or were
marginally worse than GPT-4. This is encouraging
as in our application, given the privacy of our data,
we cannot use proprietary models.9

In line with prior work, we found that model
scale was generally indicative of model perfor-
mance (Hoffmann et al., 2022; Caballero et al.,
2023); the Llama3 70b variant outperformed its
8b and 7b variants, for the Claude family, Opus
outperformed Haiku, Gemini 1.5 outperformed 1.0
and GPT-4 outperformed GPT-3.5.

Agreement Inner-annotator agreement using
Kendalls’s Tau (Kendall, 1938) led to 0.319 (moder-
ate) agreement and an overlap of 41.5%. Although
the annotators mutually drafted the evaluation crite-
ria, scientific accuracy was a source of significant
disagreement (Table 1). One annotator penalised
responses that were not self-contained; that is, the
response must contain scientifically robust sources
to back up any claims. The other annotator used
their knowledge to determine the scientific validity

9Raw scores are in Appendix Table 3 & 4.
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Figure 1: The number of disagreements between an-
notators for each criterion for the annotation task. A
disagreement is defined as when the annotators give
different annotations to one another.

of the claims. Noting that verification of climate-
related claims has been established as a low agree-
ment task (Leippold and Diggelmann, 2020).

Another source of disagreement was with speci-
ficity however, upon inspection, many of these dis-
agreements were within one point and can be at-
tributed to human error or bias. We can further back
this claim by looking at the sentiment of scores.
When the labels are binarised, scores higher than 2
become positive, and scores 2 or less become neg-
ative. In this binary setting, Kendall’s Tau agree-
ment is 0.488 (moderate), with an overlap of 76.6%,
which can be interpreted as the annotator’s over-
all sentiments of responses being closely aligned.
When removing accuracy annotations from this cal-
culation, strong agreement is reached at 0.635 with
an overlap of 85.4%, highlighting that the annota-
tor’s sentiments are closely aligned.

System Preference Both annotators preferred
GPT-4 with Llama-3 70B faring well also. The ini-
tial results indicated that the most scientifically ac-
curate model is Claude Opus (one annotator). Both
annotators agreed that ChatGPT (GPT-3.5 turbo)
was the worst model. This is noteworthy given that
it is currently the most popular public-facing chat
model. When analyzing the combined raw distribu-
tion of scores (Figure 3), we note that the highest
performing question-response pair was from the
llama-variants, Llama 3 8b + RAG and Mistral 7b
+ RAG, to questions 6 and 15 respectively from
each annotator (see Appendix B). These responses
were not only scientifically accurate but were stylis-
tically similar to the responses from GPT-4, where
a list of dot points is given, a summary and refer-
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Evaluation Criteria

Model Context Structure Language Specificity Comprehensiveness Accuracy Citation Avg. Score

GPT 4-Turbo 2.00 2.00 2.00 2.00 2.00 1.05 0.00 2.00
Llama 3 70b 1.83 1.83 1.68 1.96 1.61 1.05 0.16 1.85
Claude 3 Opus 1.52 1.56 1.57 0.83 1.52 1.69 0.00 1.69
Llama 3 8b + RAG (Ours) 1.15 0.94 1.29 0.84 1.11 1.04 2.00 1.54
Gemini 1.5 Pro 1.40 1.50 1.57 1.44 1.65 0.92 0.00 1.54
Llama 3 8b 1.59 1.44 1.51 1.60 1.29 0.64 0.04 1.46
Mistral 7b + RAG 1.39 0.89 1.20 0.73 0.93 0.90 1.65 1.39
Claude 3 Haiku 1.20 1.44 1.30 1.01 1.30 0.82 0.00 1.23
Mistral 7b 1.34 1.11 1.34 1.06 0.94 0.61 0.48 1.15
Llama 3 70b + RAG 0.94 0.72 0.94 0.64 0.70 0.80 1.94 1.08
Gemini 1.0 Pro 0.00 0.39 0.23 1.17 1.02 0.31 0.00 0.54
GPT 3.5-Turbo 0.20 0.00 0.36 0.00 0.00 0.00 0.08 0.00

Table 2: Responses generated by 12 models were annotated for climate adaptation-related questions based on seven
criteria (scores of 0 to 4). The values in the tables are from the normalised sum of two annotators. The models are
ranked by average score.

ences at the end. Therefore, we find that there is
potential for our tool to outperform GPT-4 once
aligned with this style of response. Both annotators
agreed on the worst performing question-response
pair, where Gemini 1.0-pro responded to question
3 with a hallucinated Apples do not get sunburned
response. An initial hypothesis could be that the
model was trained with incorrect data. However,
this did not occur with Gemini 1.5-pro, assumed
to be trained with similar data, where the model
responded with the correct strategies to prevent
sunburn risk.

Regarding individual scores, the first annotator
(Table 3) generally preferred the non-RAG models
due to the stylistic issues mentioned earlier. In
contrast, the second annotator (Table 4) preferred
the RAG models due to their scientific accuracy
and provenance.

Question difficulty A hypothesis that can be rea-
sonably drawn is that LLMs should struggle with
questions that are more specific to locations, com-
modities and time periods. However, we did not
see this trend within our annotation. Instead, from
Figure 2, we see that questions requiring more rea-
soning tended to be more difficult (questions 3, 8,
11) for the LLMs over questions more knowledge-
recalled oriented (questions 5, 9, 15). In particular,
question 8 was difficult as many models responded
by telling the user to check the weather forecasts
rather than a concrete response. The GPT-4 fared
the worst for question 13; although the response
was stylistically well-received, it uses generic ter-
minology that is not in line with the industry stan-
dard, opting for the term growth over the more
accurate vegetative growth or tuber bulking. GPT-4

also had a problem with question 8, where it ex-
plained what climate projections were but did not
elaborate on their accuracy.

Some questions were underspecified to test the
applicability to the Australian climate, such as ques-
tion 12. Surprisingly, only four models failed to
recognise that Young was a town in New South
Wales, Australia. Claude’s Opus model performed
the worst on this question, providing a generic re-
sponse about its inability to access climate pro-
jection data and, therefore, unable to answer the
question. A similar answer was provided by Claude
Haiku, but the model still provided an answer after
its generic response. Mistral 7b and Claude Haiku
had a similar issue but with question 7 and ques-
tion 11, respectively, where they provided a generic
response about being unable to predict weather pat-
terns. The RAG models underperformed for spe-
cific questions for which the counterpart model did
not. A detailed results table for each question and
model pair can be found in the Appendix: Table 5.

Ablation on RAG Our ablation analysis reveals
that our in-house RAG models were more scientif-
ically accurate than their counterparts. However,
this was at the expense of the other metrics, such
as readability and background information context.
We suspect the model might be using terminology
based on the academic context and omitting context
as there is an assumption that the user has read the
retrieved literature. Furthermore, annotators men-
tioned that the models included references within
their responses, making them longer and more chal-
lenging to read. However, including references al-
lows users to read further and verify information.
Although our method is scientifically robust, it may
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Figure 2: The normalised sum of the two annotator’s scores for each response generated by 12 models for each
of the 15 questions. Each sub-graph contains the normalised score sum of a particular model plotted against the
question number.

not align with the user, who prefers their responses
to be structured in a particular way. Fine-tuning
the model to include its references at the end of the
answer is needed as part of future work.

The most surprising observation was that the
Llama3 70b RAG variant under-performed. In par-
ticular, the questions that the retriever failed to find
relevant impacted the models the most. In particu-
lar, as Llama3 70b is more aligned with instruction-
following, it suffered the most performance drop
as it refused to answer questions where the an-
swer cannot be found in the documents. This was
seen in question 3, where the documents referred
to sunburn as sunscald and did not contain rele-
vant information related to sunburn risk. A similar
occurrence happened with question 8, where the re-
triever found information about the number of days
over 40 degrees in Adelaide (South Australia), but
the models were either too aligned with instruction-
following (Llama3 70b) or misinterpreted the loca-
tions (Mistral 7b + RAG). Overall, we observe that
the relevance of retrieved documents impacted the
RAG models. However, smaller models were less
inclined to follow instructions and answered using
their internal knowledge rather than our documents
and scored higher.
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Figure 3: The raw sum of two annotators for the 12
models. Model families are grouped by colour.

6 Conclusions

My Climate Advisor is a question-answering tool
designed to provide trustworthy climate change
risk and adaptation information for farmers and
their advisors. Our tool is created on an in-house
Llama 3 with RAG, which synthesises information
from peer-reviewed scientific literature and trust-
worthy grey literature. An evaluation framework
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that outlines criteria designed to differentiate LLM-
generated answers to a set of questions was created
by our domain experts. While our initial evalua-
tions show a gap between our tool and the leading
proprietary systems, the outcome is still encourag-
ing. Our analysis shows that our tool is on par for
scientific accuracy while providing provenance for
explainability.

Our system can be fine-tuned for further im-
provements in the near future. Note that due to
privacy concerns and the financial and environmen-
tal costs of proprietary LLMs, we are limited to
open-source models. We will refine the prompting
strategy to synthesise climate adaptation informa-
tion better without sacrificing readability. Finally,
we plan to expand the input to multimodal data,
including numerical data and graphs, for more ac-
curate representations of climate data including
climate projections.

7 Limitations

Some limitations include the lack of prompt en-
gineering for each model. We used the default
settings, aside from the temperature setting. How-
ever, we believe this is a fair comparison using the
default settings. Our tool is also limited in compar-
ison to proprietary offerings, but given that it will
be continually updated and supported, we believe
that our tool will eventually surpass proprietary
offerings while reaping the benefits of using open-
source models such as mitigating privacy concerns,
protecting intellectual property, integration with
control vectors and reducing carbon emissions.

Another limitation of the study was that the ques-
tions were generated to reflect the sorts of ques-
tions Australian farmers might ask regarding cli-
mate change risk and adaptation (i.e., potential My
Climate View users), however not all questions
were phrased in a way that explicitly indicated their
Australian context. This meant that many of the
LLMs answers contained references to or informa-
tion about global case studies or information about
commodities from a global perspective. This would
have directly impacted their ’specificity’ scores and
skewed the results.

Finally, although the annotation guidelines were
created jointly by the experts when it came to an-
notation, there were some interpretations of the
criteria. We tried to overcome this limitation by
normalising the scores and considering the ranks
of the models rather than the raw scores. Despite

these limitations, the findings of this study should
inform similar studies on the capabilities of propri-
etary models and open-source LLMs for answering
questions in the climate change adaptation domain.

8 Ethical Concerns

We use open-source LLMs to ensure user data pri-
vacy and intellectual property protection. We do
not use cookies or any tracking mechanism for the
users interacting with the My Climate Advisor tool.
Given the climate impact of LLMs, it is critical to
use power-efficient hardware alongside local LLMs
where environmental impacts can be minimised.
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Figure 4: First annotator’s average scores. Model fami-
lies are grouped together by color.

A Interfaces

A.1 My Climate Advisor interface

We present the user interface of our tool, My Cli-
mate Advisor, in Figure 10. The tool is currently
in the early stages of development. The interface’s
main use is to collect feedback from users to im-
prove the retrieval and generation capabilities of
the system.

A.2 Annotation interface

Each annotation was tasked with annotating 180
samples in a single-blind study. We use the La-
bel Studio library and interface (Tkachenko et al.,
2020-2022) hosted locally. Each annotator was al-
lowed to choose when to do their annotations and
which annotations to start from.

B Additional experimental results

The individual scores from the annotators are also
included for completeness. Table 3 & 4 show the in-
dividual raw scores of each annotator, which were
combined and normalised to produce Table 2.

We also include boxplots to show the variance
of each method across the questions in Figures 4
& 5, which were combined to produce Figure 3.

The average scores of individual questions and
corresponding models are given in Table 5, which
provides additional information on Figure 2.
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Evaluation Criteria

Model Context Structure Language Specificity Comprehensiveness Accuracy Citation Avg. Score

GPT 4-Turbo 3.90 3.70 3.70 3.70 3.70 3.80 0.00 3.20
Llama 3 70b 3.70 3.60 3.40 3.70 3.40 3.80 0.00 3.10
Gemini 1.5 Pro 3.40 3.30 3.50 3.40 3.40 3.70 0.00 3.00
Claude 3 Opus 3.50 3.50 3.50 3.10 3.30 3.40 0.00 2.90
Claude 3 Haiku 3.60 3.60 3.50 3.30 3.10 3.30 0.00 2.90
Llama 3 8b 3.40 3.10 3.30 3.50 2.90 3.30 0.00 2.80
Mistral 7b 3.10 2.90 3.20 3.30 2.70 3.30 0.27 2.70
Mistral 7b + RAG 3.20 2.70 2.90 2.80 2.50 3.20 1.10 2.60
Llama 3 8b + RAG 2.60 2.50 2.90 2.90 2.70 3.30 1.10 2.60
Llama 3 70b + RAG 2.70 2.40 2.80 2.80 2.20 3.10 1.10 2.40
Gemini 1.0 Pro 1.70 2.50 2.70 3.20 2.70 2.90 0.00 2.30
GPT 3.5-Turbo 1.90 1.90 2.40 2.80 1.60 2.50 0.00 1.90

Table 3: First annotator’s average scores. In the first column, the models are sorted based on average scores. Bold
numbers indicate the highest in the column.

Evaluation Criteria

Model Context Structure Language Specificity Comprehensiveness Accuracy Citation Avg. Score

GPT 4-Turbo 3.70 3.80 4.00 3.30 3.50 0.13 0.00 2.60
Llama 3 8b + RAG 3.00 3.10 3.90 2.70 2.50 1.10 1.70 2.60
Claude 3 Opus 2.90 3.20 3.70 2.20 2.80 2.60 0.00 2.50
Llama 3 70b 3.50 3.60 3.90 3.20 2.90 0.13 0.27 2.50
Mistral 7b + RAG 2.90 2.80 3.80 2.70 2.30 0.93 1.10 2.40
Llama 3 8b 3.20 3.40 3.80 2.90 2.70 0.07 0.07 2.30
Gemini 1.5 Pro 2.70 3.30 3.70 2.80 3.00 0.00 0.00 2.20
Llama 3 70b + RAG 2.30 2.80 3.60 2.50 2.10 0.87 1.60 2.20
Mistral 7b 2.90 3.00 3.70 2.20 2.10 0.00 0.40 2.00
Claude 3 Haiku 1.90 2.90 3.40 2.10 2.50 0.53 0.00 1.90
Gemini 1.0 Pro 1.00 2.10 2.90 2.70 2.30 0.00 0.00 1.60
GPT 3.5-Turbo 1.30 2.00 3.30 1.10 1.10 0.00 0.13 1.30

Table 4: Second annotator’s average scores. In the first column, the models are sorted based on average scores. Bold
numbers indicate the highest in the column.

C Additional experimental details:
Prompts

We provide additional details on the prompts used
in our study for the open-source variants. As these
models do not have a default system prompt, we in-
cluded two styles of system prompts: one that used
RAG and one that did not. For the Llama3 mod-
els, we used a custom prompt (Appendix Figure 6)
for RAG and another prompt (Appendix Figure 7)
otherwise. For the Mistral model, we used a sim-
ilar prompt (Appendix Figure 8) for RAG and a
standard prompt (Appendix Figure 9) otherwise.

D Restrictions on User Inputs or Outputs

Given the problems with LLMs with regards to
reward hacking and teacher forcing (Zhao et al.,
2023) which can lead to hallucination or misin-
formation. It is prudent to think of the ways that
farmers or their advisors will interact with our tool.

We denote three possible variants of usage that have
to do with the user access or openness to the inputs
(questions) and the outputs (LLM responses):

1. Input Open, Output Open: Chat-style inter-
face. Users can freely input questions to pro-
duce outputs. This requires the most amount
of safeguarding and may be difficult to reli-
ably control in practice.

2. Input Open, Output Closed: The users may
submit questions, however, they will be given
responses that are embedded within a pre-
filled frequently asked questions (FAQ). This
FAQ will be continually updated with LLM
responses but can be checked beforehand.

3. Input Closed, Output Closed: The user can-
not control the inputs, and instead is given a
response by the LLM based on the informa-
tion of location and commodity that has been
prefilled for a related service.
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Figure 5: Second annotator’s average scores. Model
families are grouped together by color.
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Llama3 RAG prompt

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful AI assistant designed to help answer a farmer’s agriculture-related questions. Use the following
documents to help answer the user’s questions.
If you are unsure of your answer, inform the user to check the information with their farm advisor.
<|eot_id|><|start_header_id|>user<|end_header_id|>

What are the ideal pollination conditions for growing almonds? <|eot_id|><|start_header_id|>assistant<|end_header_id|>

Figure 6: Prompt used for Llama3 + RAG.

Llama3 prompt

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful AI assistant designed to help answer a farmer’s agriculture-related questions.
If you are unsure of your answer, inform the user to check the information with their farm advisor.
<|eot_id|><|start_header_id|>user<|end_header_id|>

What are the ideal pollination conditions for growing almonds? <|eot_id|><|start_header_id|>assistant<|end_header_id|>

Figure 7: Prompt used for Llama3.

Mistral RAG prompt

<s><|im_start|>system You are a helpful AI assistant designed to help answer a farmer’s agriculture-related questions.
If you are unsure of your answer, inform the user to check the information with their farm advisor.<|im_end|>
<|im_start|>user What are the ideal pollination conditions for growing almonds?<|im_end|> <|im_start|>assistant

Figure 8: Prompt used for Mistral 7b + RAG.

Mistral prompt

<s><|im_start|>system You are a helpful AI assistant designed to help answer a farmer’s agriculture-related questions.
Use the following documents to help answer the user’s questions.
If you are unsure of your answer, inform the user to check the information with their farm advisor.<|im_end|>
<|im_start|>user What are the ideal pollination conditions for growing almonds?<|im_end|> <|im_start|>assistant

Figure 9: Prompt used for Mistral 7b.
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Figure 10: User interface of the prototype My Climate Advisor. The user inputs their question to the LLM, and the
response and the references used to generate that response are provided.
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Figure 11: Annotation interface used to grade LLM responses to agriculture questions.
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