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Abstract

Climate policy implementation is pivotal in
global efforts to mitigate and adapt to climate
change. In this context, this paper explores the
use of Natural Language Processing (NLP) as a
tool for policy advisors to efficiently track and
assess climate policy and strategies, such as
Nationally Determined Contributions (NDCs).
These documents are essential for monitoring
coherence with the Paris Agreement, yet their
analysis traditionally demands significant la-
bor and time. We demonstrate how to leverage
NLP on existing climate policy databases to
transform this process by structuring informa-
tion extracted from these otherwise unstruc-
tured policy documents and opening avenues
for a more in-depth analysis of national and re-
gional policies. Central to our approach is the
creation of a dataset ’CPo-CD’ for training text
classifiers, based on data provided by the Inter-
national Climate Initiative (IKI) and Climate
Watch (CW). The CPo-CD dataset is utilized
to fine-tune pre-trained Transformer Models
on classifying climate targets, actions, policies,
and plans, along with their sector, mitigation-
adaptation, and greenhouse gas (GHG) compo-
nents. We publish our model and dataset at the
GIZ Hugging Face repository (GIZ, 2024).

1 Introduction

The 2015 UN Climate Change Conference in Paris
produced a landmark agreement whereby all sig-
natories agreed to hold “the increase in the global
average temperature to well below 2 °C above pre-
industrial levels” (UNFCCC, 2016). The means
for effecting this change are left to the countries,
but each signatory is required to report progress ev-
ery 5 years via nationally determined contributions
(NDCs). Signatories are also encouraged to period-
ically communicate long-term strategies (LTS) to
address climate change. The recent COP28 meet-
ing in the UAE was the first global stocktake (GST)
making use of this reporting (UNFCCC, 2023).

As the most frequent mandated reporting mech-
anism under the Paris Agreement, NDCs pro-
vide a consistent basis for tracking each country’s
progress and commitments. Consequently, ana-
lysts utilize these reports to gauge global efforts
towards climate goals. Additionally, the agreement
permits countries to revise their NDCs at any time
(C2ES, 2017). Therefore, frequent review of these
documents is important for holding signatories to
account.

The Paris Agreement and follow-up COPs pre-
scribed no standardized reporting framework. As
a result, there is significant variation in the scope,
format, and coverage of NDCs and LTSs over juris-
diction and reporting periods (UNEP, 2018). This
variation is evident in numerous aspects of the re-
ports, such as the articulation of mitigation contri-
butions and the incorporation of adaptation strate-
gies. Additionally, the documents are often not
intuitively structured, and in some cases volumi-
nous. Combined, these factors pose substantial
challenges to aggregating and analyzing the data,
thereby complicating the assessment of global and
national efforts in addressing climate change.

Natural language processing (NLP) techniques
based on deep learning have become increasingly
viable for producing high-quality automated anal-
yses in recent years, particularly with the advent
of the transformer - and BERT models built upon
its architecture (Vaswani et al., 2017; Devlin et al.,
2019). The accessibility of pre-trained large lan-
guage models via Huggingface has further low-
ered barriers to entry, allowing easy fine-tuning on
various NLP tasks, as well as model deployment.
These tools add value to analytical workflows by
providing analysts with the ability to extract knowl-
edge from unstructured data to a much higher level
than was previously possible.

In this work, we seek to address the challenges
with climate policy document analysis by apply-
ing sequence classification to the unstructured text
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in NDCs and LTSs. Our contribution consists of
three main components. We first build and pub-
lish a training dataset ’CPo-CD’ (Climate Policy
Classification Dataset) derived from an agglomer-
ation of two existing datasets: 1) the NDC Trans-
port Tracker from the Advancing Transport Cli-
mate Strategies project of the International Climate
Initiative (IKI TraCS)1; and 2) the NDC Sector
Data from ClimateWatch.org2. We then fine-tune 2
LLMs on the dataset to classify text according to bi-
nary, multi-class and multi-label domain categories
aligning with the UNFCCC hierarchical taxonomy:
Targets, Actions, Policies and Plans, Mitigation /
Adaptation, Sectors, Target types and Conditional-
ity (see page 28 of Bakkegaard et al. (2015) for a
breakdown of the taxonomy). Finally, we publish
CPo-CD and the fine-tuned models making them
accessible via a web application3 on Huggingface
- allowing analysts to upload and derive ad hoc
insights from climate policy documents.

2 Related Work

The use of Natural Language Processing (NLP)
in document analysis has gained significant mo-
mentum in recent years, marking a transformative
shift from cumbersome manual methods of knowl-
edge discovery using unstructured text data. In
an earlier paper, Grimmer and Stewart (2013) suc-
cinctly points out the benefit in the domain of pol-
icy analysis, where NLP techniques at the time had
leveled the playing field, providing independent re-
searchers and smaller teams of analysts the ability
to perform “systematic analysis of large-scale text
collections without massive funding support”.

Encoder-based masked-language models trained
on large text corpora have demonstrated high
performance on downstream NLP tasks such as
classification since Devlin et al. (2019) intro-
duced the Bidirectional Encoder Representations
from Transformers (BERT). Subsequent variations
have improved on the original architecture. With
RoBERTa, Zhuang et al. (2021) improved perfor-
mance, resulting in higher performance across mul-
tiple NLP tasks. These base models are trained on a
generalized task of next-word prediction and can be
fine-tuned for a domain-specific context and down-
stream tasks such as the classification of targets,

1https://changing-transport.org/
tracker-expert/

2https://www.climatewatchdata.org
3https://huggingface.co/collections/

GIZ/cpu-paper-65e7c7700dd74ca7b008a109

actions, policies, and plans.
Specific challenges to NLP tasks in the domain

of policy analysis are inherent to its lexical prop-
erties - i.e. technical and domain-specific jar-
gon. In domains with similar highly-specialized
lexicons, applications have involved adapted ap-
proaches (Beltagy et al., 2019; Lee et al., 2020;
Chalkidis et al., 2020. Concerning NLP application
in the climate domain, the literature is surprisingly
sparse. Recent work by Gonzalez et al. (2023) pro-
vides tangible evidence of this, finding that in over
76k ACL Anthology4 NLP papers, "hardly [any pa-
pers] address other important goals such as poverty
and climate", with only 50 climate-relevant NLP
papers in the entire corpus since 1980 (cf. 2753
for health). Meanwhile Sietsma et al. (2024) noted
54 papers in the literature that either used or sub-
stantially discussed the use of NLP for climate
adaptation specifically.

However some recent efforts are quite prominent.
Concerning technical approaches, the field is quite
active, with approaches using some combination of
encoder/decoder architectures and pre-trained mod-
els primarily. Peña et al. (2023) present a system
for multi-class classification of policy documents
using RoBERTa coupled with an SVM classifier.
Their results demonstrate that the combination with
SVM classifiers can achieve high accuracy (over
85%) over 30 classes, even in under-represented
categories.

Other recent work in the climate domain involves
domain-adaptive pre-training with RoBERTa on
climate-relevant corpora, before fine-tuning on
downstream tasks including text classification to
create ClimateBERT (Webersinke et al., 2022; Schi-
manski et al., 2023b). Training on a dataset of
climate-related literature (i.e. news reports, news,
corporate ESG disclosures, and scientific abstracts)
resulted in ClimateBERT outperforming a base-
DistilROBERTA model on cross-entropy loss and
F1 (Webersinke et al., 2022). Building on Climate-
BERT, Schimanski et al. (2023a) recently released
ClimateBERT-NetZero which fine-tunes Climate-
BERT to classify net zero and emissions reduction
targets in corporate communications using a dataset
of 3.5K expert-annotated text samples. Classi-
fication using ClimateBERT-NetZero resulted in
marginally better performance than larger BERT
base models.

Juhasz et al. (2024) showcases an approach

4https://aclanthology.org
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for extracting mentions of net zero and other
targets from national laws and policies. Build-
ing on ClimateBert and manually annotated data
they fine-tune a classification model. Our work
closely aligns with Schimanski et al. (2023a) and
Juhasz et al. (2024) while leveraging existing pol-
icy databases to create a comprehensive training
dataset and an array of classifiers corresponding to
multiple UNFCCC mitigation contribution types.

3 Data

The creation of the training dataset ’CPo-CD’ was
the most extensive task in this project and is the
main contribution alongside the models. For this
reason, we describe the creation in detail below.

CPo-CD is comprised of labeled text passages
extracted from policy documents (NDCs and LTS)
with accompanying labels. The data is sourced
originally from 2 climate policy datasets: Climate-
Watch NDC Sector data5 (CW) and IKI TraCS
Climate Strategies for Transport Tracker6 (IKI).
Both datasets include text extracts from NDC/LTS
documents labeled by human annotators (domain
experts), as well as the accompanying climate cate-
gory labels in the form of metadata. However, the
labeled text from both sources is not natively use-
ful for text classification. The length of the labeled
text differs from 2 up to 250 words. While some
text passages are very focused and limited to short
phrases with no peripheral context and often miss-
ing information relevant to determining all climate
category labels; other contain more than one item
of interest but are only annotated for one. Addition-
ally, the labeled text passages are often condensed,
summarized versions of the original text and can
appear multiple times in the document in varying
contexts. Therefore, we identify and retrieve the
original source text from the policy documents.

A sample of a short text observation is taken
from the Indian NDC "75 GW by 2022" which
comes with additional meta-information: sectoral
mitigation policy and energy sector. From the origi-
nal NDC document, we extend the text so the meta-
data relevant context is included: "Green Genera-
tion for Clean Energy Secure India: more than 5
times increase in Renewable Capacity from 35 GW
(up to March 2015) to 175 GW by 2022. National
Solar Mission scaled up five-fold from 20 GW to

5https://www.climatewatchdata.org
6https://changing-transport.org/

tracker-expert/

100 GW by 2022. Kochi Airport is the World’s first
airport to fully run on solar power." This paragraph
now includes a second sectoral policy information,
the upscaling of the National Solar Mission. This
missing metadata will be later added by grouping
by paragraph (step 5). The whole process is de-
scribed as follows:

Step 1: Text Processing: The required infor-
mation is distributed across different files for both
datasets. In the first step, we link the text passages
with the metadata labels. For CW we utilize the
Sector file from the ‘NDC Content’ dataset, tak-
ing the text passages and associated sector labels.
We then merge with fields from the Metadata file,
which allows us to add additional labels (e.g. Tar-
get, Actions, Plans, etc.) in subsequent steps. In
some cases, the text has conjoined sequences be-
tween a separator character. In such cases, each
unique sequence is broken out into its own sample.

The IKI data is structured much more simply -
consisting of tables for categories such as Target,
Netzero, Mitigation, and Adaptation. In this case,
we join all tables together and retain the table name
as the label.

We next combine both the CW and IKI data. A
basic cleaning process is applied to the dataset, in-
volving the removal of duplicates and erroneous
samples. During Step 1, we also produce text
length statistics for each country represented in
the dataset. This object is used to calibrate the split
strategy in Step 2 for the source text.

Step 2: Document Processing: The text extrac-
tions from both CW and IKI are narrowly focused
and require expansion using the source text to make
them usable for text classification. We collect the
original NDC documents from the CW-associated
WRI repository repo7 in HTML format. For fur-
ther documents from the IKI dataset, we source
the original PDF versions of the documents from
the UNFCCC website8 using the document names
provided in the IKI dataset. After downloading, the
IKI pdf files are processed into raw text. Both sets
of source documents are then chunked into 60, 85,
and 150-word sequences which respect sentence
boundaries and include an overlap to ensure the la-
beled text passages from the datasets are fully cov-
ered. The inclusion of multiple sequence lengths
allows for greater versatility in downstream NLP
tasks (in this case, text classification). The arbi-

7https://github.com/wri/ndc
8https://unfccc.int/sites/default/

files/NDC
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trary choice of the sequence lengths reflects our
informed estimate of the lower and higher limits of
utility, based on knowledge of the dataset.

Step 3: Secondary Label Processing and Har-
monization: Various metadata accompanies the
text passages for both CW and IKI that can be used
to apply further labels to the text. Curating and
harmonizing these metadata so that they can serve
as useful labels is complex as both source datasets
utilize slightly different methodologies.

In the CW dataset, we take the broad "Overview-
Category" to define Adaptation and Mitigation re-
lated text. We further use a subcategory "Question-
Text" to define text relating to Policies, Targets, Ac-
tions and Plans (TAPP), as well as Conditional and
Unconditional commitments. A full mapping of
CW QuestionText subcategories to TAPP is avail-
able on the CW website9.

The structure of the IKI dataset is less exten-
sive and is processed to include labels using the
associated tab from the original Excel file. This in-
cludes 3 categories: Target, Adaptation-Mitigation,
and Netzero. An additional 2 categories are de-
fined from the "Parameter" subcategories within
the Target spreadsheet: GHG and Conditionality.
The IKI data presents a specific sectoral focus (i.e.
transport) and differing nomenclature compared to
Climate Watch. IKI also contains no (mitigation)
Actions, nor the daughter categories of Policies and
Plans, as found in CW. Therefore these labels are
not represented in samples sourced from IKI.

Step 4: Context Extraction: We now perform
matching of the text passages from IKI and CW
with the source policy documents to build out a
larger text window so that the text can be used to
train a text classifier. As the text passages from
CW and IKI usually only partially correspond to
the original text and can appear multiple times, we
retrieve the top 3 paragraphs from the processed
policy documents using a BM25Okapi10 retriever.
In case of language mismatch between the text
and source NDC documents (French and Spanish),
translated paragraphs are used. We further use
fuzzy matching of retrieved candidate passages as
a quality check to ensure the relevant information is
included and finalize the ’context’ for each labeled

9https://wri-sites.s3.us-east-1.
amazonaws.com/climatewatch.org/www.
climatewatch.org/climate-watch/wri_
metadata/NDC_methodology.pdf

10https://en.wikipedia.org/wiki/Okapi_
BM25

text sample. This step not only ensures an accurate
match for the labeled text but also provides a large
number of negative samples where retrieved candi-
dates do not match the relevant information from
the CW/IKI datasets.

Step 5: Final dataset In the last step, we merge
the matched text candidates with the main dataset.
We then group by the final text field and remove
duplicates. The dataset now contains a text field in-
cluding full context, rather than short extracts -and
multiple labels. Additionally, the dataset contains
negative samples of unlabeled text taken from the
source documents. These samples are labeled as
’None’.

The IKI dataset exhibits sub-categorization by
target (GHG Target, Netzero Target, Non-GHG
Target), however very few samples are available
for these sub-categories. We therefore augment the
dataset for these categories via manual annotation
to increase positive samples and collect negative
samples.

The final CPo-CD dataset contains 13,728 sam-
ples for each sequence length, split into 12,538
training and 1,190 test samples.
CPo-CD Dataset: Structure

CPo-CD is created to train classifiers (multilabel
or binary), which allow policy documents to be
analyzed as per the schema presented in Figure 1.

Figure 1: Classification Schema

CPo-CD Dataset: Characterisation of Label
Classes

1) The first four principal categories are Target,
Action, Policy, and Plan (TAPP). The data has a
multilabel structure, a paragraph can entail a com-
bination of TAPP or none of them. The training
and test data for the TAPP categories in multilabel
setting is presented in Table 1.

Dataset Target Action Policy Plans
Train 2,911 5,416 1,396 2,140
Test 256 513 122 198

Table 1: Number of positive samples for TAPP labels
split by train and test

2) When a paragraph discusses a ’Target’, it is
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further assessed by the ’Greenhouse Gas (GHG)’
classifier to determine whether it specifies objec-
tives relating to GHG emissions. In the CPo-CD
dataset structure, a ’Non-GHG’ label signifies a
’Target’ relating to energy efficiency, road build-
ing, etc (in keeping with the UNFCCC taxonomy).
Such labels should not be inferred as negative ex-
amples of GHG. Indeed, a paragraph can be labeled
true for both categories. The number of samples
for GHG targets is presented in Table 2.

Dataset Netzero GHG Non-GHG
Train 120 440 259
Test 11 49 30

Table 2: Number of positive samples which include a
GHG component

3) If a paragraph encompasses elements of a
’Target’ or an ’Action’, it requires a ’Conditional-
ity’ assessment to ascertain whether the described
commitments are unconditional or dependent on
external support or circumstances. Table 3 displays
the number of conditionality samples.

An "unconditional contribution" refers to actions
that countries can take independently, using their
resources and abilities, without relying on any ex-
ternal conditions. On the other hand, a "conditional
contribution" describes the efforts countries are
willing to make if they receive international sup-
port or if certain criteria are fulfilled. Labeling
conditionality is especially complex because condi-
tional and unconditional statements often co-occur
in the same paragraph, reference a group of tar-
gets and actions, or appear outside of the paragraph
context.

Dataset Conditional Unconditional
Train 1,986 1,312
Test 192 136

Table 3: Number of positive samples with information
on conditionality

3) Regardless of the TAPP category, every para-
graph can be assessed to identify the economic
or social sectors addressed, as well as the ’Adap-
tation/Mitigation’ aspect. Adaptation/Mitigation
discerns whether the content pertains to adaptive
strategies or mitigation efforts against environmen-
tal challenges.

The sector labels encompass 16 different sec-
tors which are distributed as follows (Train, Test):

Agriculture: (2235,200); Buildings: (169,18);
Coastal Zone: (698,71); Cross-Cutting Area:
(1853,180); Disaster Risk Management (DRM):
(814,85); Economy-wide: (873,85); Education:
(180,23); Energy: (2847,254); Environment:
(905,91); Health: (662,68); Industries: (419,41);
LULUCF/Forestry: (1861,193); Social Develop-
ment: (507,56); Tourism: (192,28); Transport:
(1173,107); Urban: (558,51); Waste: (714,59); Wa-
ter: (1207,106)

The number of Adaptation and Mitigation is pre-
sented in Table 4.

Dataset Mitigation Adaptation
Train 6,659 5,439
Test 604 533

Table 4: Number of positive samples labeled as Adapta-
tion and Mitigation

4 Methodology

To address the challenges of efficiently analyzing
voluminous and complex climate policy documents,
we adopt two distinct but complementary NLP
methodologies: fine-tuning a generic LLM embed-
ding for classification tasks (Xiao et al., 2023), and
further fine-tuning a pre-trained domain-specific
LLM, ClimateBERT Webersinke et al. (2022).

In case of a sparsity of positive examples, we
fine-tune using SetFit (Tunstall et al., 2022). Set-
Fit represents an efficient few-shot learning frame-
work based on Sentence Transformers (Reimers
and Gurevych, 2019) which has proven to achieve
high accuracy with a minimal number of samples.
Its process involves first fine-tuning a Sentence
Transformer embedding model on a set of labeled
examples through contrastive learning. Following
this, a classification head, in our case logistic re-
gression model, was trained on these embeddings
to classify new unseen data.

Our choice of the ’BAAI/bge-base-en-v1.5’
(Xiao et al., 2023) - a recent 109M parameter model
provided by the Beijing Academy of Artificial In-
telligence - as the foundation for the generic LLM
was based on its superior performance in classi-
fication tasks and ranking on the Hugging Face
leaderboard.

For comparison purposes, we made use of Cli-
mateBERT, a climate domain-specific adaptation
of the DistilRoBERTa, 82.4M params (Sanh et al.,
2020) transformer model. ClimateBERT was pre-
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trained on a large corpus of climate-related texts,
imbuing it with a nuanced understanding of cli-
mate discourse. This makes it particularly suitable
for classifying texts based on climate policy con-
tent. Our methodology involves further fine-tuning
ClimateBERT on CPo-CD, leveraging its domain-
specific pre-training to enhance classification per-
formance. This approach is validated by its demon-
strated superiority in net-zero classification tasks
over larger models, including GPT-3.5-turbo, as re-
ported by recent studies Schimanski et al. (2023a).

Given the prevalence of imbalanced classes, we
chose the F1 score as the primary metric to as-
sess model performance. The F1 score, a har-
monic mean of precision and recall, provides a
more comprehensive measure of a model’s accu-
racy, especially in scenarios where class distribu-
tion is skewed. To address the inherent class im-
balances within our dataset, we employed stratified
sampling in the train-test split. This approach en-
sures that the class proportions are mirrored in the
test set. Additionally, we disclose the count of test
samples (support) which account for 10% of the
data. Furthermore, to overcome class imbalance in
a multi-label setting, we have used positive class
weights in the loss function.

The paragraphs extracted from the NDCs and
LTS climate policies often cover several topics,
such as different climate actions or targets. Ac-
knowledging this, we train our models in a multi-
label setup, that can recognize multiple topics in
one paragraph. This method is more complex than
the simpler multi-class classification where one
one label per paragraph is attached. The additional
complexity usually results in lower performance
scores. However, multi-label is a better match for
this use case, ensuring we accurately capture the
wide range of climate policy discussions within a
single paragraph.

Carbon Emissions Monitoring
To monitor and publish the carbon emissions

associated with running our models, we integrate
CodeCarbon, a lightweight software tool (Schmidt
et al., 2024). CodeCarbon estimates CO2 emissions
based on the electricity consumption of computing
resources and the carbon intensity of the region
where the computations are performed.

This transparency aligns with our commitment to
environmentally responsible research, encouraging
us and others in the field to consider the carbon
footprint of AI and machine learning projects

5 Results

Following the described classification schema, the
categorical labels ’Target’, ’Action’, ’Policy’, and
’Plans’ identify the relevant content from the policy
text.

Model Label F1 Score Support
bge-base-en Target 0.84 256
ClimateBert Target 0.81 256
bge-base-en Action 0.85 513
ClimateBert Action 0.82 513
bge-base-en Policy 0.76 122
ClimateBert Policy 0.76 122
bge-base-en Plan 0.65 198
ClimateBert Plan 0.63 198

Table 5: Comaparison of model performance for bge-
base-en-v1.5 (BAAI) and Climate Bert fine-tuned on
TAPP paragraphs

The results (ref. Table 5) show that both the
generic LLM embedder (bge-base-en-v1.5) and
ClimateBert models performed relatively well on
the task of classifying TAPP within climate pol-
icy documents. Specifically, both models achieved
their highest F1 Scores on the ’Target’ and ’Action’
labels, followed by ’Policy’, and ’Plan’. Where
the least performing class ’Plan’ is the one with
the fewest samples and least concrete definition.
Interestingly, a classifier based on BGE Embed-
dings overall outperforms ClimateBert even in this
data-rich scenario. In an initial comparison, Cli-
mateBert was evaluated against a fine-tuned MP-
NET model, which is comparable in both age and
size to BERT. In this comparison, ClimateBert
demonstrated superior performance, suggesting
that domain-specific adaptation does enhance per-
formance. However, it appears that advancements
in model size and technical capabilities since Cli-
mateBert was pre-trained, may offer even greater
benefits. As this pattern is repeated in the follow-
ing classifications, we only report the generic fine-
tuned model results specifically bge-base-en-v1.5
(LLM embedder).

Identified targets are classified for their GHG
components in the next step (ref. Table 6).

Table 7 illustrates results for the conditionality
classifier. The relatively poor performance reflects
the challenges relevant to this category (ref. Sec-
tion 7).

The sector classification results once again high-
light the constraints imposed by the dataset, reveal-
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Label F1 Score Support
GHG 0.91 49
NetZero 0.92 11
Non GHG 0.92 30

Table 6: Performance of bge-base-en-v1.5 fine-tuned
using SetFit on greenhouse gas (GHG) paragraphs

Label F1 Score Support
Conditional 0.60 192
Unconditional 0.62 136

Table 7: Performance of bge-base-en-v1.5 fine-tuned on
conditional and unconditional paragraphs

ing variable performance across different classes
(ref. Table 8). Generally, a clearer distinction be-
tween classes and more definitive training data cor-
relates with improved performance. In particular,
classes such as ’cross-cutting’ and ’economy-wide’
proved challenging to differentiate. Despite these
challenges, our evaluation reveals a commendable
overall F1 score of 0.76, indicating a favorable out-
come under the circumstances.

Label F1 Score Support
Agriculture 0.79 200
Buildings 0.65 18
Coastal Zone 0.64 71
Cross-Cutting 0.63 180
DRM 0.67 85
Economy-wide 0.48 85
Education 0.65 23
Energy 0.81 254
Environment 0.63 91
Health 0.77 68
Industries 0.74 41
LULUCF/Forestry 0.78 193
Social Develop 0.71 56
Tourism 0.60 28
Transport 0.77 107
Urban 0.48 51
Waste 0.76 59
Water 0.68 106

Table 8: Performance of bge-base-en-v1.5 fine-tuned on
sectoral information

Differentiation of TAPP paragraphs between mit-
igation and adaptation is handled well by the clas-
sifier as illustrated by Table 9.

Label F1 Score Support
Mitigation 0.92 604
Adaptation 0.92 533

Table 9: Performance of bge-base-en-v1.5 model fine-
tuned on mitigation and adaptation paragraphs

Model Label CO2

bge-base-en-v1.5 TAPP 71.45
ClimateBert TAPP 23.35
bge-base-en-v1.5 GHG 26.8
bge-base-en-v1.5 Conditional 28.45
bge-base-en-v1.5 Sector 58.19
bge-base-en-v1.5 Adaptation 40.45

Table 10: Comparison of CO2 consumption in grams
during the training process

Human Annotation
To assess the dataset creation process and en-

hance the robustness of our evaluation, we man-
ually annotated certain paragraphs with two inde-
pendent human reviewers. This provides a realistic
benchmark on model performance when it comes
to the analysis and classification of climate policy
documents. The results are presented below (ref.
Table 11).

Label Agreement Score (%)
Target 90
Action 72
Policy 89
Plans 77
NetZero Target 98
GHG Target 96
Non GHG Target 85
Adaptation 97
Mitigation 92

Table 11: Agreement Score between two human annota-
tors on 325 sampled paragraphs

The ’Target’ category surfaced as the most con-
sistently identified element, as evidenced by a sub-
stantial 90% concurrence among human annotators.
The ’Policy’ category also demonstrated notable
clarity, with 89% agreement. Conversely, the ’Ac-
tion’ and ’Plans’ categories showcased less than
80% agreement among manual annotators, reveal-
ing a relative subjectivity and interpretative flexi-
bility within these classifications.

Carbon Emissions Results
In our analysis of model efficiency, we observe
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that the larger size of the BGE embedding base also
results in higher emissions for fine-tuning of the
TAPP classifier with 71.45 g compared to 23.35 g
of CO2 for ClimateBert. ClimateBert took 15.79
Kg of CO2 emissions for pre-training, indicating
that our fine-tuning of the ClimateBert base model
for classification tasks accounts for less than 1%
compared to the domain adaptation.

6 Conclusion

In conclusion, this paper explores the application
of Natural Language Processing (NLP) techniques
to enhance the analysis and classification of cli-
mate policy documents, with a focus on Nationally
Determined Contributions (NDCs) and Long-term
Strategies (LTS). We show how existing policy
databases can be used to create a machine-learning-
ready dataset (CPo-CD) and fine-tune pre-trained
transformer models for policy analysis. We have
developed a methodology that significantly stream-
lines the process of structuring information from
these critical documents. The use of our models
has been shown to markedly reduce the time re-
quired for policy analysis, enhance the effective-
ness of policy examination, and enable the inclu-
sion of a broader array of documents in the analyti-
cal process. Our approach facilitates the efficient
assessment of climate targets, actions, policies, and
plans (TAPP), along with their associated mitiga-
tion/adaptation, greenhouse gas (GHG), and sector
components. By achieving noteworthy accuracy in
TAPP, GHG, adaptation/mitigation as well as use-
ful accuracy in sector classification, our research
underscores the potential of NLP to offer mean-
ingful insights into the alignment of international
climate commitments with the Paris Agreement’s
objectives and support evidence-based policymak-
ing. The release of our dataset ’CPo-CD’ and
model contributions marks a significant step for-
ward towards advancing the capacity to monitor
and analyze international climate commitments at
scale, enhancing transparency, accountability, and
informed decision-making in climate policy evalu-
ation.

7 Limitations

Our research encountered several limitations, with
the most significant challenges stemming from the
nature of the original data utilized for analysis.
These limitations underscore the complexities in-
herent to the standardization of climate policy anal-

ysis and data extraction, highlighting the need for
enhanced data preparation and methodological re-
finement.

In addressing the limitations of our methodol-
ogy, a critical point of discussion is the absence of
a standardized approach to the analysis of climate
policies. The heterogeneity in taxonomies and clas-
sification schemas across various databases and
initiatives presents a substantial challenge. In our
research, we navigated this complexity by adapt-
ing existing standards from the International Cli-
mate Initiative (IKI) and Climate Watch (CW) to
establish a coherent framework for our analysis.
This adaptation, while necessary for the integrity
and applicability of our work, inherently limits the
scalability of our methodology to other labels and
databases.

The diversity in policy document formats and
the varied terminologies used across different geo-
graphical and institutional contexts mean that any
attempt at standardization must account for a wide
range of variables. Consequently, our approach,
though robust within the confines of the standards
we adopted, may not seamlessly apply to analyses
that rely on different sets of labels or databases.
This limitation underscores a broader challenge
in the field of climate policy analysis: the need
for a universally accepted framework that can ac-
commodate the nuances of global climate policy
documentation. The reliance on IKI and CW stan-
dards, while enabling a structured and systematic
analysis within this study, suggests that further ef-
forts are necessary to enhance the adaptability and
scalability of NLP methodologies in this domain.

Another significant challenge is the inherent
complexity and subjectivity of classifying climate
policy documents, as evidenced by the discrepan-
cies in annotation. Our methodology faced lim-
itations due to the non-distinct nature of classifi-
cation categories and the variability in annotator
interpretations. Even with our manual annotation
benchmarking (ref. Section 5), an exact match was
attained in as little as 72% of cases for some cat-
egories, highlighting the difficulties in achieving
consistent and accurate data classification even for
human annotators. This issue not only underscores
the challenges of subjective interpretation but also
signals a broader problem in harmonizing classifi-
cation systems across diverse data sources.

A further limitation we encountered during the
creation of machine-learning-ready training data
was the fidelity of annotated context to the original

8



source documents. The text excerpts for targets,
actions, policies, and plans in existing databases
varied greatly in length — from single words to
multiple sentences — and were often not direct
copies but rather concatenated snippets or sum-
maries. This variance presented significant chal-
lenges in the matching process to the original con-
text. The statistical matching introduced potential
sources of error. To ensure robustness, we decided
on a high matching threshold, which resulted in a
substantial loss of samples. Even still, some areas
of the training data potentially suffer from quality
issues. Consequently, although the large existing
databases represented a valuable resource, we were
only able to partially utilize them for CPo-CD. This
experience underscores the need for - and poten-
tial benefits of - incorporating standardized criteria,
with a focus on automation, into the dataset cre-
ation process.

A notable limitation of our approach is its fo-
cus on English-language documents and specific
types, primarily NDCs and LTS. This restricts our
analysis to a narrow linguistic range and does not
yet cover the diversity of global climate policies
documented in other languages. Additionally, by
concentrating on NDCs and LTS, we miss out on
evaluating the performance of our model on other
crucial document types like local policies and laws,
which play a significant role in the practical imple-
mentation of climate strategies.

Expanding our models to include multilingual
capabilities and a broader spectrum of document
types would enhance its utility, allowing for a more
comprehensive analysis of global climate actions.
Such improvements would offer an even more de-
tailed understanding of international efforts to ad-
dress climate change, though this expansion re-
mains a notable rather than a critical limitation in
our current research scope.

The classification of conditionality within cli-
mate policy documents proved to be a complex
task that our current model and the provided con-
text struggled to adequately address. This complex-
ity arises from the nuanced nature of conditionality
clauses, which require a deep understanding of the
text to accurately classify. Generative language
models with advanced reasoning capabilities over
larger context windows could potentially offer im-
proved performance in this area leveraging recent
work from Thulke et al. (2024) with the trade-off
of higher costs.
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