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Abstract
An Efficient strategy for conducting pre-training of language models is the concatenation of contiguous sequences of text of

fixed length through causal masking that estimates the probability of each token given its context. Yet earlier work suggests

that this technique affects the performance of the model as it might include misleading information from previous text

sequences during pre-training. To fill this gap, intra-context and rank-based causal masking techniques have been proposed,

in which the probability of each token is conditional only on the previous ones in the same document or ranked sequences,

avoiding misleading information from different contexts. However, the sequences provided by the use of these techniques have

been little explored, overlooking the opportunity to optimise the composition by manipulating the volume and heterogeneity

in the sequences and improving unbalance pre-training settings. In this paper, we demonstrate that organising text chunks

based on a policy that aligns with text similarity effectively improve pre-training, enhances the learning and cross-lingual

generalisation capabilities of language models, maintains efficiency, and allows for fewer instances.
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1. Introduction
Large language models (LLMs) are pre-trained on huge

amounts of documents by optimizing a language mod-

elling objective and show an intriguing ability to solve

various downstream NLP tasks. Ranaldi et al. [1] in mul-

tilingual settings and later Zhao et al. [2] highlighted

the importance of pre-training data quality, diversity and

composition methodologies. Our research takes a step

further by exploring the influence of the pre-training

sequences heterogeneity for cross-lingual generalisation.

This potentially leads to significant advancements in un-

derstanding LLMs’ learning properties.

In decoder-only architectures pre-training, the con-

structions of the instances are based on packing that

combines randomly sampled texts (i.e., documents) into

a chunk that matches the size of the context window with-

out using any selection policy. Then, the causal mask-

ing predicts the next token conditioned on the previous,

including those from different documents (portions of

non-contiguous texts) in the chunk. The ways to mitigate

this arbitrary procedure are: (i) intra-document causal

masking [3], where the likelihood of each token is condi-

tioned on the previous from the same document [3] and

retrieval-based masking [2] where similar documents

retrieved by retrieval systems condition likelihood.
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To study the role of heterogeneity and volume of sam-

ples in sequence composition strategies (i.e., packing and

masking pipelines), we pre-train language models using

different masking approaches (described in §2.2) and com-

pare them with models pre-trained via the traditional

causal masking with different packing approaches by

varying amount of the sequence composition of the doc-

uments in the pre-training chunks. Whilst for studying

the impact on cross-lingual generalisation we use cross-

lingual settings (i.e., Italian English). Complementing

the foundation approaches proposed in [1, 2],we oper-

ate via bilingual corpora. Hence, we analyse the results

produced by a commonly used baseline method that ran-

domly samples and packs documents (RandomChunk), a

process that samples and packs documents from the same

source based on their composition and origin (UniChunk),

and then operate via efficient retrieval-based packing

method, which retrieves and packs related documents

(§2.1).

The experimental results indicate that operating via

causal masking (RandomChunk) with arbitrary sequence

patterns of documents leads to the inclusion of mislead-

ing information that stems from different context during

pre-training (§3), impacting in a negatively the perfor-

mance of the models in downstream tasks (§4). Instead,

intra-document causal masking, which avoids the mis-

leading phenomena during pre-training, significantly im-

proves the models’ performance and does not impact

the runtime. Although intra-document causal masking

performs well, it limits the operability of sequence com-

position mixing documents from different corpora (in our
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Figure 1: Packing strategies for pre-training chunks construction: Baseline randomly samples documents from all corpora
to construct pre-training sequences, which can pack documents from different sources; Sequence-based randomly samples
documents from a single source to construct a sequence; Retrieve-based operate via ranking-based construction process. The
down block represents a document Collector that caches a set of documents randomly sampled between the corpora.

case in different languages as well). As revealed by Zhao

et al. [2] as well, this is partly solved by UniChunk’s avoid-

ance of packing documents from different distributions,

which improves the performance of causal masking mod-

els in downstream tasks but still does not allow individual

sequences to be selected.

Hence, we use a retrieval-based packing method,

which allows operating directly on sequences by improv-

ing cross-lingual models’ language modeling, in-context

learning and generative capabilities by using causal mask-

ing and thus paying a small fee for document sorting but

achieving tangible results.

Our main findings can be summarised as follows:

• By analyzing different pre-trained strategies in cross-

lingual settings we reveal that operating through

causal masking and considering the order and patterns

sequence represented in documents, leads to signifi-

cant improvements. In addition, retrieval-based tech-

niques provide resilience and allow for the selection of

pre-training sequences by guaranteeing heterogeneity

and reducing data (§3).

• We show important benefits on the in-context learn-

ing capabilities of downstream models. We observe

that in low-resource settings, it is possible to achieve

the same performance and in some cases cross-lingual

generalisation (in our case, English-Italian) (§4).

• In conclusion, we show that the retrieval-based pack-

ing method allowing for a flexible sequence composi-

tion process benefits unbalanced cross-lingual learning

tangible benefits by using less pre-training data.

2. Pre-Training Strategies

2.1. Packing Approaches
Given 𝒟𝑖 that represents a corpus, and 𝒟 =

⋃︀
𝑠 𝒟𝑠

denote resulting from the union of such corpora. Specif-

ically, each corpus 𝒟𝑠 is as a set of documents 𝒟𝑠 =
{𝑑1, . . . , 𝑑|𝒟𝑠|}, where each 𝑑𝑖 is defined as a sequence

of tokens 𝑑𝑖 =
(︀
𝑥1, . . . , 𝑥|𝑑𝑖|

)︀
.

The packing strategy involves first selecting a set of

documents {𝑑𝑖}𝑛𝑖=1 from 𝒟, and then packing them into

a chunk 𝐶 with a fixed length |𝐶| = 𝐿. The documents

{𝑑𝑖}𝑛𝑖=1 are concatenated by interleaving them with end-

of-sentence ([eos]) tokens. Hence, 𝐶 is denoted as:

𝐶 = {𝑑𝑖 ⊕ [eos] | 𝑖 = 1 . . . 𝑛− 1} ⊕ s(𝑑𝑛), (1)

where [eos] is the end-of-sentence token, s() truncates

the last document such that |𝐶| = 𝐿, and the content

of the chunk 𝐶 is removed from the dataset 𝒟 to avoid

sampling the same documents multiple times.

Following the strategies proposed in [2], we use three

strategies to sample the documents {𝑑𝑖}𝑛𝑖=1 from the

dataset 𝒟 for composing pre-training chunk.

In contrast to the previous works, we use 𝛼 ∈ [0, 1]
to control the fraction of the corpus used. Hence, we use

𝒮 ⊆ 𝒟 and |𝒮| = ⌊𝛼× |𝒟|⌋.

We define the three strategies (Baseline, Sequence-

based and Ranking based) as follow:

Baseline The common baseline approach called

RandomChunk, with documents 𝑑𝑖 ∈ 𝒟 are sampled uni-



formly at random from the entire pre-training corpus

𝒟:

(𝒟, 𝛼) =

{︃
𝑛⨁︁

𝑖=1

𝑑𝑖 ⊕ [eos] | 𝑑𝑖 ∼ Uniform(𝒮)

}︃
(2)

where 𝒮 ⊆ 𝒟 and |𝒮| = ⌊𝛼 × |𝒟|⌋. As a result, in

RandomChunk, a chunk can contain documents from a

different source, as shown in Figure 1.

Sequence-based The UniChunk approach is sequence-

based and respects the sequences of the corpora. Hence,

each chunk is composed of documents from a single

source corpus 𝒟𝑠:

(𝒟𝑠, 𝛼) =

{︃
𝑛⨁︁

𝑖=1

𝑑𝑖 ⊕ [eos] | 𝑑𝑖 ∼ Uniform(𝒮𝑠)

}︃
(3)

where 𝒮𝑠 ⊆ 𝒟𝑠 and |𝒮𝑠| = ⌊𝛼× |𝒟𝑠|⌋ and 𝒟𝑠 ⊆ 𝒟.

This strategy avoids packing documents from different

corpora and allows control over the amount of data uti-

lized from each specific corpus, enhancing efficient usage

of computational resources while preserving thematic

coherence.

Ranking-based To empower the relevance of doc-

uments in pre-training chunks, we use a retriever-

based pipeline (BM25-based [4]) to construct pre-training

chunks, which we define Bm25Chunk. Hence, given

a document 𝑑𝑖 ∈ 𝒟𝑠, a sequence of documents

{𝑑𝑖}𝑛𝑖=1 by 𝑑𝑖+1 = Retrieve(𝑑𝑖,𝒟𝑠) are retrieved; here,

Retrieve(𝑑𝑖,𝒟𝑠) collects the most similar documents

to 𝑑𝑖 from 𝒟𝑠 using BM25 ranking.

However, since the retrieval process can be computa-

tionally heavy due to the size of the pre-training corpus

𝒟𝑠. To improve the efficiency of the retrieval step, a

subset ℬ𝑠 ⊆ 𝒟𝑠 of the corpus 𝒟𝑠 is used, reducing the

computational complexity of retrieval as proposed in [2].

In particular, ℬ𝑠 ⊆ 𝒟𝑠 contains 𝑘 documents uni-

formly sampled from 𝒟𝑠. To control the number of

utilised documents, we operate via 𝛼 that regulates

the fractions of 𝑘. Hence we use ℬ𝛼 ⊆ ℬ𝑠 where

|ℬ𝛼| = ⌊𝛼× |ℬ𝑠|⌋.

This approach strategically serves as the retrieval

source for constructing pre-training chunks:

𝑑1 ∼ Uniform(ℬ𝑠), 𝑑𝑖+1 = Retrieve(𝑑𝑖,ℬ𝛼).

After retrieving a sequence of documents {𝑑𝑖}𝑛𝑖=1 from

the ℬ𝛼 for constructing a chunk, the buffer is refilled by

sampling novel documents from 𝒟𝑠.

2.2. Masking Approaches
The masking strategy is the other critical stage of lan-

guage model pre-training, which defines how next-token

prediction distributions are conditioned on further to-

kens in a provided sequence.

Causal Masking In causal masking, each token in a

sequence is predicted based on all previous tokens. Specif-

ically, given a chunk 𝐶 = (𝑥1, . . . , 𝑥|𝐶|), the likelihood

of 𝐶 is given by:

𝑃 (𝐶) =

|𝐶|∏︁
𝑖=1

𝑃 (𝑥𝑖 | 𝑥1, . . . , 𝑥𝑖−1),

where 𝑃 (𝑥𝑖 | 𝑥1, . . . , 𝑥𝑖−1) is the probability of the to-

ken 𝑥𝑖 given previous tokens 𝑥1, . . . , 𝑥𝑖−1 in the chunk.

During the pre-training, causal masking indicates that,

given a chunk 𝐶 , the likelihood of each token in 𝐶 is

conditioned on all previous tokens, including those that

stem from different documents.

Intra-Document Causal Masking In intra-document

causal masking, the probability of each token is influ-

enced by the previous tokens within the same document

and, consequently, the same context. Hence, using a frac-

tion 𝒮 ⊆ 𝒟 where |𝒮| = ⌊𝛼 × |𝒟|⌋ we construct the

chunks 𝐶 asdefined as in §1. The probability of each

token 𝑑𝑖𝑗 belonging to document 𝑑𝑖 is only conditioned

on the previous tokens within 𝑑𝑖:

𝑃 (𝐶) =

𝑛∏︁
𝑖=1

|𝑑𝑖|∏︁
𝑗

𝑃
(︀
𝑑𝑖𝑗 | 𝑑𝑖1, . . . , 𝑑𝑖(𝑗−1)

)︀
, (4)

where each 𝑑𝑖 is sampled from 𝐶 as defined above. The

models trained using this approach are called IntraDoc
in the rest of the paper.

3. Language Modeling Settings
Models The implementation is based on the GPT-2 [5].

We pre-train 124 million parameter models using context

windows of 256, 512 tokens. To observe the effect of

different data compositions, we fix the vocabulary and

model parameters described in Appendix A.

Corpora & Settings We combine three high-quality

open-source corpora
1

best exemplified from C4, Cul-

turaX, and Wikipedia. We construct the corpus 𝒟 by

operating through the methods proposed in §2 both on

𝒟𝐸𝑛 and 𝒟𝐼𝑡 and then we combine them. Moreover,

to observe the impact of the quantity of pre-training in-

stances, we use a scaling factor 𝛼 that operates during

the construction of 𝒟𝐸𝑛 and 𝒟𝐼𝑡.

4. Experiments
To analyse the operation of proposed approaches, we

evaluate the model perplexities (§4.1), in-context learn-

ing (§4.2), understanding (§4.3) and question-answering

capabilities (§4.4) under different configurations.

1
The statistics are reported in Table 4



4.1. Perplexity
We compute the perplexity (PPL) on two different se-

tups: (i) models pre-trained with an equal quantity of

data and then evaluated on a held-out set of documents

where each document is independently treated, (ii) mod-

els pre-trained with an equal quantity of data scaled by

an 𝛼 factor, which is 𝛼 in {0.1, 0.25, 0.5, 0.75} and then

evaluated on a held-out set of documents where each

document is independently treated. While the first con-

figuration allows one to observe whether the proposed

methods induce overfitting (data-contamination [6]), the

second experiment analyses the impact of the amount of

data used.

The impact of Sequence Composition Table 1

shows that Bm25Chunk achieves the lowest PPL among

the three causal masking models, yielding a lower aver-

age PPL compared to RandomChunk (in both settings more

than about +5) and UniChunk (in both settings around

+3.2). Increasing the correlation of documents in a se-

quence empowers the language modelling ability of the

pre-trained models. Instead, when considering models

trained via intra-document causal masking, it emerges

that IntraDoc achieves the lowest PPL compared to the

models trained via causal masking.

𝐿 Model C4 CulturaX Wiki Avg.

256

RandomChunk 20.12 19.61 9.89 16.5
UniChunk 18.83 15.65 8.56 14.3
Bm25Chunk 14.96 15.07 5.23 11.4
IntraDoc 14.04 13.57 5.08 10.7

512

RandomChunk 19.32 18.76 9.55 15.9
UniChunk 18.22 15.11 7.89 13.4
Bm25Chunk 13.85 13.27 5.02 10.7
IntraDoc 12.98 13.07 4.39 10.0

Table 1
Evaluation of perplexity on test set created by sampling the
original pre-training corpora (Appendix D). 𝐿 is the context
window for pre-training (next-token accuracy in Appendix B).

Generally, all methods obtain significantly lower PPLs

(particularly Bm25Chunk than IntraDoc) in Wikipedia.

This phenomenon could imply that the pre-training

sources are very common (lower PPL is better-known

text), these texts is more influenced by documents with

different contexts (misleading contexts) and the proposed

strategies can improve this problem.

The role of Quantity Figure 2 shows that Bm25Chunk
consistently achieves a lower average PPL than the other

approaches even when decreasing the amount of pre-

training data. In fact, in both settings (Figure 2), it

can be observed that the average PPL of RandomChunk

and UniChunk lowers directly as the amount of pre-

training data used boosts. While intra-document causal

masking performs similarly to Bm25Chunk in resource-

based settings (red line and green line Figure 2), improv-

ing the intra-document causal masking alpha reduces

the PPL less consistently. Finally, it can be observed

that Bm25Chunk reaches stable performance even with

𝛼 = 0.75.

Figure 2: Average Perplexities decreasing training set.

4.2. In-Context Learning
Following Zhao et al. [2], we evaluate the in-context

learning abilities of the models using GLUE-X [7] (SST2,

CoLA and RTE) both in English and Italian.

Table 2 reports the average in-context learning accu-

racy values of the models in few-shots settings, using

15 for 256 and 20 demonstrations for the 512 model, re-

spectively. Bm25Chunk yields a higher average accuracy

than RandomChunk for 256 (+5.12%) and 512 (+1.55%).

These demonstrate that increasing the correlation of the

documents in pre-training chunks improves the models’

in-context learning abilities.

Figure 3, we report the average accuracy using dif-

ferent numbers of few-shot demonstrations. Bm25Chunk
has an on-par accuracy with IntraDoc on the 256 set-

ting; however, IntraDoc obtains a significantly higher

accuracy than Bm25Chunk on the 512 setting. Finally,

RandomChunk and UniChunk obtain comparable results

using different context lengths, and they do not consis-

tently improve accuracy when increasing the number of

demonstrations. This might be due to the tighter levels of

distraction in both settings, which use arbitrary packing

strategies.



𝐿 Model SST2 CoLA RTE Avg.

256

RandomChunk 50.53 60.62 24.76 45.33
UniChunk 56.13 62.68 18.73 45.72
Bm25Chunk 62.12 64.06 25.16 50.45
IntraDoc 53.22 61.16 24.23 46.20

512

RandomChunk 55.13 62.85 36.38 51.38
UniChunk 58.53 63.04 22.12 47.85
Bm25Chunk 60.30 63.21 35.26 52.93
IntraDoc 59.32 65.62 36.65 53.81

Table 2
Average In-context learning performance evaluated by text
classification accuracy across three tasks. Accuracies for En-
glish and Italian are reported in Appendix E.

Figure 3: Average in-context learning accuracy using different
numbers of input demonstrations.

𝐿 Model MLQA XCOPA SQuAD Avg.

256

RandomChunk 21.48 30.21 28.04 26.5
UniChunk 23.97 32.19 27.16 27.7
Bm25Chunk 28.18 33.97 27.26 29.8
IntraDoc 33.63 38.05 30.51 34.0

512

RandomChunk 26.05 31.93 31.39 29.7
UniChunk 27.14 33.34 31.22 30.5
Bm25Chunk 30.71 35.82 34.85 33.7
IntraDoc 32.42 37.71 36.04 35.2

Table 3
Evaluation results of natural language understanding, com-
monsense reasoning and QA tasks.

4.3. Understanding & Commonsense
We evaluate the pre-trained models on natural lan-

guage understanding, commonsense reasoning tasks (i.e.,

XSQuAD [8], XCOPA [9]), and question-answering (i.e.,

MLQA [10]). It emerges that Bm25Chunk outperforms

RandomChunk and UniChunk in all tasks, confirming that

increasing the similarity of documents in pre-training

chunks improve understanding abilities. Specifically,

Bm25Chunk obtains a significantly better accuracy on

MLQA, showing it can operate in-context information

provided in the input question.

However, even though Bm25Chunk archives solid per-

formances, IntraDoc obtains the best average perfor-

mance. It indicates that eliminating potential distractions

from unrelated documents and learning each document

separately empowers understanding and generation abil-

ities. This finding is different from the ideas in previous

works, which suggested that pre-training with multi-

ple documents in one context and adding distraction in

context during pre-training benefit in-context and under-

standing ability.

Figure 4: Evaluation results of MultiLingual Question Answer-
ing by providing cross-lingual input (en-it means context in
English and question in Italian and vice versa as described in
Appendix C).

4.4. Multilinguality
To assess code-switching abilities, we experimented with

cross-lingual input by operating with MLQA. We crossed

the languages, delivering contexts in English and ques-

tions in Italian and vice versa (Appendix C). Figure 4

show that Bm25Chunk outperforms both RandomChunk
and intra-document causal masking. At the same time,

IntraDoc, as discussed in §4.3 for MLQA, outperforms

Bm25Chunk. This result confirms that IntraDoc’s per-

formance is not only related to monolingual learning

sequences but also more complex dynamics.

5. Conclusion
The role of pre-training sampling is a strategic com-

ponent. We analyse the impact of sequencing by pre-

training several language models on multilingual corpora.

We showed that causal masking involves misleading doc-

uments that confound the pre-training of language mod-

els and impact the performance in downstream tasks.

Hence, we find that improving sequence correlation in

pre-training chunks reduces potential distractions while

improving the performance of language models without

reducing pre-training efficiency. In the future, we will

study whether these findings archive benefits in fine-

tuning pipelines [11, 12, 13, 14, 15, 16] as well.
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A. Pre-training Corpora
In our experiments, we use the GPT-2 small, the 124 million
model with 12 layers, a hidden size of 768, and 12 attention
heads. We use a batch size of 0.5 million tokens for both the
models with 256 and 512 context window sizes and pre-train
models using 20B tokens with 100,000 steps. We use Adam
optimiser with 𝛽1 = 0.90, 𝛽2 = 0.95, a weight decay of 0.1,
and a cosine learning rate scheduler. The peak learning rate is
3× 10−4, decreasing to 3× 10−5 at the end. We perform the
experiments using 16 Nvidia RTX A6000 with 48GB of VRAM.

Subset # documents # words

C4 (it) ∼ 8𝑀 ∼ 4𝐵
CulturaX (it) ∼ 2.5𝑀 ∼ 2.6𝑀
Wikipedia (it) ∼ 1.5𝑀 ∼ 780𝑀

C4 (it) ∼ 8𝑀 ∼ 3.4𝐵
CulturaX (it) ∼ 2.5𝑀 ∼ 2.1𝑀
Wikipedia (it) ∼ 1.5𝑀 ∼ 760𝑀

Table 4
Size of pre-training corpora. For computational reasons, we
produced equivalent samples for both English and Italian.

B. Next Token Accuracy of
Pre-Trained Language Models

In addition to PPL, we report the next token accuracy of
pre-trained language models in Table 5.
The "next-token accuracy" is calculated as follows:
Specifically we define Acc as:

Acc =
1

𝑁

𝑁∑︁
𝑖=1

I(𝑦𝑖 = 𝑦𝑖) (5)

where:

• 𝑁 is the total number of tokens in the test set.

• 𝑦𝑖 is the token predicted by the model at position 𝑖.

• 𝑦𝑖 is the correct (ground truth) token at position 𝑖.

• I is the indicator function, which is 1 if 𝑦𝑖 = 𝑦𝑖 and 0
otherwise.

𝐿 Model C4 CulturaX Wikipedia Avg.

256

RandomChunk 0.242 0.431 0.336 0.336
UniChunk 0.248 0.463 0.415 0.375
Bm25Chunk 0.332 0.451 0.424 0.402
IntraDoc 0.357 0.472 0.442 0.423

512

RandomChunk 0.346 0.456 0.368 0.393
UniChunk 0.389 0.462 0.405 0.419
Bm25Chunk 0.419 0.493 0.423 0.445
IntraDoc 0.440 0.498 0.463 0.467

Table 5
Evaluation of next token accuracy on proposed test-set.



C. Multilingual Question Answering Examples

Lang Context Question Target Answer

en
Barack Obama was the 44th President of the United
States, serving two terms from 2009 to 2017.

Who was the 44th President of the United States? Barack Obama

it
Barack Obama è stato il 44º Presidente degli Stati
Uniti, in carica per due mandati dal 2009 al 2017.

Chi è stato il 44º Presidente degli Stati Uniti? Barack Obama

en-it
Barack Obama was the 44th President of the United
States, serving two terms from 2009 to 2017.

Chi è stato il 44º Presidente degli Stati Uniti? Barack Obama

it-en
Barack Obama è stato il 44º Presidente degli Stati
Uniti, in carica per due mandati dal 2009 al 2017.

Who was the 44th President of the United States? Barack Obama

Table 6
Examples from the MLQA dataset in English, Italian and Cross-lingual.

D. In-context Learning
performances English and
Italian

This section reports the results obtained on the tasks
introduced in Section 4.2. To conduct a more detailed analysis,
we have used the original (English) and Italian versions of
three tasks belonging to the GLUE family. We selected SST2,
CoLA, and RTE. The bilingual versions were taken from the
contribution previously proposed by Yang et al. [7].

Model SST2-En CoLA-En RTE-En Avg.

256

RandomChunk 51.34 61.73 25.71 46.26
UniChunk 57.16 63.21 19.17 43.15
Bm25Chunk 61.9 65.02 26.31 50.42
IntraDoc 53.39 61.67 25.27 46.76

512

RandomChunk 55.49 63.42 38.19 52.46
UniChunk 59.16 63.12 21.87 48.02
Bm25Chunk 60.81 64.69 36.23 53.93
IntraDoc 59.21 66.25 36.19 53.73

Table 7
In-context learning performance evaluated by text classifica-
tion accuracy across three English tasks.

Model SST2-It CoLA-It RTE-It Avg.

256

RandomChunk 49.41 59.62 23.51 44.17
UniChunk 55.13 62.92 18.32 46.76
Bm25Chunk 61.24 63.07 23.92 49.40
IntraDoc 52.93 60.81 23.92 46.08

512

RandomChunk 54.71 62.63 34.36 50.64
UniChunk 57.92 62.94 22.46 47.82
Bm25Chunk 59.83 63.38 34.25 52.36
IntraDoc 59.06 65.23 35.16 52.55

Table 8
In-context learning performance evaluated by text classifica-
tion accuracy across three Italian tasks.

E. Understanding and
Commonsense performances
English and Italian

This section reports the results obtained on the tasks
introduced in Section 4.3. We have used the original (English)
and Italian versions of MLQA, XCOPA, and SQuAD to
conduct a more detailed analysis.

𝐿 Model MLQA XCOPA SQuAD Avg.

256

RandomChunk 22.63 30.71 30.52 30.22
UniChunk 24.09 23.15 27.34 24.83
Bm25Chunk 29.16 34.19 27.16 30.11
IntraDoc 34.06 38.21 30.85 34.3

512

RandomChunk 26.63 32.16 31.82 30.32
UniChunk 27.05 33.26 31.54 30.65
Bm25Chunk 30.66 36.51 34.73 34.08
IntraDoc 32.88 38.15 38.23 36.23

Table 9
Evaluation results of natural language understanding, com-
monsense reasoning and QA tasks in English.

𝐿 Model MLQA XCOPA SQuAD Avg.

256

RandomChunk 20.33 29.62 30.18 29.31
UniChunk 23.85 23.42 26.73 25.06
Bm25Chunk 27.21 33.16 27.32 29.05
IntraDoc 33.26 37.88 30.18 33.65

512

RandomChunk 25.88 31.78 30.97 x.x
UniChunk 27.23 33.42 30.94 30.32
Bm25Chunk 30.77 35.92 34.66 33.42
IntraDoc 31.97 37.28 38.46 35.64

Table 10
Evaluation results of natural language understanding, com-
monsense reasoning and QA tasks in Italian.
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