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Abstract
Large Speech Models (LSMs), pre-trained on extensive unlabeled data using Self-Supervised Learning (SSL) or Weakly-
Supervised Learning (WSL), are increasingly employed for tasks like Speech Emotion Recognition (SER). Their capability to
extract general-purpose features makes them a strong alternative to low-level descriptors. Most studies focus on English,
with limited research on other languages. We evaluate English-Only and Multilingual LSMs from the Wav2Vec 2.0 and
Whisper families as feature extractors for SER in eight languages. We have stacked three alternative downstream classifiers
of increasing complexity, named Linear, Non-Linear, and Multi-Layer, on top of the LSMs. Results indicate that Whisper
models perform best with a simple linear classifier using features from the last transformer layer, while Wav2Vec 2.0 models
benefit from features from the middle and early transformer layers. When comparing English-Only and Multilingual LSMs,
we find that Whisper models benefit from multilingual pre-training, excelling in Italian, Canadian French, French, Spanish,
German and competitively on Greek, Egyptian Arabic, Persian. In contrast, English-Only Wav2Vec 2.0 models outperform
their multilingual counterpart, XLS-R, in most languages, achieving the highest performance in Greek, Egyptian Arabic.
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1. Introduction
Speech Emotion Recognition (SER) aims to identify emo-
tions from speech audio, enhancing Human-AI inter-
action in fields such as healthcare, education, and se-
curity [1]. Traditional methods rely on Low-Level De-
scriptors (LLD) like spectral, prosodic, and voice qual-
ity features [2], using classifiers such as KNN, SVM,
or Naïve Bayes [3]. Deep learning has introduced ad-
vanced techniques, including Convolutional Neural Net-
works (CNNs) [4, 5, 6], eventually followed by Recur-
rent Neural Networks (RNNs) [7, 8], and Transformers
[9, 10, 11]. Transformers’ ability to learn from extensive
datasets has led to Large Speech Models (LSMs), which
generalize across various speech tasks. Common train-
ing approaches for these models include Self-Supervised
Learning (SSL), which uses data itself to learn general-
purpose features [12], and Weakly-Supervised Learning
(WSL), which pairs audiowith text for tasks like transcrip-
tion and translation [13]. The general-purpose knowl-
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edge of LSMs makes them effective feature extractors
for SER. Research has adapted LSMs for SER in English
[14, 15, 16, 17], but efforts for other languages are lim-
ited, focusing on Wav2Vec 2.0 [18] for cross-lingual SER
[19, 20, 21].

This study examines how effective LSMs are as fea-
ture extractors for cross-lingual SER, using nine datasets
across eight languages: Italian, German, French, Cana-
dian French, Spanish, Greek, Persian, and Egyptian Arabic.
Specifically, we utilize LSMs from the Wav2Vec 2.0 and
Whisper [13] model families, pre-trained with SSL and
WSL approaches, respectively. We introduce Whisper
due to its underexplored use in cross-lingual SER. To
assess the effectiveness of LSMs as feature extractors,
we test three classifiers of increasing complexity—Linear,
Non-Linear, and Multi-Layer—across nine datasets. This
evaluation determines which classifier best suits each
LSM across different languages. Moreover, our study in-
cludes both English-Only and Multilingual models from
the Wav2Vec 2.0 and Whisper families, aiming to eval-
uate the effectiveness of multilingual pre-training for
cross-lingual SER.

The main contributions of this work are:

• We evaluate LSMs from the Wav2Vec 2.0 and
Whisper models as feature extractors for cross-
lingual SER across eight languages.

• We test three types of downstream classi-
fiers—Linear, Non-Linear, and Multi-Layer—and
find that Whisper models’ last Transformer layer
features are well-suited for a Linear classifier,
whereas Wav2Vec 2.0 models perform better with
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features from the middle and early Transformer
layers.

• We compare English-Only andMultilingual LSMs,
revealing that Whisper models benefit from mul-
tilingual pre-training performing best on Italian,
Spanish, Canadian French, French, and German
and competitively on Greek, Egyptian Arabic,
Persian. Conversely, English-Only Wav2Vec 2.0
models surpass multilingual XLS-R in most lan-
guages, achieving the highest performance in
Greek, Egyptian Arabic.

2. Background

2.1. Large Speech Models
Recent developments in natural language processing and
computer vision have harnessed large volumes of unla-
beled data through Self-Supervised Learning [22, 23, 24].
Building on techniques such as masked language and
image modeling, Wav2Vec 2.0 [18] introduced a LSM
trained on extensive audio datasets using masked speech
modeling. Wav2Vec 2.0 features seven 1D convolutional
blocks for initial feature extraction, followed by 12 or 24
transformer blocks (depending on the model variant) for
contextual processing. Themodelmasks part of the latent
features and reconstructs them using the surrounding
context. To further refine LSMs for tasks like emotion
recognition, methods such as WavLM [25] have been
developed. WavLM incorporates speech denoising along-
side masked modeling, demonstrating broad effective-
ness across various tasks in the SUPERB benchmark [26].
Moreover, XLSR-53 [27] extends the Wav2Vec 2.0 frame-
work to cover 53 languages, sharing the latent space
across these languages. This approach has shown supe-
rior performance over monolingual pretraining for auto-
matic speech recognition. XLS-R [28] further advances
this by scaling to 128 languages, excelling in speech trans-
lation and language identification. In comparison, Whis-
per [13] leverages large-scale weak supervision from
audio-transcription pairs to train an encoder-decoder
transformer. Using log-mel spectrograms, Whisper is
trained in a multitask framework that includes multilin-
gual transcription and translation, establishing itself as
an effective zero-shot model for multilingual tasks.

2.2. Cross-Language Speech Emotion
Recognition

Emotion recognition in languages beyond English, like
Italian [29], French [30], Persian [31, 32], and Spanish
[33], is crucial but often limited by data availability. Re-
cent efforts have focused on improving cross-lingual
and cross-modal knowledge transfer. Techniques like

dual attention [21] and tensor fusion [34] enhance audio
and text interaction in languages such as Italian, Ger-
man, and Urdu. Self-supervised pre-training methods,
including variational autoencoders, have also been ef-
fective in transferring knowledge across languages like
German [35, 36]. The advent of LSMs pre-trained with
self-supervision has further increased the potential for
transfer learning due to their high generalization capa-
bilities [15]. However, most research primarily focuses
on adapting multilingual Wav2Vec 2.0 models (XLSR-53)
[19, 37, 20, 21]. This work expands the scope of analyzed
LSMs including WSL models as Whisper. Additionally,
we evaluate the ability of English-only models to transfer
knowledge to other languages, beyond just multilingual
models.

3. Method
In this section, we describe the methodology for eval-
uating the effectiveness of LSMs as feature extractors
for downstream SER in various languages. We stack a
classification model on top of the LSM backbone, with
its parameters frozen. All LSMs used in this work share
the same overall architecture, which we describe below
along with the stacked classification model.

Formally, the input audio 𝐴 (raw waveform or log-
mel spectrogram) passes through a convolutional en-
coder 𝓏 ∶ 𝐴 → 𝑍, mapping the audio to latent features
𝑍 = {𝑧1, … , 𝑧𝑇}, where 𝑇 is the sequence length and each
frame 𝑧𝑖 typically corresponds to 25 ms with 𝑧𝑖 ∈ ℝ𝑑.
Then, 𝑍 passes through a Transformer encoder consist-
ing of 𝑙 layers 𝒽𝑙 ∶ 𝑍 → 𝐻, enriching the latent features
with contextual information, resulting in {ℎ𝑙1, … , ℎ𝑙𝑇} for
each of the 𝑙 = 1, … , 𝐿 Transformer layers. Here, 𝑙 = 𝐿
corresponds to the output features of the last layer, with
ℎ𝑙𝑖 ∈ ℝ𝑑. The features {ℎ𝑙1, … , ℎ𝑙𝑇}𝑙=1,..,𝐿 are considered the
extracted features from the LSM and are fed into a down-
stream classifier 𝓎 ∶ 𝐻 → 𝑌, which maps these features
to the output class logits {𝑦1, … , 𝑦𝑘}. The output class
label 𝑦∗ for audio 𝐴 is given by:

𝑦∗ = argmax
𝑘

softmax (𝓎 (𝒽 (𝓏(𝐴)))) (1)

Inspired by previous work that uses probing to evalu-
ate the quality of features extracted from backbone mod-
els [38, 39], we evaluate three different downstream classi-
fiers of increasing complexity: Linear Classifier (ℊ𝑙), Non-
Linear Classifier (ℊ𝑛𝑙), and Multi-layer Classifier (ℊ𝑚𝑙).
Figure 1 illustrates their architecture, which is detailed
below.

3.1. Linear Classifier
For the linear classifier, we use a simple feed-forward
neural network that consists solely of linear projections.



Figure 1: The three downstream classifiers used in this work
are: Linear (red), Non-Linear (purple), andMulti-Layer (green).
The snowflake icon represents frozen weights, while the fire
icon denotes trainable weights.

Specifically, given the features from the last Transformer
layer {ℎ𝐿1 , … , ℎ𝐿𝑇 }, they are first projected by a linear layer
𝓁1 ∶ ℝ𝑑 → ℝ𝑚 that is shared across all frames, then ag-
gregated by average pooling 𝓅, and finally pass through
the classification layer ℴ ∶ ℝ𝑚 → ℝ𝑘 to obtain the output
class logits. The function ℊ𝑙 is compactly defined as:

ℊ𝑙 (ℎ𝐿1 , … , ℎ𝐿𝑇) = ℴ (𝓅 (𝓁1 (ℎ𝐿1 , … , ℎ𝐿𝑇))) (2)

The absence of non-linear activations allows us to eval-
uate the quality of the features extracted from the LSM
based on the linear classifier model’s ability to handle
the SER task.

3.2. Non-Linear Classifier
To increase the complexity of the classification model,
we utilize a series of linear layers interleaved with ReLU
activations both before and after feature pooling. We
follow the same architecture as in [14, 15], but unlike
them, we only feed the features from the last Transformer
layer 𝐿 to the model. Each {ℎ𝐿1 , … , ℎ𝐿𝑇 } passes through
two shared linear layers, ReLU, and dropout blocks (𝒷),
followed by a linear layer (𝓁1). Linear layers are functions
𝓁 ∶ ℝ𝑑 → ℝ𝑚. Projected features are averaged, pass
through 𝓁2 and ReLU, and are classified by ℴ. Thus, ℊ𝑛𝑙
is:

ℊ𝑛𝑙 (𝑥 = ℎ𝐿1 , … , ℎ𝐿𝑇) = ℴ (ReLU (𝓁2 (𝓅 (𝓁1 (𝒷 (𝑥))))))
(3)

3.3. Multi-Layer Classifier
As a third option, we adopt the approach from [14, 15],
which utilizes all hidden states of the Transformer en-
coder. The features {ℎ𝑙1, … , ℎ𝑙𝑇}𝑙=1,..,𝐿 are combined into a
new sequence {ℎ∗1 , … , ℎ∗𝑇} using a learnable weighted sum.
The function 𝓈 ∶ ℝ𝐿×𝑇×𝑑 → ℝ𝑇×𝑑 maps {ℎ𝑙1, … , ℎ𝑙𝑇}𝑙=1,..,𝐿
to {ℎ∗1 , … , ℎ∗𝑇} as follows:

ℎ∗𝑡 =
𝐿
∑
𝑙=1

𝑤𝑙 ⋅ ℎ𝑙𝑡 for 𝑡 = 1, … , 𝑇 (4)

where 𝑤1, … , 𝑤𝐿 are the weights assigned to each Trans-
former layer, ensuring 𝑤𝑙 ∈ [0, 1] and ∑𝐿

𝑙=1 𝑤𝑙 = 1. The
resulting sequence {ℎ∗1 , … , ℎ∗𝑇} is then processed by the
same pipeline as the Non-Linear Classifier, resulting in:

ℊ𝑚𝑙 (𝑥 = {ℎ𝑙1, … , ℎ𝑙𝑇}𝑙=1,..,𝐿) = ℊ𝑛𝑙 (𝓈(𝑥)) (5)

This classifier leverages internal layer information, which
has proven beneficial for paralinguistic and linguistic
downstream tasks [39, 40, 41, 42]. By investigating the
contribution of internal LSM layers for SER across var-
ious languages, we corroborates previous findings for
Wav2Vec 2.0 models and provide new insights for Whis-
per models.

4. Experiments

4.1. Datasets and Metrics
In this study, we conduct experiments using 9 distinct
datasets spanning 8 different languages: Greek, French,
Italian, German, Spanish, Egyptian Arabic, and Persian.
The datasets vary in their collection methodologies, such
as acted emotions and elicitation methods. The partic-
ipant demographics may be balanced by gender (e.g.,
CaFE, EYASE), by emotion (e.g., EMOVO), or may not
be balanced at all. For all datasets, we conduct our ex-
periments in a speaker-independent setting to prevent
evaluation on speaker-dependent features. Table 1 pro-
vides an overview of the dataset statistics, with a more
detailed description given below.
AESDD [43]: The Acted Emotional Speech Dynamic

Database comprises 500 recorded samples from 5 actors
(3 females, 2 males) expressing 5 distinct emotions in
Greek. Each actor performed 20 utterances per emotion,
with some utterances recorded multiple times. In later
versions, additional actors were included, bringing the
total to 604 recordings from 6 actors.
CaFE [44]: This dataset includes recordings of 6 dif-

ferent sentences delivered by 12 actors (6 female, 6 male)
portraying the Big Six emotions and a neutral state in
Canadian French. It offers a high-quality version with a
sampling rate of 192 kHz at 24 bits per sample, as well as



Dataset Language # Samples Emotions
AESDD Greek 500 anger, disgust, fear, happiness, and sadness
CaFE Canadian French 936 anger, disgust, fear, happiness, surprise, sadness, and neutrality
DEMoS Italian 9697 anger, disgust, fear, happiness, surprise, sadness, and neutrality
EmoDB German 535 anger, disgust, fear, happiness, boredom, sadness, and neutrality

EmoMatch Spanish 2005 anger, disgust, fear, happiness, surprise, sadness, and neutrality
EMOVO Italian 588 anger, disgust, fear, happiness, surprise, sadness, and neutrality
EYASE Egyptian Arabic 579 anger, happiness, sadness, and neutrality
Oréau French 502 anger, disgust, fear, happiness, surprise, sadness, and neutrality
ShEMO Persian 400 anger, happiness, sadness, and neutrality

Table 1
Summary statistics of the 9 datasets used in this work.

a down-sampled version at 48 kHz and 16 bits per sample.
The total number of samples amounts to 936.

DEMoS [45]: DEMoS contains 9697 audio samples
from 68 volunteer students (299 females, 131 males) ex-
pressing the Big Six emotions plus the neutral state in
Italian. Instead of acted emotions, samples were gener-
ated using an elicitation approach. The recordings, with
a mean duration of 2.9 seconds (std: 1.1s), are provided
in 48 kHz, 16-bit, mono format.

EmoDB [46]: This collection includes 535 utterances
across 7 emotional states, spoken in German by 5 female
and 5 male actors. Each actor performed a set of 10
sentences, which were down-sampled from the original
48 kHz to 16 kHz.

EmoMatch [33]: Consisting of 2005 recordings, Emo-
Match features samples from 50 non-actor Spanish speak-
ers (20 females, 30 males) expressing the Big Six emotions
and a neutral state. The dataset is a subset of the larger
EmoSpanishDB and contains recordings sampled at 48
kHz with a 16-bit mono format.
EMOVO [47]: EMOVO presents 588 Italian audio

recordings from 3 male and 3 female actors simulating
the Big Six emotions plus a neutral state. Each actor
voiced 14 utterances, and the recordings are provided in
48 kHz, 16-bit stereo WAV format.

EYASE [48]: EYASE contains 579 utterances in Egyp-
tian Arabic, recorded by 3 male and 3 female professional
actors. The recordings, ranging from 1 to 6 seconds in
duration, were labeled as angry, happy, neutral, or sad
and sampled at 44.1 kHz.

Oréau [49]: The Oréau dataset features 502 audio sam-
ples from 32 non-professional actors (25 male, 7 female)
who voiced 10 to 13 utterances in French for the Big Six
emotions plus a neutral state.
ShEMO [50]: ShEMO comprises 3000 semi-natural

recordings from 87 native Persian speakers (31 female,
56 male). The dataset captures 5 of the Big Six emo-
tions—sadness, anger, happiness, surprise, and fear—plus
a neutral state. The samples were up-sampled to a fre-
quency of 44.1 kHz in mono-channel format, with an
average length of 4.11 seconds (std: 3.41s).

The audio is resampled to 16 kHz, and a stratified train/-

validation/test split is performed with ratios of 80/10/10.
All results are reported using the macro F1 score, ex-
pressed as a percentage. We conducted 3 runs, presenting
the mean ± standard deviation.

4.2. Experimental Details
Baseline As a baseline to evaluate LSM transfer learn-
ing capabilities, we adopt the Audio Spectrogram Trans-
former (AST) [51], a fully transformer-based architecture
recently proposed as a substitute for CNNs [9, 10, 11].
We train AST from scratch on each of the 9 datasets using
the same hyperparameters as [51].

LSMModels We use pre-trained checkpoints for both
English-Only and Multilingual models: Wav2Vec 2.0
Base, Wav2Vec 2.0 Large, XLS-R from the Wav2Vec 2.0
family, and Whisper Small (EN) (Whisper Small pre-
trained only on English data), Whisper Small, Whisper
Medium from the Whisper family. The LSM backbones
are kept frozen and used exclusively as feature extractors.
Training We follow the same hyperparameters set-

tings as [15] to train the downstream classifiers. Specifi-
cally, we train for 30 epochs using the Adam optimizer
with a learning rate of 5.0e-04, weight decay of 1.0e-04,
betas set to (0.9, 0.98), and epsilon of 1.0e-08. The dimen-
sion of the classifier projection 𝑚 is 256.

4.3. Results
To present our results, we first compare the performance
of the various classifiers (see Section 3) for each LSM
utilized. This analysis provides insights into the char-
acteristics of features extracted from Wav2Vec 2.0 and
Whisper models for downstream SER tasks. After identi-
fying the best classifier for each LSM, we then compare
the performance of English-Only and Multilingual LSMs
across the 8 languages covered in this study.

4.3.1. Comparison between downstream classifiers

We examine the results in Table 2, comparing three clas-
sifier methods for Wav2Vec 2.0 andWhisper models. The



Backbone Linear Non-Linear Multi-Layer

Wav2Vec 2.0 Base 47.87 (± 0.93) 42.07 (± 5.27) 53.42 (± 1.27)

Wav2Vec 2.0 Large 12.09 (± 1.50) 12.93 (± 3.31) 57.50 (± 0.03)

XLS-R 5.43 (± 0.40) 5.86 (± 0.07) 40.89 (± 2.00)

Whisper Small (EN) 58.16 (± 0.15) 53.50 (± 0.98) 49.73 (± 2.02)

Whisper Small 60.87 (± 0.26) 54.86 (± 0.93) 45.14 (± 1.54)

Whisper Medium 60.72 (± 0.16) 55.56 (± 1.09) 37.95 (± 2.27)

Table 2
Performance of various LSM backbones using Linear, Non-
Linear, andMulti-Layer classification methods. F1 scores are
averaged across all 9 datasets. For each LSM, the best classifier
is highlighted in bold.

Figure 2: Greyscale map of layer weight distribution from the
Multi-Layer classification method. Weights are averaged over
all 9 datasets for each model. Darker shades indicate higher
weights.

table shows average F1 scores across 9 datasets, highlight-
ing the most effective classifier for each LSM in cross-
lingual SER tasks.

For Wav2Vec 2.0 models, the Multi-Layer Classifier
performs best, with F1 scores of 53.42, 57.50, and 40.89
for Wav2Vec 2.0 Base, Wav2Vec 2.0 Large, and XLS-R.
The Linear and Non-Linear classifiers perform similarly,
especially for Wav2Vec 2.0 Large and XLS-R, suggesting
improvements are due to using features from internal
Transformer layers rather than non-linear activations.
For Whisper models, the Linear Classifier performs best,
with F1 scores of 58.16, 60.87, and 60.72 for Whisper
Small (EN), Whisper Small, and Whisper Medium. In-
creasing classifier complexity with non-linear activations
decreases performance, likely due to general information
loss caused by complex transformations. TheMulti-Layer
Classifier performs worse, indicating that using also fea-
tures from internal layers is less effective than using
features from the last layer alone.

This comparison reveals that Wav2Vec 2.0 models ben-
efit from features extracted from internal Transformer
layers and exhibit less sensitivity to classifier complex-
ity, consistent with prior research [41, 39]. Conversely,
Whisper models achieve better performance with fea-
tures from the last Transformer layer when using a simple
linear classifier, offering new insights into their effective-

ness for SER across multiple languages. We hypothesize
that this differing behavior may be related to their respec-
tive Self-Supervised and Weakly-Supervised pre-training
approaches, which warrant further investigation. To gain
further insights into the importance of Transformer lay-
ers in Wav2Vec 2.0 and Whisper for SER, we leverage the
weights learned in the Multi-Layer classifier as follows.

Transformer Layer Weights. We analyze the
weights 𝑤1, … , 𝑤𝐿 from the Multi-Layer Classifier to as-
sess Transformer layer importance. Figure 2 illustrates
that Wav2Vec 2.0 models assign greater weight to the
early and middle layers, whereas Whisper models em-
phasize the later layers. This observation confirms the
earlier findings, suggesting that paralinguistic informa-
tion in Whisper models is embedded in the features of
the later Transformer layers.

4.3.2. Comparing English-Only and Multilingual
LSMs Across Different Languages

In this section, we compare English-Only and Multilin-
gual LSMs with the AST baseline across 9 datasets. Table
3 displays F1 scores for the optimal classifiers found in
the previous section: Multi-Layer for Wav2Vec 2.0 and
Linear for Whisper models.

Transferring knowledge from LSMs proves to be ef-
fective across all datasets compared to the baseline. For
instance, Wav2Vec 2.0 Large scores 53.40 in Egyptian
Arabic, while Whisper Small scores 51.98 and AST scores
33.23. This indicates that LSMs are effective feature ex-
tractors for cross-lingual SER on multiple languages.

When comparing English-only and Multilingual mod-
els, we differentiate between the Wav2Vec 2.0 and Whis-
per families. For Wav2Vec 2.0, we observe that Wav2Vec
2.0 Base and Large generally outperform XLS-R (e.g.,
87.85 and 88.31 vs. 67.71 for DEMos), except in Persian,
where their performance is comparable. This indicates
that multilingual pre-training may not be as effective
for Wav2Vec 2.0 models across various languages. We
speculate that this may be due to the limitations of SSL
pre-training, whichmight struggle with the diverse range
of languages and lose important paralinguistic features
that are retained in English-only models. Further investi-
gation with a wider range of SSL-pretrained LSMs could
provide more insights. As regards to Whisper, Multilin-
gual Whisper Small outperforms its English-only ver-
sion, with the exception of Greek and Persian, likely due
to limited pretraining data for these languages, which
resulted in higher word error rates compared to other
languages in this study [13]. Multilingual Whisper mod-
els achieve best performance in Canadian French, Span-
ish (66.71, 73.13 with Whisper Small), Italian, German,
and French (91.17, 90.64, 95.22 with Whisper Medium).
This improvement is likely due to the larger pretraining
datasets for these languages and the similarities between



English-Only Multilingual

Dataset/Model AST
Wav2Vec 2.0

Base‡
Wav2Vec 2.0

Large‡
Whisper
Small†

XLS-R‡ Whisper
Small†

Whisper
Medium†

AESDD (el) 19.84 (± 0.16) 25.45 (± 0.98) 28.89 (± 2.64) 28.04 (± 0.99) 9.16 (± 1.25) 26.34 (± 1.65) 27.62 (± 0.62)

CaFE (fr-ca) 10.96 (± 6.26) 50.52 (± 3.54) 47.74 (± 0.33) 60.66 (± 0.76) 18.66 (± 0.01) 66.71 (± 0.72) 55.03 (± 0.38)

DEMoS (it) 13.75 (± 4.26) 87.85 (± 0.01) 88.31 (± 0.74) 88.24 (± 0.21) 67.71 (± 1.47) 90.61 (± 0.14) 91.17 (± 0.20)

EmoDB (de) 46.11 (± 6.55) 81.75 (± 7.30) 88.84 (± 7.48) 83.31 (± 0.18) 67.39 (± 4.33) 87.21 (± 1.11) 90.64 (± 1.47)

EmoMatch (es) 36.10 (± 2.63) 69.84 (± 0.69) 71.85 (± 1.55) 67.59 (± 0.35) 44.14 (± 0.25) 73.13 (± 2.54) 68.23 (± 0.78)

EMOVO (it) 15.74 (± 1.24) 16.47 (± 0.61) 20.33 (± 1.31) 27.30 (± 0.16) 14.86 (± 2.11) 41.05 (± 1.21) 50.19 (± 0.29)

EYASE (ar-eg) 33.23 (± 4.58) 46.31 (± 3.62) 53.40 (± 1.56) 42.65 (± 0.70) 47.27 (± 1.36) 51.98 (± 0.88) 37.32 (± 3.62)

Oréau (fr) 19.01 (± 2.35) 52.86 (± 0.07) 58.42 (± 4.14) 82.27 (± 0.23) 32.51 (± 4.89) 92.70 (± 1.67) 95.22 (± 0.84)

ShEMO (fa) 36.15 (± 0.85) 60.55 (± 3.90) 57.52 (± 9.09) 67.93 (± 0.37) 61.24 (± 8.93) 63.88 (± 1.21) 63.85 (± 1.58)

Table 3
Performance of Wav2Vec and Whisper models across 9 datasets, divided into English-Only and Multilingual LSMs. AST is the
baseline. † indicates a Linear Classifier, ‡ a Multi-Layer Classifier. Bold values are the highest scores, and underlined values
highlight the best between English-Only and Multilingual models.

Canadian French and French. We believe that multilin-
gual pretraining benefits Whisper models by capturing
language-specific features more effectively through WSL
and multitask learning. However, further research is
needed to evaluate the effectiveness of multilingual pre-
training with WSL compared to SSL across a broader
range of LSMs.

5. Conclusion
This paper examines the capabilities of Wav2Vec 2.0 and
Whisper models as feature extractors for cross-lingual
SER across eight languages, considering both English-
Only and Multilingual variants. Our findings reveal that
LSMs are effective feature extractors compared to a full
Transformer baseline trained from scratch. We observe
thatWhispermodels encode acoustic information primar-
ily in the features of the last Transformer layer, whereas
Wav2Vec 2.0 models rely on features from middle and
early layers. Furthermore, we show that multilingual
pre-training benefits Whisper models, leading to strong
performance in Italian, Canadian French, French, Span-
ish, German, and competitive results in Greek, Egyptian
Arabic, and Persian. In contrast, English-Only Wav2Vec
2.0 models outperform their multilingual counterpart,
XLS-R, in most languages, achieving top performance in
Greek and Egyptian Arabic. We attribute the disparity
in multilingual pre-training effectiveness to the differ-
ences between SSL and WSL strategies, which should be
explored further.
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